Multimorbidity and Serological Response to SARS-CoV-2 Nine Months after 1st Vaccine Dose: European Cohort of Healthcare Workers—Orchestra Project
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Ethics
2.2. Participant Recruitment, Follow-Up
2.3. Statistical Analysis
3. Results
3.1. Description of the Participants
3.2. Association of Chronic Conditions with 9-Month Post-Vaccine Anti-S Levels
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Allergies | Diabetes | Cardiovascular Diseases | Hypertension | Respiratory Diseases | Diseases Involving Immune System | Cancer | N HCWs 1 (%) |
---|---|---|---|---|---|---|---|
1 | 0 | 0 | 0 | 1 | 0 | 0 | 16 (9.6) |
0 | 0 | 0 | 1 | 0 | 1 | 0 | 14 (8.4) |
0 | 0 | 1 | 1 | 0 | 0 | 0 | 14 (8.4) |
1 | 0 | 0 | 0 | 0 | 1 | 0 | 14 (8.4) |
1 | 0 | 0 | 1 | 0 | 0 | 0 | 9 (5.4) |
0 | 0 | 1 | 0 | 0 | 1 | 0 | 7 (4.2) |
0 | 0 | 0 | 0 | 0 | 1 | 1 | 6 (3.6) |
0 | 0 | 0 | 1 | 1 | 0 | 0 | 6 (3.6) |
0 | 0 | 1 | 1 | 0 | 1 | 0 | 6 (3.6) |
1 | 0 | 0 | 1 | 0 | 1 | 0 | 6 (3.6) |
References
- Polack, F.P.; Thomas, S.J.; Kitchin, N.; Absalon, J.; Gurtman, A.; Lockhart, S.; Perez, J.L.; Pérez Marc, G.; Moreira, E.D.; Zerbini, C.; et al. Safety and Efficacy of the BNT162b2 mRNA COVID-19 Vaccine. N. Engl. J. Med. 2020, 383, 2603–2615. [Google Scholar] [CrossRef] [PubMed]
- Voysey, M.; Clemens, S.A.C.; Madhi, S.A.; Weckx, L.Y.; Folegatti, P.M.; Aley, P.K.; Angus, B.; Baillie, V.L.; Barnabas, S.L.; Bhorat, Q.E.; et al. Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: An interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK. Lancet 2021, 397, 99–111. [Google Scholar] [CrossRef] [PubMed]
- Oliver, S.E.; Gargano, J.W.; Scobie, H.; Wallace, M.; Hadler, S.C.; Leung, J.; Blain, A.E.; McClung, N.; Campos-Outcalt, D.; Morgan, R.L.; et al. The Advisory Committee on Immunization Practices’ Interim Recommendation for Use of Pfizer-BioNTech COVID-19 Vaccine. MMWR Surveill. Summ. 2021, 70, 329–332. [Google Scholar]
- Bubar, K.M.; Reinholt, K.; Kissler, S.M.; Lipsitch, M.; Cobey, S.; Grad, Y.H.; Larremore, D.B. Model-informed COVID-19 vaccine prioritization strategies by age and serostatus. Science 2021, 371, 916–921. [Google Scholar] [CrossRef]
- Català, M.; Coma, E.; Alonso, S.; Andrés, C.; Blanco, I.; Antón, A.; Bordoy, A.E.; Cardona, P.J.; Fina, F.; Martró, E.; et al. Transmissibility, hospitalization, and intensive care admissions due to omicron compared to delta variants of SARS-CoV-2 in Catalonia: A cohort study and ecological analysis. Front. Public Health 2022, 10, 961030. [Google Scholar] [CrossRef]
- Hossain, A.; Nasrullah, S.M.; Tasnim, Z.; Hasan, M.K.; Hasan, M.M. Seroprevalence of SARS-CoV-2 IgG antibodies among health care workers prior to vaccine administration in Europe, the USA and East Asia: A systematic review and meta-analysis. EClinicalMedicine 2021, 33, 100770. [Google Scholar] [CrossRef]
- WHO. Vaccine Prioritization for WHO Phase IIb/III Clinical Trial; WHO: Geneva, Switzerland, 2020; pp. 19–20.
- Centre, T.E.; Prevention, D.; Agency, E.M.; Ba, O.; Ba, O.; Coalition, I.; Authorities, M.R.; Technical, W.H.O.; Group, A.; Composition, V.; et al. ECDC-EMA statement on updating COVID-19 vaccines composition for new SARS-CoV-2 virus variants. Eur. Cent. Dis. Prev. Control 2023, 31, 2–5. [Google Scholar]
- Baden, L.R.; El Sahly, H.M.; Essink, B.; Kotloff, K.; Frey, S.; Novak, R.; Diemert, D.; Spector, S.A.; Rouphael, N.; Creech, C.B.; et al. Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. N. Engl. J. Med. 2021, 384, 403–416. [Google Scholar] [CrossRef]
- Lopez Bernal, J.; Andrews, N.; Gower, C.; Gallagher, E.; Simmons, R.; Thelwall, S.; Stowe, J.; Tessier, E.; Groves, N.; Dabrera, G.; et al. Effectiveness of COVID-19 Vaccines against the B.1.617.2 (Delta) Variant. N. Engl. J. Med. 2021, 385, 585–594. [Google Scholar] [CrossRef]
- Vasileiou, E.; Simpson, C.R.; Shi, T.; Kerr, S.; Agrawal, U.; Akbari, A.; Bedston, S.; Beggs, J.; Bradley, D.; Chuter, A.; et al. Interim findings from first-dose mass COVID-19 vaccination roll-out and COVID-19 hospital admissions in Scotland: A national prospective cohort study. Lancet 2021, 397, 1646–1657. [Google Scholar] [CrossRef]
- Seow, J.; Graham, C.; Merrick, B.; Acors, S.; Pickering, S.; Steel, K.J.A.; Hemmings, O.; O’Byrne, A.; Kouphou, N.; Galao, R.P.; et al. Longitudinal observation and decline of neutralizing antibody responses in the three months following SARS-CoV-2 infection in humans. Nat. Microbiol. 2020, 5, 1598–1607. [Google Scholar] [CrossRef]
- Lumley, S.F.; O’Donnell, D.; Stoesser, N.E.; Matthews, P.C.; Howarth, A.; Hatch, S.B.; Marsden, B.D.; Cox, S.; James, T.; Warren, F.; et al. Antibody Status and Incidence of SARS-CoV-2 Infection in Health Care Workers. N. Engl. J. Med. 2021, 384, 533–540. [Google Scholar] [CrossRef] [PubMed]
- Krammer, F. SARS-CoV-2 vaccines in development. Nature 2020, 586, 516–527. [Google Scholar] [CrossRef] [PubMed]
- Collier, D.A.; Ferreira, I.A.T.M.; Kotagiri, P.; Datir, R.P.; Lim, E.Y.; Touizer, E.; Meng, B.; Abdullahi, A.; Baker, S.; Dougan, G.; et al. Age-related immune response heterogeneity to SARS-CoV-2 vaccine BNT162b2. Nature 2021, 596, 417–422. [Google Scholar] [CrossRef] [PubMed]
- Hall, V.; Foulkes, S.; Insalata, F.; Kirwan, P.; Saei, A.; Atti, A.; Wellington, E.; Khawam, J.; Munro, K.; Cole, M.; et al. Protection against SARS-CoV-2 after COVID-19 Vaccination and Previous Infection. N. Engl. J. Med. 2022, 386, 1207–1220. [Google Scholar] [CrossRef]
- Cerqueira-Silva, T.; de Araujo Oliveira, V.; Paixão, E.S.; Florentino, P.T.V.; Penna, G.O.; Pearce, N.; Werneck, G.L.; Barreto, M.L.; Boaventura, V.S.; Barral-Netto, M. Vaccination plus previous infection: Protection during the omicron wave in Brazil. Lancet Infect. Dis. 2022, 22, 945–946. [Google Scholar] [CrossRef] [PubMed]
- Collatuzzo, G.; Lodi, V.; Feola, D.; De Palma, G.; Sansone, E.; Sala, E.; Janke, C.; Castelletti, N.; Porru, S.; Spiteri, G.; et al. Determinants of Anti-S Immune Response at 9 Months after COVID-19 Vaccination in a Multicentric European Cohort of Healthcare Workers—ORCHESTRA Project. Viruses 2022, 14, 2657. [Google Scholar] [CrossRef]
- Becerril-Gaitan, A.; Vaca-Cartagena, B.F.; Ferrigno, A.S.; Mesa-Chavez, F.; Barrientos-Gutiérrez, T.; Tagliamento, M.; Lambertini, M.; Villarreal-Garza, C. Immunogenicity and risk of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection after Coronavirus Disease 2019 (COVID-19) vaccination in patients with cancer: A systematic review and meta-analysis. Eur. J. Cancer 2022, 160, 243–260. [Google Scholar] [CrossRef]
- Peiyao, R.; Mengjie, Y.; Xiaogang, S.; Wenfang, H.; Danna, Z.; Yuqun, Z.; Juan, J.; Qiang, H. Immunogenicity and safety of SARS-CoV-2 vaccine in hemodialysis patients: A systematic review and meta-analysis. Front. Public Health 2022, 10, 951096. [Google Scholar] [CrossRef]
- Martinelli, S.; Pascucci, D.; Laurenti, P. Humoral response after a fourth dose of SARS-CoV-2 vaccine in immunocompromised patients. Results of a systematic review. Front. Public Health 2023, 11, 1108546. [Google Scholar] [CrossRef]
- Milo, R.; Staun-Ram, E.; Karussis, D.; Karni, A.; Hellmann, M.A.; Bar-Haim, E.; Miller, A. Humoral and Cellular Immune Responses to SARS-CoV-2 mRNA Vaccination in Patients with Multiple Sclerosis: An Israeli Multi-Center Experience Following 3 Vaccine Doses. Front. Immunol. 2022, 13, 868915. [Google Scholar] [CrossRef] [PubMed]
- Das, D.; Raha, F.K.; Adnan, K.M.; Siraj, M.R.; Shapla, M.J.; Shumy, F.; Haque, M.E.; Khan, M.H.; Sanyal, S.; Hosen, M.I.; et al. Dynamic antibody response in SARS-CoV-2 infected patients and COVID-19 vaccine recipients alongside vaccine effectiveness in comorbid and multimorbid groups. Heliyon 2023, 9, e16349. [Google Scholar] [CrossRef]
- Valderas, J.M.; Starfield, B.; Sibbald, B.; Salisbury, C.; Roland, M. Defining Comorbidity: Implications for Understanding Health and Health Services. Ann. Fam. Med. 2009, 7, 357–363. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.; Marzook, H.; Ahmad, F. Comorbidities and clinical complications associated with SARS-CoV-2 infection: An overview. Clin. Exp. Med. 2022, 23, 313–331. [Google Scholar] [CrossRef] [PubMed]
- Ng, W.H.; Tipih, T.; Makoah, N.A.; Vermeulen, J.G.; Goedhals, D.; Sempa, J.B.; Burt, F.J.; Taylor, A.; Mahalingam, S. Comorbidities in SARS-CoV-2 patients: A systematic review and meta-analysis. MBio 2021, 12, e03647-20. [Google Scholar] [CrossRef] [PubMed]
- Chudasama, Y.V.; Zaccardi, F.; Gillies, C.L.; Razieh, C.; Yates, T.; Kloecker, D.E.; Rowlands, A.V.; Davies, M.J.; Islam, N.; Seidu, S.; et al. Patterns of multimorbidity and risk of severe SARS-CoV-2 infection: An observational study in the U.K. BMC Infect. Dis. 2021, 21, 908. [Google Scholar] [CrossRef] [PubMed]
- Catalano, A.; Dansero, L.; Gilcrease, W.; Macciotta, A.; Saugo, C.; Manfredi, L.; Gnavi, R.; Strippoli, E.; Zengarini, N.; Caramello, V.; et al. Multimorbidity and SARS-CoV-2-Related Outcomes: Analysis of a Cohort of Italian Patients. JMIR Public Health Surveill. 2023, 9, e41404. [Google Scholar] [CrossRef]
- Russell, C.D.; Lone, N.I.; Baillie, J.K. Comorbidities, multimorbidity and COVID-19. Nat. Med. 2023, 29, 334–343. [Google Scholar] [CrossRef]
- Collatuzzo, G.; Visci, G.; Violante, F.S.; Porru, S.; Spiteri, G.; Monaco, M.G.L.; Larese Fillon, F.; Negro, C.; Janke, C.; Castelletti, N.; et al. Determinants of anti-S immune response at 6 months after COVID-19 vaccination in a multicentric European cohort of healthcare workers—ORCHESTRA project. Front. Immunol. 2022, 13, 986085. [Google Scholar] [CrossRef] [PubMed]
- Goronzy, J.J.; Weyand, C.M. Understanding immunosenescence to improve responses to vaccines. Nat. Immunol. 2013, 14, 428–436. [Google Scholar] [CrossRef] [Green Version]
- Laupèze, B.; Del Giudice, G.; Doherty, M.T.; Van der Most, R. Vaccination as a preventative measure contributing to immune fitness. NPJ Vaccines 2021, 6, 93. [Google Scholar] [CrossRef] [PubMed]
- Soegiarto, G.; Wulandari, L.; Purnomosari, D.; Dhia Fahmita, K.; Ikhwan Gautama, H.; Tri Hadmoko, S.; Edwin Prasetyo, M.; Aulia Mahdi, B.; Arafah, N.; Prasetyaningtyas, D.; et al. Hypertension is associated with antibody response and breakthrough infection in health care workers following vaccination with inactivated SARS-CoV-2. Vaccine 2020, 40, 4046–4056. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Nakagawa, T.; Kojima, M.; Nishikimi, A.; Tokuda, H.; Nishimura, K.; Umezawa, J.; Tanaka, S.; Inoue, M.; Ohmagari, N.; et al. Underlying medical conditions and anti-SARS-CoV-2 spike IgG antibody titers after two doses of BNT162b2 vaccination: A cross-sectional study. PLoS ONE 2023, 18, e0283658. [Google Scholar] [CrossRef]
- Soetedjo, N.N.M.; Iryaningrum, M.R.; Lawrensia, S.; Permana, H. Antibody response following SARS-CoV-2 vaccination among patients with type 2 diabetes mellitus: A systematic review. Diabetes Metab. Syndr. Clin. Res. Rev. 2022, 16, 102406. [Google Scholar] [CrossRef] [PubMed]
- Sakuraba, A.; Luna, A.; Micic, D. Serologic response following SARS-CoV-2 vaccination in patients with cancer: A systematic review and meta-analysis. J. Hematol. Oncol. 2022, 15, 15. [Google Scholar] [CrossRef]
- Giuliano, A.R.; Lancet, J.E.; Pilon-Thomas, S.; Dong, N.; Jain, A.G.; Tan, E.; Ball, S.; Tworoger, S.S.; Siegel, E.M.; Whiting, J.; et al. Evaluation of Antibody Response to SARS-CoV-2 mRNA-1273 Vaccination in Patients with Cancer in Florida. JAMA Oncol. 2022, 8, 748–754. [Google Scholar] [CrossRef] [PubMed]
- Dobaño, C.; Ramírez-Morros, A.; Alonso, S.; Vidal-Alaball, J.; Ruiz-Olalla, G.; Vidal, M.; Rubio, R.; Cascant, E.; Parras, D.; Rodrigo Melero, N.; et al. Persistence and baseline determinants of seropositivity and reinfection rates in health care workers up to 12.5 months after COVID-19. BMC Med. 2021, 19, 155. [Google Scholar] [CrossRef]
- Galli, S.; Tsai, M.; Piliponsky, A. The development of allergic inflammation. Nature 2008, 454, 445–454. [Google Scholar] [CrossRef] [Green Version]
- Ho, I.S.S.; Azcoaga-Lorenzo, A.; Akbari, A.; Black, C.; Davies, J.; Hodgins, P.; Khunti, K.; Kadam, U.; Lyons, R.A.; McCowan, C.; et al. Examining variation in the measurement of multimorbidity in research: A systematic review of 566 studies. Lancet Public Health 2021, 6, e587–e597. [Google Scholar] [CrossRef]
- Jonsdottir, I.H.; Börjesson, M.; Ahlborg, G. Healthcare workers’ participation in a healthy-lifestyle-promotion project in western Sweden. BMC Public Health 2011, 11, 448. [Google Scholar] [CrossRef] [Green Version]
Cohort | Assay | Crude 9-Month Post-Vaccine Anti-S Serology Test * | Standardized 9-Month Post-Vaccine Anti-S Serology Test * | Days Since 1st Dose to 9-Month Serology Test † | Days Since Last Dose to 9-Month Serology Test † |
---|---|---|---|---|---|
Germany— Munich n = 549 (18.7%) | Ro-RBD-Ig- quant-DBS | 170.90 (16.44) | 2.39 (0.05) | 275 (25) [210, 330] | 203 (88) [1, 316] |
Italy—Padova n = 163 (5.5%) | Diasorin Liaison® SARS-CoV-2 Trimeric—S—Igg | 8434.65 (951.08) | 10.78 (0.13) | 302 (28) [217, 330] | 57 (37) [17, 302] |
Italy—Trieste n = 288 (9.8%) | CMIA Abbott anti S-RBD | 6236.01 (1881.91) | 4.74 (0.08) | 258 (22) [210, 330] | 202 (75) [3, 293] |
Italy—Verona n = 1403 (47.7%) | Diasorin Liaison® SARS-CoV-2 Trimeric—S—Igg | 2443.59 (135.82) | 4.62 (0.03) | 258 (22) [210, 328] | 202 (75) [3, 293] |
Romania— Multicenter n = 52 (1.8%) | Abbot SARS-CoV-2 IgG II Quant test | 8746.71 (3772.14) | 5.06 (0.31) | 255 (44) [210, 330] | 199 (65) [54, 309] |
Slovakia— Multicenter n = 11 (0.4%) | Anti-SARS-CoV-2 QuantiVac ELISA (IgG) EUROIMMUN | 297.69 (23.34) | 7.15 (0.10) | 226 (8) [212, 238] | 196 (9) [181, 210] |
Spain— Northern Barcelona n = 475 (16.1%) | DECOV1901 ELISA (IgG-S) | 1851.23 (110.71) | 5.72 (0.05) | 265 (31) [210, 329] | 207 (76) [2, 324] |
Total n = 2941 (100%) | - | - | 4.67 (0.04) | 257 (38) [210, 330] | 175 (81) [1, 324] |
Germany— Munich n = 549 (18.7%) | Italy— Padova n = 163 (5.5%) | Italy— Trieste n = 288 (9.8%) | Italy— Verona n = 1403 (47.7%) | Romania— Multicenter n = 52 (1.8%) | Slovakia— Multicenter n = 11 (0.4%) | Spain— Northern Barcelona n = 475 (16.1%) | Total n = 2941 (100%) | |
---|---|---|---|---|---|---|---|---|
Gender (Female) | 440 (80.2) | 138 (84.7) | 203 (70.5) | 1118 (79.7) | 40 (76.9) | 8 (72.7) | 362 (76.2) | 2309 (78.5) |
Age group | ||||||||
≤29 | 69 (12.6) | 9 (5.5) | 15 (5.2) | 159 (11.3) | 2 (3.8) | 1 (9.1) | 44 (9.3) | 299 (10.2) |
30–39 | 139 (25.3) | 25 (15.3) | 43 (14.9) | 201 (14.3) | 4 (7.7) | 2 (18.2) | 68 (14.3) | 482 (16.4) |
40–49 | 120 (21.9) | 41 (25.2) | 75 (26.0) | 361 (25.7) | 17 (32.7) | 5 (45.4) | 170 (35.8) | 789 (26.8) |
≥50 | 221 (40.3) | 88 (54.0) | 155 (53.8) | 682 (48.6) | 29 (55.8) | 3 (27.3) | 193 (40.6) | 1371 (46.6) |
Job title | ||||||||
Administration | NA | 34 (20.9) | 13 (4.5) | 152 (10.8) | 7 (14.5) | 1 (9.1) | 66 (15.1) | 274 (11.6) |
Technician | NA | 15 (9.2) | 55 (19.1) | 143 (10.2) | 11 (21.1) | 1 (9.1) | 0 (0.0) | 225 (9.5) |
Nurse | NA | 82 (50.3) | 105 (36.5) | 597 (42.5) | 7 (13.5) | 5 (45.4) | 186 (42.6) | 983 (41.7) |
Physician (includes residents) | NA | 12 (7.4) | 69 (24.0) | 263 (18.8) | 26 (50.0) | 1 (9.1) | 142 (32.5) | 513 (21.8) |
Other HCWs (includes auxiliary workers) | NA | 20 (12.3) | 46 (16.0) | 248 (17.7) | 1 (1.9) | 3 (27.3) | 43 (9.8) | 361 (15.3) |
Previous COVID-19 infection (PCR) | ||||||||
Never infected | 518 (94.3) | 106 (65.0) | 235 (81.6) | 1162 (82.8) | 42 (80.8) | 7 (63.6) | 209 (44.0) | 2279 (77.5) |
Infected once | 31 (5.7) | 55 (33.8) | 53 (18.4) | 235 (16.8) | 10 (19.2) | 4 (36.4) | 241 (50.7) | 629 (21.4) |
Infected twice | 0 (0.0) | 2 (1.2) | 0 (0.0) | 6 (0.4) | 0 (0.0) | 0 (0.0) | 25 (5.3) | 33 (1.1) |
Previous COVID-19 infection (positive anti-N serology) | ||||||||
Never infected | 507 (92.3) | NA | NA | NA | NA | NA | 328 (69.6) | 835 (81.9) |
Infected at least once | 42 (7.7) | NA | NA | NA | NA | NA | 143 (30.4) | 185 (18.1) |
Number of vaccine doses | ||||||||
1 dose | 1 (0.2) | 0 (0.0) | 1 (0.3) | 15 (1.1) | 0 (0.0) | 0 (0.0) | 32 (6.7) | 49 (1.7) |
2 doses | 429 (78.1) | 38 (23.3) | 252 (87.5) | 1123 (80.0) | 43 (82.7) | 11 (100.0) | 407 (85.7) | 2303 (78.3) |
3 doses | 119 (21.7) | 125 (76.7) | 35 (12.2) | 265 (18.9) | 9 (17.3) | 0 (0.0) | 36 (7.6) | 589 (20.0) |
Vaccination scheme | ||||||||
mRNA-based only | 528 (96.2) | 44 (100) | 286 (100) | 1315 (100) | 51 (98.1) | 11 (100) | 452 (95.2) | 2687 (98.4) |
Adenovirus-based only | 6 (0.1) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 7 (1.5) | 13 (0.4) |
Mixed type | 15 (0.3) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 1 (1.9) | 0 (0.0) | 16 (3.3) | 32 (1.2) |
Missing | - | 119 (73.0) | 2 (0.7) | 88 (6.3) | - | - | - | 209 (7.1) |
Number of comorbidities | ||||||||
0 or 1 | 530 (96.5) | 157 (96.3) | 283 (98.3) | 1378 (98.2) | 36 (69.2) | 10 (90.9) | 345 (72.6) | 2739 (93.1) |
2 or more | 19 (3.5) | 6 (3.7) | 5 (1.7) | 25 (1.8) | 16 (30.8) | 1 (9.1) | 130 (27.4) | 202 (6.9) |
Comorbidities | ||||||||
Allergies * | 11 (2.0) | NA | NA | NA | 13 (25.0) | 0 (0.0) | 88 (18.5) | 112 (10.3) |
Diabetes | 4 (0.7) | 4 (2.5) | 6 (2.1) | 29 (2.1) | 3 (5.8) | 0 (0.0) | 14 (2.9) | 30 (2.0) |
Cardiovascular diseases | 15 (2.7) | 5 (3.1) | 13 (4.5) | 44 (3.1) | 11 (21.2) | 1 (9.1) | 46 (9.7) | 135 (4.6) |
Hypertension | 30 (5.5) | 18 (11.2) | 22 (7.6) | 107 (7.6) | 14 (26.9) | 3 (27.3) | 106 (22.3) | 300 (10.2) |
Respiratory diseases | 18 (3.3) | 7 (4.3) | 11 (3.8) | 52 (3.7) | 10 (19.2) | 0 (0.0) | 65 (13.7) | 163 (5.5) |
Diseases involving immune system | 13 (2.4) | 4 (2.5) | 7 (2.4) | 32 (2.3) | 3 (5.8) | 0 (0.0) | 113 (23.8) | 172 (5.8) |
Cancer | 7 (1.3) | 4 (2.5) | 4 (1.4) | 5 (0.4) | 2 (3.8) | 0 (0.0) | 33 (6.9) | 55 (1.9) |
Multimorbidity as Binary Variable | Multimorbidity as Chronic Conditions | |||||
---|---|---|---|---|---|---|
Risk Ratio (RR) | p-Value | Robust Standard Error | Risk Ratio (RR) | p-Value | Robust Standard Error | |
Cohort * Italy—Verona | Ref. | Ref. | ||||
Germany—Munich | 0.13 [0.12, 0.14] | <0.0001 | 0 | 0.13 [0.12, 0.14] | <0.0001 | 0 |
Italy—Padova | 151.33 [134.25, 170.60] | <0.0001 | 9.25 | 150.98 [133.82, 170.34] | <0.0001 | 9.29 |
Italy—Trieste | 1.41 [1.29, 1.54] | <0.0001 | 0.06 | 1.40 [1.28, 1.54] | <0.0001 | 0.06 |
Romania—Multicenter | 1.63 [1.34, 1.98] | <0.0001 | 0.16 | 1.64 [1.35, 1.99] | <0.0001 | 0.16 |
Slovakia—Multicenter | 17.93 [11.89, 27.05] | <0.0001 | 3.76 | 18.33 [12.15, 27.65] | <0.0001 | 3.84 |
Spain—Barcelona | 2.95 [2.71, 3.22] | <0.0001 | 0.13 | 2.94 [2.70, 3.21] | <0.0001 | 0.13 |
Gender *—Female | 1.04 [0.98, 1.11] | 0.18 | 0.03 | 1.03 [0.97, 1.10] | 0.31 | 0.03 |
Age—10 years increase | 0.94 [0.91, 0.96] | <0.0001 | 0.01 | 0.94 [0.92, 0.97] | <0.0001 | 0.01 |
Days since last dose to 9-month serology—10 days increase | 0.95 [0.94, 0.96] | <0.0001 | 0 | 0.95 [0.94, 0.96] | <0.0001 | 0 |
Previous COVID-19 Infection *—Infected at least once: positive PCR/anti-N serology | 2.30 [2.15, 2.46] | <0.0001 | 0.08 | 2.32 [2.16, 2.48] | <0.0001 | 0.08 |
Number of vaccine doses * | ||||||
2 doses | 1.12 [0.92, 1.37] | 0.26 | 0.12 | 1.12 [0.91, 1.37] | 0.27 | 0.12 |
3 doses | 2.45 [1.92, 3.13] | <0.0001 | 0.3 | 2.46 [1.93, 3.14] | <0.0001 | 0.30 |
Number of chronic Conditions *—2 or more | 0.89 [0.80, 1] | 0.043 | 0.05 | - | - | - |
Chronic conditions | ||||||
Allergies † | - | - | - | 0.89 [0.77, 1.02] | 0.097 | 0.06 |
Diabetes | - | - | - | 1.01 [0.85, 1.21] | 0.87 | 0.09 |
Cardiovascular diseases | - | - | - | 0.93 [0.82, 1.05] | 0.24 | 0.06 |
Hypertension | - | - | - | 0.87 [0.80, 0.95] | 0.002 | 0.04 |
Respiratory diseases | - | - | - | 1 [0.89, 1.11] | 0.95 | 0.06 |
Diseases involving immune system | - | - | - | 0.97 [0.86, 1.08] | 0.55 | 0.06 |
Cancer | - | - | - | 1.05 [0.87, 1.27] | 0.60 | 0.10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Violán, C.; Carrasco-Ribelles, L.A.; Collatuzzo, G.; Ditano, G.; Abedini, M.; Janke, C.; Reinkemeyer, C.; Giang, L.T.T.; Liviero, F.; Scapellato, M.L.; et al. Multimorbidity and Serological Response to SARS-CoV-2 Nine Months after 1st Vaccine Dose: European Cohort of Healthcare Workers—Orchestra Project. Vaccines 2023, 11, 1340. https://doi.org/10.3390/vaccines11081340
Violán C, Carrasco-Ribelles LA, Collatuzzo G, Ditano G, Abedini M, Janke C, Reinkemeyer C, Giang LTT, Liviero F, Scapellato ML, et al. Multimorbidity and Serological Response to SARS-CoV-2 Nine Months after 1st Vaccine Dose: European Cohort of Healthcare Workers—Orchestra Project. Vaccines. 2023; 11(8):1340. https://doi.org/10.3390/vaccines11081340
Chicago/Turabian StyleViolán, Concepción, Lucía A. Carrasco-Ribelles, Giulia Collatuzzo, Giorgia Ditano, Mahsa Abedini, Christian Janke, Christina Reinkemeyer, Le Thi Thu Giang, Filippo Liviero, Maria Luisa Scapellato, and et al. 2023. "Multimorbidity and Serological Response to SARS-CoV-2 Nine Months after 1st Vaccine Dose: European Cohort of Healthcare Workers—Orchestra Project" Vaccines 11, no. 8: 1340. https://doi.org/10.3390/vaccines11081340