Immunogenicity of Mix-and-Match CoronaVac/BNT162b2 Regimen versus Homologous CoronaVac/CoronaVac Vaccination: A Single-Blinded, Randomized, Parallel Group Superiority Trial
Abstract
:1. Introduction
2. Methods
2.1. Study Design
2.2. Ethics Statement
2.3. Selection Criteria
2.4. Study Design
- -
- Arm A:
- 1st dose: CoronaVac
- 2nd dose at 21 ± 3 days: CoronaVac
- -
- Arm B:
- 1st dose: CoronaVac
- 2nd dose at 21 D ± 3 D: BNT162b2
- -
- Hypothesis (unilateral test):
- H0: PA = PB
- H1: PA < PB
2.5. Randomization and Masking
2.6. Procedures
2.7. Peripheral SARS-CoV-2 Neutralizing Antibody Measurement
2.8. Peripheral Anti-S-RBD and Anti-N Antibody Measurement
2.9. Outcomes
- -
- The anti-spike IgG antibody response at 21–35 days after the second dose
- -
- The immunogenicity parameters (anti-spike neutralizing antibody and IgG antibody titers) at day 0 (at baseline)
- -
- The immunogenicity parameters (anti-spike neutralizing antibody and IgG antibody titers) at day 21 ± 3 days (after the second dose)
- -
- The safety indexes of adverse reactions at day 30.
2.10. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ben Ahmed, M.; Bellali, H.; Gdoura, M.; Zamali, I.; Kallala, O.; Ben Hmid, A.; Hamdi, W.; Ayari, H.; Fares, H.; Mechri, K.; et al. Humoral and Cellular Immunogenicity of Six Different Vaccines against SARS-CoV-2 in Adults: A Comparative Study in Tunisia (North Africa). Vaccines 2022, 10, 1189. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Zhu, Y.; Chu, M. Role of COVID-19 Vaccines in SARS-CoV-2 Variants. Front. Immunol. 2022, 13, 898192. [Google Scholar] [CrossRef] [PubMed]
- Simnani, F.Z.; Singh, D.; Kaur, R. COVID-19 phase 4 vaccine candidates, effectiveness on SARS-CoV-2 variants, neutralizing antibody, rare side effects, traditional and nano-based vaccine platforms: A review. 3 Biotech 2022, 12, 15. [Google Scholar] [CrossRef] [PubMed]
- Palacios, R.; Patiño, E.G.; de Oliveira Piorelli, R.; Conde, M.T.R.P.; Batista, A.P.; Zeng, G.; Xin, Q.; Kallas, E.G.; Flores, J.; Ockenhouse, C.F.; et al. Double-Blind, Randomized, Placebo-Controlled Phase III Clinical Trial to Evaluate the Efficacy and Safety of treating Healthcare Professionals with the Adsorbed COVID-19 (Inactivated) Vaccine Manufactured by Sinovac—PROFISCOV: A structured summary of a study protocol for a randomised controlled trial. Trials 2020, 21, 853. [Google Scholar] [PubMed]
- Fadlyana, E.; Rusmil, K.; Tarigan, R.; Rahmadi, A.R.; Prodjosoewojo, S.; Sofiatin, Y.; Khrisna, C.V.; Sari, R.M.; Setyaningsih, L.; Surachman, F.; et al. A phase III, observer-blind, randomized, placebo-controlled study of the efficacy, safety, and immunogenicity of SARS-CoV-2 inactivated vaccine in healthy adults aged 18–59 years: An interim analysis in Indonesia. Vaccine 2021, 39, 6520–6528. [Google Scholar] [CrossRef]
- Tanriover, M.D.; Doğanay, H.L.; Akova, M.; Güner, H.R.; Azap, A.; Akhan, S.; Köse, Ş.; Erdinç, F.Ş.; Akalın, E.H.; Tabak, Ö.F.; et al. Efficacy and safety of an inactivated whole-virion SARS-CoV-2 vaccine (CoronaVac): Interim results of a double-blind, randomised, placebo-controlled, phase 3 trial in Turkey. Lancet 2021, 398, 213–222. [Google Scholar] [CrossRef]
- Khoury, D.S.; Cromer, D.; Reynaldi, A.; Schlub, T.E.; Wheatley, A.K.; Juno, J.A.; Subbarao, K.; Kent, S.J.; Triccas, J.A.; Davenport, M.P. Neutralizing antibody levels are highly predictive of immune protection from symptomatic SARS-CoV-2 infection. Nat. Med. 2021, 27, 1205–1211. [Google Scholar] [CrossRef]
- Souza, W.M.; Amorim, M.R.; Sesti-Costa, R.; Coimbra, L.D.; Brunetti, N.S.; Toledo-Teixeira, D.A.; de Souza, G.F.; Muraro, S.P.; Parise, P.L.; Barbosa, P.P.; et al. Neutralisation of SARS-CoV-2 lineage P.1 by antibodies elicited through natural SARS-CoV-2 infection or vaccination with an inactivated SARS-CoV-2 vaccine: An immunological study. Lancet Microbe 2021, 2, e527–e535. [Google Scholar] [CrossRef]
- Lim, W.W.; Mak, L.; Leung, G.M.; Cowling, B.J.; Peiris, M. Comparative immunogenicity of mRNA and inactivated vaccines against COVID-19. Lancet Microbe 2021, 2, e423. [Google Scholar] [CrossRef]
- Stuart, A.S.V.; Shaw, R.H.; Liu, X.; Greenland, M.; Aley, P.K.; Andrews, N.J.; Cameron, J.C.; Charlton, S.; Clutterbuck, E.A.; Collins, A.M.; et al. Immunogenicity, safety, and reactogenicity of heterologous COVID-19 primary vaccination incorporating mRNA, viral-vector, and protein-adjuvant vaccines in the UK (Com-COV2): A single-blind, randomised, phase 2, non inferiority trial. Lancet 2022, 399, 36–49. [Google Scholar] [CrossRef]
- Shaw, R.H.; Stuart, A.; Greenland, M.; Liu, X.; Nguyen Van-Tam, J.S.; Snape, M.D.; Com-COV Study Group. Heterologous prime-boost COVID-19 vaccination: Initial reactogenicity data. Lancet 2021, 397, 2043–2046. [Google Scholar] [CrossRef]
- Borobia, A.M.; Carcas, A.J.; Pérez-Olmeda, M.; Castaño, L.; Bertran, M.J.; García-Pérez, J.; Campins, M.; Portolés, A.; González-Pérez, M.; García Morales, M.T.; et al. Immunogenicity and reactogenicity of BNT162b2 booster in ChAdOx1-S-primed participants (CombiVacS): A multicentre, open-label, randomised, controlled, phase 2 trial. Lancet 2021, 398, 121–130. [Google Scholar] [CrossRef]
- Sapkota, B.; Saud, B.; Shrestha, R.; Al-Fahad, D.; Sah, R.; Shrestha, S.; Rodriguez-Morales, A.J. Heterologous prime–boost strategies forCOVID-19 vaccines. J. Travel. Med. 2022, 29, taab191. [Google Scholar]
- Meyer, B.; Reimerink, J.; Torriani, G.; Brouwer, F.; Godeke, G.J.; Yerly, S.; Hoogerwerf, M.; Vuilleumier, N.; Kaiser, L.; Eckerle, I.; et al. Validation and clinical evaluation of a SARS-CoV-2 surrogate virus neutralisation test (sVNT). Emerg. Microbes Infect. 2020, 9, 2394–2403. [Google Scholar] [CrossRef]
- Murray, M.J.; McIntosh, M.; Atkinson, C.; Mahungu, T.; Wright, E.; Chatterton, W.; Gandy, M.; Reeves, M.B. Validation of a commercially available indirect assay for SARS-CoV-2 neutralising antibodies using a pseudotyped virus assay. J. Infect. 2021, 82, 170–177. [Google Scholar] [CrossRef]
- Li, M.; Wang, H.; Tian, L.; Pang, Z.; Yang, Q.; Huang, T.; Fan, J.; Song, L.; Tong, Y.; Fan, H. COVID-19 vaccine development: Milestones, lessons and prospects. Signal Transduct. Target Ther. 2022, 7, 146. [Google Scholar] [CrossRef]
- Khandker, S.S.; Godman, B.; Jawad, M.I.; Meghla, B.A.; Tisha, T.A.; Khondoker, M.U.; Haq, M.A.; Charan, J.; Talukder, A.A.; Azmuda, N.; et al. A Systematic Review on COVID-19 Vaccine Strategies, Their Effectiveness, and Issues. Vaccines 2021, 9, 1387. [Google Scholar] [CrossRef]
- Khong, K.W.; Liu, D.; Leung, K.Y.; Lu, L.; Lam, H.Y.; Chen, L.; Chan, P.C.; Lam, H.M.; Xie, X.; Zhang, R.; et al. Antibody Response of Combination of BNT162b2 and CoronaVac Platforms of COVID-19 Vaccines against Omicron Variant. Vaccines 2022, 10, 160. [Google Scholar] [CrossRef]
- Rammauro, F.; Carrión, F.; Olivero-Deibe, N.; Fló, M.; Ferreira, A.; Pritsch, O.; Bianchi, S. Humoral immune response characterization of heterologous prime-boost vaccination with CoronaVac and BNT162b2. Vaccine 2022, 40, 5189–5196. [Google Scholar] [CrossRef]
- Cerqueira-Silva, T.; Katikireddi, S.V.; de Araujo Oliveira, V.; Flores-Ortiz, R.; Júnior, J.B.; Paixão, E.S.; Robertson, C.; Penna, G.O.; Werneck, G.L.; Barreto, M.L.; et al. Vaccine effectiveness of heterologous CoronaVac plus BNT162b2 in Brazil. Nat. Med. 2022, 28, 838–843. [Google Scholar] [CrossRef]
- Cerqueira-Silva, T.; de Araujo Oliveira, V.; Paixão, E.S.; Júnior, J.B.; Penna, G.O.; Werneck, G.L.; Pearce, N.; Barreto, M.L.; Boaventura, V.S.; Barral-Netto, M. Duration of protection of CoronaVac plus heterologous BNT162b2 booster in the Omicron period in Brazil. Nat. Commun. 2022, 13, 4154. [Google Scholar] [CrossRef] [PubMed]
- Marra, A.R.; Miraglia, J.L.; Malheiros, D.T.; Guozhang, Y.; Teich, V.D.; da Silva, E.V.; Rebello Pinho, J.R.; Cypriano, A.; Vieira, L.W.; Polonio, M.; et al. Effectiveness of Heterologous Coronavirus Disease 2019 (COVID-19) Vaccine Booster Dosing in Brazilian Healthcare Workers. Clin. Infect. Dis. 2021, 76, e360–e366. [Google Scholar] [CrossRef] [PubMed]
- Leung, N.H.L.; Cheng, S.M.S.; Martín-Sánchez, M.; Au, N.Y.M.; Ng, Y.Y.; Luk, L.L.H.; Chan, K.C.K.; Li, J.K.C.; Leung, Y.W.Y.; Tsang, L.C.H.; et al. Immunogenicity of a Third Dose of BNT162b2 to Ancestral Severe Acute Respiratory Syndrome Coronavirus 2 and the Omicron Variant in Adults Who Received 2 Doses of Inactivated Vaccine. Clin. Infect. Dis. 2023, 76, e299–e307. [Google Scholar] [CrossRef] [PubMed]
- He, Q.; Mao, Q.; An, C.; Zhang, J.; Gao, F.; Bian, L.; Li, C.; Liang, Z.; Xu, M.; Wang, J. Heterologous prime-boost: Breaking the protective immune response bottleneck of COVID-19 vaccine candidates. Emerg. Microbes Infect. 2021, 10, 629–637. [Google Scholar] [CrossRef] [PubMed]
- Ledford, H. Could mixing COVID vaccines boost immune response? Nature 2021, 590, 375–376. [Google Scholar] [CrossRef]
- Garg, I.; Sheikh, A.B.; Pal, S.; Shekhar, R. Mix-and-Match COVID-19 Vaccinations (Heterologous Boost): A Review. Infect. Dis. Rep. 2022, 14, 537–546. [Google Scholar] [CrossRef]
- Zhang, R.; Liu, D.; Leung, K.Y.; Fan, Y.; Lu, L.; Chan, P.C.; To, K.K.; Chen, H.; Yuen, K.Y.; Chan, K.H.; et al. Immunogenicity of a Heterologous Prime-Boost COVID-19 Vaccination with mRNA and Inactivated Virus Vaccines Compared with Homologous Vaccination Strategy against SARS-CoV-2 Variants. Vaccines 2022, 10, 72. [Google Scholar] [CrossRef]
- Cromer, D.; Steain, M.; Reynaldi, A.; Schlub, T.E.; Wheatley, A.K.; Juno, J.A.; Kent, S.J.; Triccas, J.A.; Khoury, D.S.; Davenport, M.P. Neutralising antibody titers as predictors of protection against SARS-CoV-2 variants and the impact of boosting: A meta-analysis. Lancet Microbe 2022, 3, e52–e61. [Google Scholar] [CrossRef]
- Suphanchaimat, R.; Nittayasoot, N.; Jiraphongsa, C.; Thammawijaya, P.; Bumrungwong, P.; Tulyathan, A.; Cheewaruangroj, N.; Pittayawonganon, C.; Tharmaphornpilas, P. Real-World Effectiveness of Mix-and-Match Vaccine Regimens against SARS-CoV-2 Delta Variant in Thailand: A Nationwide Test-Negative Matched Case-Control Study. Vaccines 2022, 10, 1080. [Google Scholar] [CrossRef]
- Lim, J.M.E.; Hang, S.K.; Hariharaputran, S.; Chia, A.; Tan, N.; Lee, E.S.; Chng, E.; Lim, P.L.; Young, B.E.; Lye, D.C.; et al. A comparative characterization of SARS-CoV-2-specific T cells induced by mRNA or inactive virus COVID-19 vaccines. Cell Rep. Med. 2022, 3, 100793. [Google Scholar] [CrossRef]
- Li, Q.; Wang, Y.; Sun, Q.; Knopf, J.; Herrmann, M.; Lin, L.; Jiang, J.; Shao, C.; Li, P.; He, X.; et al. Immune response in COVID-19: What is next? Cell Death Differ. 2022, 29, 1107–1122. [Google Scholar] [CrossRef]
- Chouikha, A.; Fares, W.; Laamari, A.; Haddad-Boubaker, S.; Belaiba, Z.; Ghedira, K.; Kammoun Rebai, W.; Ayouni, K.; Khedhiri, M.; Ben Halima, S.; et al. Molecular Epidemiology of SARS-CoV-2 in Tunisia (North Africa) through Several Successive Waves of COVID-19. Viruses 2022, 14, 624. [Google Scholar] [CrossRef]
Homologous Group (CoronaVac/CoronaVac) | Mix-and-Match Group (CoronaVac/Pfizer) | Total | p-Value | |
---|---|---|---|---|
Number of participants | 99 | 100 | 199 | |
Sex, N (%) | NS | |||
Male | 35(35.4) | 45(45.0) | 80(40.2) | |
Female | 64(64.6) | 55(55.0) | 119(59.8) | |
Age, years | NS | |||
Mean ±SD | 32.3 ± 9.2 | 31.8 ± 7.7 | 32.0 ± 8.5 | |
Median (Min-Max) | 31(18–60) | 32 (18–48) | 32(18–60) | |
Comorbidities, N (%) | NS | |||
Yes | 29 (29.3) | 21 (21.0) | 50 (25.1) | |
No | 70 (70.7) | 79 (79.0) | 149 (74.9) | |
Tobacco use, N (%) | NS | |||
Yes | 33 (33.3) | 36 (36.0) | 69 (34.7) | |
No | 66 (66.7) | 64 (64.0) | 130 (65.3) | |
Alcohol use, N (%) | NS | |||
Yes | 11 (11.1) | 16 (16.0) | 27 (13.6) | |
No | 88 (88.9) | 84 (84.0) | 172 (86.4) | |
Study site, N (%) | NS | |||
Vaccination center | 22 (22.2) | 24 (24.0) | 46 (23.1) | |
Leoni factory | 48 (48.5) | 43 (43.0) | 91 (45.7) | |
Geant supermarket | 21 (21.2) | 24 (24.0) | 45 (22.6) | |
STEG head office | 8 (8.1) | 9 (9.0) | 17 (8.5) | |
Neutralizing anti-SARS CoV-2 N (%) | NS | |||
Positive | 45 (45.5) | 49 (49·0) | 94 (49.0) | |
Negative | 54 (54.5) | 51 (51·0) | 105 (51.0) | |
Neutralizing anti-SARS CoV-2 (Median, IQR) | 25 (0–79) | 28 (0–70) | 27 (0–77) | NS |
Anti-N protein IgG N (%) | ||||
Positive | 53 (53.5) | 58 (58.0) | 111 (55.8) | NS |
Negative | 44 (44.4) | 39 (39.0) | 83 (41.7) | |
Anti-spike IgG, N (%) | ||||
Positive | 61 (61.6) | 73 (73.0) | 134 (67.3) | NS |
Negative | 38 (38.4) | 27 (27.0) | 65 (32.7) | |
Anti-spike IgG, UI/mL | ||||
Median (IQR) | 26·6 (0–229.3) | 61·2 (0–193.2) | 47·9 (0–224.4) | NS |
SARS-CoV-2 Antibody Titers | CoronaVac/ CoronaVac Group | CoronaVac/ BNT162b2 Group | Total | p-Value |
---|---|---|---|---|
Neutralization antibody % inhibition after the first dose | ||||
Median (IQR) | 90 (19–96) | 94 (39–96) | 93 (24–96) | NS |
Neutralization antibody % inhibition after the first dose, N (%) | ||||
| 32 (32.3) | 24 (24.0) | 56 (28.1) | |
| 5 (5.1) | 2 (2.0) | 7 (3.5) | |
| 11 (11.1) | 9 (9.0) | 20 (10.1) | |
| 51 (51.5) | 65 (65.0) | 116 (58.3) | NS |
Anti-spike IgG after the first dose | ||||
Median (IQR) | 827 (4–2109) | 1187(225–2475) | 943(6–2245) | NS |
Time since first dose (days) | ||||
Mean ± SD Median (Min-Max) | 22.4 ± 3·9 21 (20–42) | 23.1 ± 4.9 21 (20–42) | 22.8 ± 4.4 21 (20–42) | NS |
Neutralization antibody % inhibition after the second dose | ||||
Median (IQR) | 94 (81–96) | 96 (95–97) | 96 (90–97) | p < 0.0001 |
Neutralization antibody % inhibition after the second dose N (%) | ||||
| 2 (2.0) | 1 (1.0) | 3 (1.5) | |
| 9 (9.1) | 0 (0.0) | 9 (4.5) | |
| 28 (28.3) | 9 (9.0) | 37 (18.6) | |
| 60 (60.6) | 90 (90.0) | 150 (75.4) | p < 0.0001 |
Anti-spike IgG after the second dose | ||||
Median (IQR) | 1190 (347–4964) | 13,460 (2557–29,930) | 3513 (732–19,158) | p < 0.0001 |
Time since second dose (days) | ||||
Mean ± SD | 37.7 ± 8.7 | 37.0 ± 9.9 | 37.4 ± 9.3 | NS |
Median (Min–Max) | 35 (27–70) | 35 (20–105) | 35 (20–105) |
CoronaVac/CoronaVac Group n (%) | CoronaVac/BNT162b2 Group n (%) | Total n (%) | p-Value | |
---|---|---|---|---|
Side effects | ||||
Any | 32 (32.2) | 58 (58.0) | 109 (54.8) | p < 10−3 |
Severe | 0 (0.0) | 0 (0.0) | 0 (0.0) | - |
Injection site reaction | 1 (1.0) | 4 (4.0) | 5 (2.5) | NS |
Arm Soreness | 8 (8.0) | 22 (22.0) | 30 (15.1) | 0.006 |
Fever | 10 (10.1) | 20 (20.0) | 30 (15.1) | 0.05 |
Headache | 4 (4.0) | 16 (16.0) | 20 (10.1) | 0.005 |
Tiredness | 9 (9.1) | 10 (10.0) | 19 (9.5) | NS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Samoud, S.; Bettaieb, J.; Gdoura, M.; Kharroubi, G.; Ben Ghachem, F.; Zamali, I.; Ben Hmid, A.; Salem, S.; Gereisha, A.A.; Dellagi, M.; et al. Immunogenicity of Mix-and-Match CoronaVac/BNT162b2 Regimen versus Homologous CoronaVac/CoronaVac Vaccination: A Single-Blinded, Randomized, Parallel Group Superiority Trial. Vaccines 2023, 11, 1329. https://doi.org/10.3390/vaccines11081329
Samoud S, Bettaieb J, Gdoura M, Kharroubi G, Ben Ghachem F, Zamali I, Ben Hmid A, Salem S, Gereisha AA, Dellagi M, et al. Immunogenicity of Mix-and-Match CoronaVac/BNT162b2 Regimen versus Homologous CoronaVac/CoronaVac Vaccination: A Single-Blinded, Randomized, Parallel Group Superiority Trial. Vaccines. 2023; 11(8):1329. https://doi.org/10.3390/vaccines11081329
Chicago/Turabian StyleSamoud, Samar, Jihene Bettaieb, Mariem Gdoura, Ghassen Kharroubi, Feriel Ben Ghachem, Imen Zamali, Ahlem Ben Hmid, Sadok Salem, Ahmed Adel Gereisha, Mongi Dellagi, and et al. 2023. "Immunogenicity of Mix-and-Match CoronaVac/BNT162b2 Regimen versus Homologous CoronaVac/CoronaVac Vaccination: A Single-Blinded, Randomized, Parallel Group Superiority Trial" Vaccines 11, no. 8: 1329. https://doi.org/10.3390/vaccines11081329
APA StyleSamoud, S., Bettaieb, J., Gdoura, M., Kharroubi, G., Ben Ghachem, F., Zamali, I., Ben Hmid, A., Salem, S., Gereisha, A. A., Dellagi, M., Hogga, N., Gharbi, A., Baccouche, A., Gharbi, M., Khemissi, C., Akili, G., Slama, W., Chaieb, N., Galai, Y., ... Ben Ahmed, M. (2023). Immunogenicity of Mix-and-Match CoronaVac/BNT162b2 Regimen versus Homologous CoronaVac/CoronaVac Vaccination: A Single-Blinded, Randomized, Parallel Group Superiority Trial. Vaccines, 11(8), 1329. https://doi.org/10.3390/vaccines11081329