Tracing down the Updates on Dengue Virus—Molecular Biology, Antivirals, and Vaccine Strategies
Abstract
:1. Introduction
2. Methodology
3. Results
3.1. History and Epidemiology of Dengue
3.2. Molecular Biology of DENV Infection
3.3. Quasispecies and Hyperendemnicity of Dengue Virus: A Challenge in Therapeutics and Vaccine Development
3.4. The Pathophysiology of Dengue Infection
3.5. DENV-Host Immune Interactions (Innate and Adaptive Responses)
3.6. DENV Strategy to Evade Innate Immune Responses
3.7. Adaptive Immune Response to DENV
3.8. Treatment and Management of Dengue
3.9. The Development of Vaccines against Dengue
3.10. Targets and Strategies for Vaccine Development against Dengue Viruses
3.11. Vaccine Candidates in Advanced Clinical Trials
3.12. Antibody-Dependent Enhancement (ADE)—The Main Obstacle for Vaccine Development against Dengue Virus
4. Future Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wilson, M.E.; Chen, L.H. Dengue: Update on Epidemiology. Curr. Infect. Dis. Rep. 2015, 17, 457. [Google Scholar] [CrossRef] [Green Version]
- Guzman, M.G.; Gubler, D.J.; Izquierdo, A.; Martinez, E.; Halstead, S.B. Dengue Infection. Nat. Rev. Dis. Primers 2016, 2, 16055. [Google Scholar] [CrossRef] [PubMed]
- Prompetchara, E.; Ketloy, C.; Thomas, S.J.; Ruxrungtham, K. Dengue Vaccine: Global Development Update. Asian Pac. J. Allergy Immunol. 2019, 10, 178–185. [Google Scholar]
- Halstead, S.B.; Streit, T.G.; Lafontant, J.G.; Putvatana, R.; Russell, K.; Sun, W.; Kanesa-Thasan, N.; Hayes, C.G.; Watts, D.M. Haiti: Absence of dengue hemorrhagic fever despite hyperendemic dengue virus transmission. Am. J. Trop. Med. Hyg. 2001, 65, 180–183. [Google Scholar] [CrossRef] [Green Version]
- WHO. Laboratory Testing for Zika Virus and Dengue Virus Infections: Interim Guidance; World Health Organization: Geneva, Switzerland, 2022. [Google Scholar]
- Bifani, A.M.; Siriphanitchakorn, T.; Choy, M.M. Intra-host diversity of dengue virus in mosquito vectors. Front. Cell. Infect. Microbiol. 2022, 12, 888804. [Google Scholar] [CrossRef]
- Thomas, S.J.; Yoon, I.-K. A Review of Dengvaxia®: Development to Deployment. Hum. Vaccines Immunother. 2019, 15, 2295–2314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teo, A.; Tan, H.D.; Loy, T.; Chia, P.Y.; Chua, C.L.L. Understanding antibody depedent enhancement in dengue: Are afucosylated IgG1s is a concern? PLoS Pathog. 2023, 19, e1011223. [Google Scholar] [CrossRef]
- Wilder-Smith, A. Dengue Vaccine Development, Challenges, and Prospects. Curr. Opin. Infect. Dis. 2022, 35, 390–396. [Google Scholar] [CrossRef]
- Halstead, S.B. Global Epidemiology of Dengue Hemorrhagic Fever. Southeast Asian J. Trop. Med. Public Health 1990, 21, 636–641. [Google Scholar]
- Roy, S.K.; Bhattacharjee, S. Dengue Virus: Epidemiology, Biology, and Disease Aetiology. Can. J. Microbiol. 2021, 67, 687–702. [Google Scholar] [CrossRef]
- Salles, T.S.; da Encarnação Sá-Guimarães, T.; de Alvarenga, E.S.L.; Guimarães-Ribeiro, V.; de Meneses, M.D.F.; de Castro-Salles, P.F.; Dos Santos, C.R.; do Amaral Melo, A.C.; Soares, M.R.; Ferreira, D.F. History, Epidemiology and Diagnostics of Dengue in the American and Brazilian Contexts: A Review. Parasit. Vectors 2018, 11, 264. [Google Scholar] [CrossRef] [Green Version]
- Redoni, M.; Yacoub, S.; Rivino, L.; Giacobbe, D.R.; Luzzati, R.; Di Bella, S. Dengue: Status of Current and Under-development Vaccines. Rev. Med. Virol. 2020, 30, e2101. [Google Scholar] [CrossRef] [PubMed]
- Scavuzzo, J.M.; Trucco, F.; Espinosa, M.; Tauro, C.B.; Abril, M.; Scavuzzo, C.M.; Frery, A.C. Modeling Dengue Vector Population Using Remotely Sensed Data and Machine Learning. Acta Trop. 2018, 185, 167–175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morrone, S.R.; Lok, S.-M. Structural Perspectives of Antibody-Dependent Enhancement of Infection of Dengue Virus. Curr. Opin. Virol. 2019, 36, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Wilder-Smith, A. Dengue Vaccine Development by the Year 2020: Challenges and Prospects. Curr. Opin. Virol. 2020, 43, 71–78. [Google Scholar] [CrossRef] [PubMed]
- Deng, S.-Q.; Yang, X.; Wei, Y.; Chen, J.-T.; Wang, X.-J.; Peng, H.-J. A Review on Dengue Vaccine Development. Vaccines 2020, 8, 63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nanaware, N.; Banerjee, A.; Mullick Bagchi, S.; Bagchi, P.; Mukherjee, A. Dengue Virus Infection: A Tale of Viral Exploitations and Host Responses. Viruses 2021, 13, 1967. [Google Scholar] [CrossRef]
- Losada, P.X.; DeLaura, I.; Narváez, C.F. Dengue Virus and Platelets: From the Biology to the Clinic. Viral Immunol. 2022, 35, 349–358. [Google Scholar] [CrossRef]
- St John, A.L.; Rathore, A.P.S. Adaptive Immune Responses to Primary and Secondary Dengue Virus Infections. Nat. Rev. Immunol. 2019, 19, 218–230. [Google Scholar] [CrossRef]
- Christian, K.M.; Song, H.; Ming, G. Pathophysiology and mechanisms of Zika Virus Infection in the Nervous System. Annu. Rev. Neurosci. 2019, 42, 249–269. [Google Scholar] [CrossRef] [Green Version]
- Dutta, R.; Saleena, L.M.; Ghorai, S. DENV Host Interaction and Altered Antiviral Pathway during DENV Infection. AIJR Abstr. 2021, 28, 1. [Google Scholar]
- Serrato-Salas, J.; Izquierdo-Sánchez, J.; Argüello, M.; Conde, R.; Alvarado-Delgado, A.; Lanz-Mendoza, H. Aedes Aegypti Antiviral Adaptive Response against DENV-2. Dev. Comp. Immunol. 2018, 84, 28–36. [Google Scholar] [CrossRef] [PubMed]
- Siriphanitchakorn, T.; Kini, R.M.; Ooi, E.E.; Choy, M.M. Revisiting Dengue Virus-Mosquito Interactions: Molecular Insights into Viral Fitness. J. Gen. Virol. 2021, 102, 001693. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.F.; Voon, G.Z.; Lim, H.X.; Chua, M.L.; Poh, C.L. Innate and Adaptive Immune Evasion by Dengue Virus. Front. Cell Infect. Microbiol. 2022, 12, 1373. [Google Scholar] [CrossRef]
- Coldbeck-Shackley, R.C.; Eyre, N.S.; Beard, M.R. The Molecular Interactions of ZIKV and DENV with the Type-I IFN Response. Vaccines 2020, 8, 530. [Google Scholar] [CrossRef] [PubMed]
- Tripathi, N.K.; Shrivastava, A. Recent Developments in Recombinant Protein–Based Dengue Vaccines. Front. Immunol. 2018, 9, 1919. [Google Scholar] [CrossRef]
- Ramamurthy, D.; Nundalall, T.; Cingo, S.; Mungra, N.; Karaan, M.; Naran, K.; Barth, S. Recent Advances in Immunotherapies against Infectious Diseases. Immunother. Adv. 2021, 1, ltaa007. [Google Scholar] [CrossRef]
- Islam, M.T.; Mubarak, M.S. Diterpenes and Their Derivatives as Promising Agents against Dengue Virus and Dengue Vectors: A Literature-based Review. Phytother. Res. 2020, 34, 674–684. [Google Scholar] [CrossRef]
- Jia, X.; Ganter, B.; Meier, C. Improving Properties of the Nucleobase Analogs T-705/T-1105 as Potential Antiviral. In Annual Reports in Medicinal Chemistry; Elsevier: Amsterdam, The Netherlands, 2021; Volume 57, pp. 1–47. [Google Scholar]
- Durbin, A.P. Historical Discourse on the Development of the Live Attenuated Tetravalent Dengue Vaccine Candidate TV003/TV005. Curr. Opin. Virol. 2020, 43, 79–87. [Google Scholar] [CrossRef]
- Loe, M.W.C.; Hao, E.; Chen, M.; Li, C.; Lee, R.C.H.; Zhu, I.X.Y.; Teo, Z.Y.; Chin, W.-X.; Hou, X.; Deng, J.; et al. Betulinic Acid Exhibits Antiviral Effects against Dengue Virus Infection. Antiviral Res. 2020, 184, 104954. [Google Scholar] [CrossRef]
- Jena, N.; Bal, C.; Sharon, A. Plant and Marine Products: A Promising Hope in the Search of Therapeutics against Dengue. In Discovery and Development of Therapeutics from Natural Products against Neglected Tropical Diseases; Elsevier: Amsterdam, The Netherlands, 2019; pp. 385–405. [Google Scholar]
- Xu, L.; Ma, Z.; Li, Y.; Pang, Z.; Xiao, S. Antibody Dependent Enhancement: Unavoidable Problems in Vaccine Development. Adv. Immunol. 2021, 151, 99–133. [Google Scholar]
- López-Medina, E.; Biswal, S.; Saez-Llorens, X.; Borja-Tabora, C.; Bravo, L.; Sirivichayakul, C.; Vargas, L.M.; Alera, M.T.; Velásquez, H.; Reynales, H. Efficacy of a Dengue Vaccine Candidate (TAK-003) in Healthy Children and Adolescents 2 Years after Vaccination. J. Infect. Dis. 2022, 225, 1521–1532. [Google Scholar] [CrossRef]
- Nivarthi, U.K.; Swanstrom, J.; Delacruz, M.J.; Patel, B.; Durbin, A.P.; Whitehead, S.S.; Kirkpatrick, B.D.; Pierce, K.K.; Diehl, S.A.; Katzelnick, L. A Tetravalent Live Attenuated Dengue Virus Vaccine Stimulates Balanced Immunity to Multiple Serotypes in Humans. Nat. Commun. 2021, 12, 1102. [Google Scholar] [CrossRef] [PubMed]
- Feng, K.; Zheng, X.; Wang, R.; Gao, N.; Fan, D.; Sheng, Z.; Zhou, H.; Chen, H.; An, J. Long-Term Protection Elicited by a DNA Vaccine Candidate Expressing the PrM-E Antigen of Dengue Virus Serotype 3 in Mice. Front. Cell Infect. Microbiol. 2020, 10, 87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bilia, A.R.; Bergonzi, M.C.; Guccione, C.; Manconi, M.; Fadda, A.M.; Sinico, C. Vesicles and Micelles: Two Versatile Vectors for the Delivery of Natural Products. J. Drug Deliv. Sci. Technol. 2016, 32, 241–255. [Google Scholar] [CrossRef]
- Dussupt, V.; Modjarrad, K.; Krebs, S.J. Landscape of Monoclonal Antibodies Targeting Zika and Dengue: Therapeutic Solutions and Critical Insights for Vaccine Development. Front. Immunol. 2021, 11, 621043. [Google Scholar] [CrossRef] [PubMed]
- Idris, F.; Ting, D.H.R.; Alonso, S. An Update on Dengue Vaccine Development, Challenges, and Future Perspectives. Expert Opin. Drug Discov. 2021, 16, 47–58. [Google Scholar] [CrossRef]
- Rozera, R.; Verma, S.; Kumar, R.; Haque, A.; Attri, A. Herbal Remedies, Vaccines and Drugs for Dengue Fever: Emerging Prevention and Treatment Strategies. Asian Pac. J. Trop. Med. 2019, 12, 147–152. [Google Scholar]
- Pollard, A.J.; Bijker, E.M. A Guide to Vaccinology: From Basic Principles to New Developments. Nat. Rev. Immunol. 2021, 21, 83–100. [Google Scholar] [CrossRef]
- Quach, Q.H.; Ang, S.K.; Chu, J.-H.J.; Kah, J.C.Y. Size-Dependent Neutralizing Activity of Gold Nanoparticle-Based Subunit Vaccine against Dengue Virus. Acta Biomater. 2018, 78, 224–235. [Google Scholar] [CrossRef] [PubMed]
- Chaudhuri, D.; Majumder, S.; Datta, J.; Giri, K. Designing of Nanobodies against Dengue Virus Capsid: A Computational Affinity Maturation Approach. J. Biomol. Struct. Dyn. 2023, 41, 2289–2299. [Google Scholar] [CrossRef] [PubMed]
- Wollner, C.J.; Richner, M.; Hassert, M.A.; Pinto, A.K.; Brien, J.D.; Richner, J.M. A MRNA-LNP Vaccine against Dengue Virus Elicits Robust, Serotype-Specific Immunity. bioRxiv 2021. [Google Scholar] [CrossRef]
- Pardi, N.; Hogan, M.J.; Porter, F.W.; Weissman, D. MRNA Vaccines—A New Era in Vaccinology. Nat. Rev. Drug Discov. 2018, 17, 261–279. [Google Scholar] [CrossRef] [Green Version]
- Sakthi Devi, R.; Girigoswami, A.; Siddharth, M.; Girigoswami, K. Applications of Gold and Silver Nanoparticles in Theranostics. Appl. Biochem. Biotechnol. 2022, 194, 4187–4219. [Google Scholar] [CrossRef]
- Malik, S.; Niazi, M.; Khan, M.; Rauff, B.; Anwar, S.; Amin, F.; Hanif, R. Cytotoxicity Study of Gold Nanoparticle Synthesis Using Aloe Vera, Honey, and Gymnema Sylvestre Leaf Extract. ACS Omega 2023, 8, 6325–6336. [Google Scholar] [CrossRef]
- Kara, A.; Yakut, S.; Caglayan, C.; Atçalı, T.; Ulucan, A.; Kandemir, F.M. Evaluation of the Toxicological Effects of Favipiravir (T-705) on Liver and Kidney in Rats: Biochemical and Histopathological Approach. Drug Chem. Toxicol. 2023, 46, 546–556. [Google Scholar] [CrossRef] [PubMed]
- Valdés, I.; Lazo, L.; Hermida, L.; Guillén, G.; Gil, L. Can Complementary Prime-Boost Immunization Strategies Be an Alternative and Promising Vaccine Approach against Dengue Virus? Front. Immunol. 2019, 10, 1956. [Google Scholar] [CrossRef] [Green Version]
- Alagarasu, K. Immunomodulatory Effect of Vitamin D on Immune Response to Dengue Virus Infection. In Vitamins and Hormones; Elsevier: Amsterdam, The Netherlands, 2021; Volume 117, pp. 239–252. [Google Scholar]
- Chen, Q.; Li, R.; Wu, B.; Zhang, X.; Zhang, H.; Chen, R. A Tetravalent Nanoparticle Vaccine Elicits a Balanced and Potent Immune Response against Dengue Viruses without Inducing Antibody-Dependent Enhancement. Front. Immunol. 2023, 14, 1193175. [Google Scholar] [CrossRef]
- Roth, C.; Cantaert, T.; Colas, C.; Prot, M.; Casadémont, I.; Levillayer, L.; Thalmensi, J.; Langlade-Demoyen, P.; Gerke, C.; Bahl, K. A Modified MRNA Vaccine Targeting Immunodominant NS Epitopes Protects against Dengue Virus Infection in HLA Class I Transgenic Mice. Front. Immunol. 2019, 10, 1424. [Google Scholar] [CrossRef]
- Kaushik, S.; Kaushik, S.; Sharma, V.; Yadav, J. Antiviral and Therapeutic Uses of Medicinal Plants and Their Derivatives against Dengue Viruses. Pharmacogn. Rev. 2018, 12, 177–185. [Google Scholar]
- Majeed, W.; Aslam, B.; Altaf, S.; Khatoon, A.; Abbas, I.; Kanwal, H.A. Mosquito-Borne Dengue Fever—An Update; One Health Triad, Unique Scientific Publishers: Faisalabad, Pakistan, 2023; Volume 3, pp. 8–14. [Google Scholar]
- Lu, X.; Bambrick, H.; Pongsumpun, P.; Dhewantara, P.W.; Toan, D.T.T.; Hu, W. Dengue Outbreaks in the COVID-19 Era: Alarm Raised for Asia. PLoS Negl. Trop. Dis. 2021, 15, e0009778. [Google Scholar] [CrossRef] [PubMed]
- Subedi, D.; Taylor-Robinson, A.W. Epidemiology of Dengue in Nepal: History of Incidence, Current Prevalence and Strategies for Future Control. J. Vector Borne Dis. 2016, 53, 1–7. [Google Scholar]
- Sanyaolu, A.; Okorie, C.; Badaru, O.; Adetona, K.; Ahmed, M.; Akanbi, O.; Foncham, J.; Kadavil, S.; Likaj, L.; Raza, S. Global Epidemiology of Dengue Hemorrhagic Fever: An Update. J. Hum. Virol. Retrovirol. 2017, 5, 00179. [Google Scholar] [CrossRef] [Green Version]
- Raura, N.; Garg, A.; Arora, A.; Roma, M. Nanoparticle Technology and Its Implications in Endodontics: A Review. Biomater. Res. 2020, 24, 21. [Google Scholar] [CrossRef] [PubMed]
Sr. no. | Vaccine Strategy | The Mechanism of Action and Vaccine Development | Vaccine Candidates under Trials | References |
---|---|---|---|---|
1 | Envelope protein-based vaccine | Structural viral antigens directed at envelope proteins (E and M of DENV) avert the viral-host interaction and their underlying activation responses that are essential for viral genomic regulation. The E protein is the structural regulator of DENV and plays a vital role in DENV-associated pathogenicity and vaccine development. However, the associated nonspecific immunoglobulin production is a major challenge to overcome for vaccine designing. |
| [2,7,13,23,27,28] |
2. | Live attenuated vaccine candidates | Nonstructural proteins of DENV with important roles in the replication cycle are used to design attenuated vaccination protocols with controlled virulence and enhanced immunogenicity. More specifically, the envelope E and NS1 proteins mediate complement-fixing (CF)-induced antibody responses in the host immune system. Similarly, recombinant DENVs are modified either by deletion or antigenic chimerization to generate attenuated vaccines against all four serotypes of DENV through reverse genetics. |
| [1,3,4,6,8,13,17,27,37,38,39] |
3. | DNA vaccine candidates | The use of plasmid DNA for encoding different viral proteins, such as the DENV-NS1 protein, promulgates an immunogenic response. Moreover, the plasmids can be loaded with immune system cells such as interleukin-12 that help further elicit a stronger immune response. Various adjuvants are being tested with DNA vaccines to increase the immunogenicity of future vaccine candidates. |
| [3,4,8,13,17,27] |
4. | Vector vaccine candidates | Virus vector candidates are used for expressing desired genes such as NS1, NS2A, and protein derivatives for all four serotypes of DENV. These vectors undergo similar viral responses in a host cell, such as glycosylation, and sedimentation. The viral species with low pathogenicity and good deliverability, such as vaccinia virus, adenovirus, and alphavirus, are mostly employed. |
| [4,6,8,13,14,29,35,38] |
5 | Subunit vaccine candidates | Ease and cost-effectiveness. The respective studies show short- to long- term immunity induction through high titers of neutralizing antibodies against different DENV stereotypes. |
| [8,27] |
6. | Recombinant vaccine candidates | Includes the fusion of E proteins with lipoproteins, which undergo antigenic representation and respective immune responses in the host. |
| [6,8,9,13,16,27] |
7. | Inactivated vaccine candidates | Several protein entities, such as C, M, E, and NS1, are used for designing antigenic components in inactivated vaccine candidates. Pathogens and antigenic substances are treated with several chemicals and radiations to reduce their infectivity in subjects. These vaccine candidates possess a lower risk of infection activation. |
| [16,31,40,41] |
8. | mRNA vaccine encoded vaccines | Some vaccines are designed on the basis of lipid nanoparticles (LNPs) encapsulated with modified mRNA and DENV1-NS. The serotype-specific immune responses could be generated by properly designing mRNA-LNP vaccine candidates. |
| [42,43] |
Sr. no. | Therapeutic Strategy | Explanation | Candidates under Trials | References |
---|---|---|---|---|
1. | Designing of nanobodies against dengue virus proteins | Some available nanobodies are being restructured and repurposed for the treatment of DF. The nanostructures are being conjugated at antibody regions to deliver drug adjuvants against infectious viral agents. Moreover, nanoassemblies are also being progressively employed for diagnostic purposes for viral detection in patients. | [42,43,44,45,46] | |
2. | Gold nanoparticle-based subunit vaccine | Gold nanoparticles combine different structural components of DENV, such as enveloped glycoproteins, through hybrid technology. The results generated have shown that AuNP-E induced a high level of antibody-mediated neutralization against DENV. Scientists believe that by controlling the size and dosages of AuNPS, more stimulatory responses could be produced. |
| [43,47,48] |
3. | Polymerase inhibitor—based drugs | Selectively inhibits iral RNA-dependent RNA polymerase without creating cytotoxicity in mammalian cells. |
| [30,49] |
4. | Promising therapeutic candidates derived from natural products | Some new studies are being conducted to extract natural resources for dengue treatment. However, there is a need to further work on these pharmaceuticals to establish their anti-DENV drug properties. |
| [33,44,50] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malik, S.; Ahsan, O.; Mumtaz, H.; Tahir Khan, M.; Sah, R.; Waheed, Y. Tracing down the Updates on Dengue Virus—Molecular Biology, Antivirals, and Vaccine Strategies. Vaccines 2023, 11, 1328. https://doi.org/10.3390/vaccines11081328
Malik S, Ahsan O, Mumtaz H, Tahir Khan M, Sah R, Waheed Y. Tracing down the Updates on Dengue Virus—Molecular Biology, Antivirals, and Vaccine Strategies. Vaccines. 2023; 11(8):1328. https://doi.org/10.3390/vaccines11081328
Chicago/Turabian StyleMalik, Shiza, Omar Ahsan, Hassan Mumtaz, Muhammad Tahir Khan, Ranjit Sah, and Yasir Waheed. 2023. "Tracing down the Updates on Dengue Virus—Molecular Biology, Antivirals, and Vaccine Strategies" Vaccines 11, no. 8: 1328. https://doi.org/10.3390/vaccines11081328
APA StyleMalik, S., Ahsan, O., Mumtaz, H., Tahir Khan, M., Sah, R., & Waheed, Y. (2023). Tracing down the Updates on Dengue Virus—Molecular Biology, Antivirals, and Vaccine Strategies. Vaccines, 11(8), 1328. https://doi.org/10.3390/vaccines11081328