Development of Effective PEDV Vaccine Candidates Based on Viral Culture and Protease Activity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cells
2.2. Isolation of PED Virus
2.3. Live Attenuated PEDV
2.4. Titration of PEDV
2.5. Immunofluorescence Assay
2.6. Evaluation of Pathogenicity
2.7. Quantitative Real-Time RT-PCR
2.8. Histopathology and Immunochemistry
2.9. Next-Generation Sequencing (NGS)
2.10. Phylogenetic Tree
3. Results
3.1. Isolation of PEDV from Porcine Intestines
3.2. Development of Live Attenuated Vaccine Candidates
3.3. Growth Characteristics of CKT-7 Strains
3.4. Growth Kinetics of CKT-7 Strains
3.5. Evaluation for Pathogenicity of CKT-7 Strains
3.6. Analysis of Histopathology and Immunohistochemistry (IHC)
3.7. Analysis of the Phylogenetic Relationship
3.8. Comparison of Whole-Genome Sequence
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Singh, G.; Singh, P.; Pillatzki, A.; Nelson, E.; Webb, B.; Dillberger-Lawson, S.; Ramamoorthy, S. A Minimally Replicative Vaccine Protects Vaccinated Piglets Against Challenge With the Porcine Epidemic Diarrhea Virus. Front. Vet. Sci. 2019, 6, 347. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Li, G.; Stasko, J.; Thomas, J.T.; Stensland, W.R.; Pillatzki, A.E.; Gauger, P.C.; Schwartz, K.J.; Madson, D.; Yoon, K.J.; et al. Isolation and characterization of porcine epidemic diarrhea viruses associated with the 2013 disease outbreak among swine in the United States. J. Clin. Microbiol. 2014, 52, 234–243. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Li, W.; Zhou, Q.; Li, Q.; Xu, Z.; Shen, H.; Chen, F. Characterization and pathogenicity of Vero cell-attenuated porcine epidemic diarrhea virus CT strain. Virol. J. 2019, 16, 121. [Google Scholar] [CrossRef] [PubMed]
- Dervas, E.; Hepojoki, J.; Laimbacher, A.; Romero-Palomo, F.; Jelinek, C.; Keller, S.; Smura, T.; Hepojoki, S.; Kipar, A.; Hetzel, U. Nidovirus-Associated Proliferative Pneumonia in the Green Tree Python (Morelia viridis). J. Virol. 2017, 91, e00718-17. [Google Scholar] [CrossRef]
- Zhang, Q.; Shi, K.; Yoo, D. Suppression of type I interferon production by porcine epidemic diarrhea virus and degradation of CREB-binding protein by nsp1. Virology 2016, 489, 252–268. [Google Scholar] [CrossRef]
- Lee, S.H.; Yang, D.K.; Kim, H.H.; Cho, I.S. Efficacy of inactivated variant porcine epidemic diarrhea virus vaccines in growing pigs. Clin. Exp. Vaccine Res. 2018, 7, 61–69. [Google Scholar] [CrossRef]
- Gerdts, V.; Zakhartchouk, A. Vaccines for porcine epidemic diarrhea virus and other swine coronaviruses. Vet. Microbiol. 2017, 206, 45–51. [Google Scholar] [CrossRef]
- Park, J.E.; Shin, H.J. Porcine epidemic diarrhea vaccine efficacy evaluation by vaccination timing and frequencies. Vaccine 2018, 36, 2760–2763. [Google Scholar] [CrossRef]
- Lin, C.N.; Chung, W.B.; Chang, S.W.; Wen, C.C.; Liu, H.; Chien, C.H.; Chiou, M.T. US-like strain of porcine epidemic diarrhea virus outbreaks in Taiwan, 2013–2014. J. Vet. Med. Sci. 2014, 76, 1297–1299. [Google Scholar] [CrossRef]
- Baek, P.S.; Choi, H.W.; Lee, S.; Yoon, I.J.; Lee, Y.J.; Lee du, S.; Lee, S.; Lee, C. Efficacy of an inactivated genotype 2b porcine epidemic diarrhea virus vaccine in neonatal piglets. Vet. Immunol. Immunopathol. 2016, 174, 45–49. [Google Scholar] [CrossRef]
- Lee, S.; Son, K.Y.; Noh, Y.H.; Lee, S.C.; Choi, H.W.; Yoon, I.J.; Lee, C. Genetic characteristics, pathogenicity, and immunogenicity associated with cell adaptation of a virulent genotype 2b porcine epidemic diarrhea virus. Vet. Microbiol. 2017, 207, 248–258. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.; Ke, H.; Kim, J.; Yoo, D.; Su, Y.; Boley, P.; Chepngeno, J.; Vlasova, A.N.; Saif, L.J.; Wang, Q. Engineering a Live Attenuated Porcine Epidemic Diarrhea Virus Vaccine Candidate via Inactivation of the Viral 2′-O-Methyltransferase and the Endocytosis Signal of the Spike Protein. J. Virol. 2019, 93, e00406-19. [Google Scholar] [CrossRef] [PubMed]
- Reed, L.J.; Muench, H. A simple method of estimating fifty per cent endpoints. Am. J. Epidemiol. 1938, 27, 493–497. [Google Scholar] [CrossRef]
- Zhou, X.; Zhang, T.; Song, D.; Huang, T.; Peng, Q.; Chen, Y.; Li, A.; Zhang, F.; Wu, Q.; Ye, Y.; et al. Comparison and evaluation of conventional RT-PCR, SYBR green I and TaqMan real-time RT-PCR assays for the detection of porcine epidemic diarrhea virus. Mol. Cell. Probes 2017, 33, 36–41. [Google Scholar] [CrossRef]
- Chrzastek, K.; Lee, D.H.; Smith, D.; Sharma, P.; Suarez, D.L.; Pantin-Jackwood, M.; Kapczynski, D.R. Use of Sequence-Independent, Single-Primer-Amplification (SISPA) for rapid detection, identification, and characterization of avian RNA viruses. Virology 2017, 509, 159–166. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
- Wang, L.; Byrum, B.; Zhang, Y. New variant of porcine epidemic diarrhea virus, United States, 2014. Emerg. Infect. Dis. 2014, 20, 917–919. [Google Scholar] [CrossRef]
- Fan, B.; Jiao, D.; Zhao, X.; Pang, F.; Xiao, Q.; Yu, Z.; Mao, A.; Guo, R.; Yuan, W.; Zhao, P.; et al. Characterization of Chinese Porcine Epidemic Diarrhea Virus with Novel Insertions and Deletions in Genome. Sci. Rep. 2017, 7, 44209. [Google Scholar] [CrossRef]
- Shirato, K.; Maejima, M.; Matsuyama, S.; Ujike, M.; Miyazaki, A.; Takeyama, N.; Ikeda, H.; Taguchi, F. Mutation in the cytoplasmic retrieval signal of porcine epidemic diarrhea virus spike (S) protein is responsible for enhanced fusion activity. Virus Res. 2011, 161, 188–193. [Google Scholar] [CrossRef]
- Hou, Y.; Meulia, T.; Gao, X.; Saif, L.J.; Wang, Q. Deletion of both the Tyrosine-Based Endocytosis Signal and the Endoplasmic Reticulum Retrieval Signal in the Cytoplasmic Tail of Spike Protein Attenuates Porcine Epidemic Diarrhea Virus in Pigs. J. Virol. 2019, 93, e01758-18. [Google Scholar] [CrossRef]
- Lee, C. Porcine epidemic diarrhea virus: An emerging and re-emerging epizootic swine virus. Virol. J. 2015, 12, 193. [Google Scholar] [CrossRef] [PubMed]
- Sato, T.; Takeyama, N.; Katsumata, A.; Tuchiya, K.; Kodama, T.; Kusanagi, K. Mutations in the spike gene of porcine epidemic diarrhea virus associated with growth adaptation in vitro and attenuation of virulence in vivo. Virus Genes 2011, 43, 72–78. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.; Wang, Q. Emerging Highly Virulent Porcine Epidemic Diarrhea Virus: Molecular Mechanisms of Attenuation and Rational Design of Live Attenuated Vaccines. Int. J. Mol. Sci. 2019, 20, 5478. [Google Scholar] [CrossRef] [PubMed]
- Rott, R.; Klenk, H.D.; Nagai, Y.; Tashiro, M. Influenza viruses, cell enzymes, and pathogenicity. Am. J. Respir. Crit. Care Med. 1995, 152, S16–S19. [Google Scholar] [CrossRef] [PubMed]
- de Haan, C.A.; Stadler, K.; Godeke, G.J.; Bosch, B.J.; Rottier, P.J. Cleavage inhibition of the murine coronavirus spike protein by a furin-like enzyme affects cell-cell but not virus-cell fusion. J. Virol. 2004, 78, 6048–6054. [Google Scholar] [CrossRef] [PubMed]
- Chandran, K.; Sullivan, N.J.; Felbor, U.; Whelan, S.P.; Cunningham, J.M. Endosomal proteolysis of the Ebola virus glycoprotein is necessary for infection. Science 2005, 308, 1643–1645. [Google Scholar] [CrossRef] [PubMed]
- Shirato, K.; Matsuyama, S.; Ujike, M.; Taguchi, F. Role of proteases in the release of porcine epidemic diarrhea virus from infected cells. J. Virol. 2011, 85, 7872–7880. [Google Scholar] [CrossRef]
- Zamolodchikova, T.S. Serine proteases of small intestine mucosa--localization, functional properties, and physiological role. Biochem. Biokhimiia 2012, 77, 820–829. [Google Scholar] [CrossRef] [PubMed]
- Wicht, O.; Li, W.; Willems, L.; Meuleman, T.J.; Wubbolts, R.W.; van Kuppeveld, F.J.; Rottier, P.J.; Bosch, B.J. Proteolytic activation of the porcine epidemic diarrhea coronavirus spike fusion protein by trypsin in cell culture. J. Virol. 2014, 88, 7952–7961. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Oh, C.; Shivanna, V.; Hesse, R.A.; Chang, K.O. Trypsin-independent porcine epidemic diarrhea virus US strain with altered virus entry mechanism. BMC Vet. Res. 2017, 13, 356. [Google Scholar] [CrossRef] [PubMed]
- Chang, K.O.; Sosnovtsev, S.V.; Belliot, G.; Kim, Y.; Saif, L.J.; Green, K.Y. Bile acids are essential for porcine enteric calicivirus replication in association with down-regulation of signal transducer and activator of transcription 1. Proc. Natl. Acad. Sci. USA 2004, 101, 8733–8738. [Google Scholar] [CrossRef] [PubMed]
- Chang, K.O.; George, D.W. Bile acids promote the expression of hepatitis C virus in replicon-harboring cells. J. Virol. 2007, 81, 9633–9640. [Google Scholar] [CrossRef] [PubMed]
- Trauner, M.; Boyer, J.L. Bile salt transporters: Molecular characterization, function, and regulation. Physiol. Rev. 2003, 83, 633–671. [Google Scholar] [CrossRef]
- Deng, X.; van Geelen, A.; Buckley, A.C.; O’Brien, A.; Pillatzki, A.; Lager, K.M.; Faaberg, K.S.; Baker, S.C. Coronavirus Endoribonuclease Activity in Porcine Epidemic Diarrhea Virus Suppresses Type I and Type III Interferon Responses. J. Virol. 2019, 93, e02000-18. [Google Scholar] [CrossRef]
- Hou, Y.; Lin, C.M.; Yokoyama, M.; Yount, B.L.; Marthaler, D.; Douglas, A.L.; Ghimire, S.; Qin, Y.; Baric, R.S.; Saif, L.J.; et al. Deletion of a 197-Amino-Acid Region in the N-Terminal Domain of Spike Protein Attenuates Porcine Epidemic Diarrhea Virus in Piglets. J. Virol. 2017, 91, e00227-17. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.M.; Hou, Y.; Marthaler, D.G.; Gao, X.; Liu, X.; Zheng, L.; Saif, L.J.; Wang, Q. Attenuation of an original US porcine epidemic diarrhea virus strain PC22A via serial cell culture passage. Vet. Microbiol. 2017, 201, 62–71. [Google Scholar] [CrossRef] [PubMed]
- Langel, S.N.; Paim, F.C.; Lager, K.M.; Vlasova, A.N.; Saif, L.J. Lactogenic immunity and vaccines for porcine epidemic diarrhea virus (PEDV): Historical and current concepts. Virus Res. 2016, 226, 93–107. [Google Scholar] [CrossRef] [PubMed]
Strains | Passage Number | ||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Origin | 1 | 2 | 3 | …**** | 9 | 10 | 11 | … | 32 | 33 | 34 | … | 39 | 40 | 41 | 42 | … | 51 | 52 | 53 | 54 | … | 60 | 61 | 62 | 63 | 64 | 65 | 66 | … | 70 | 71 | 72 | … | 180 |
T15 * | 1 | 2 | 3 | … | 9 | 10 | 11 | … | 32 | 33 | 34 | … | 39 | 40 | 41 | 42 | … | 51 | 52 | 53 | 54 | … | 60 | 61 | 62 | 63 | 64 | 65 | 66 | … | 70 | 71 | 72 | … | 180 |
T15N ** | 1 | 2 | 3 | … | 24 | 25 | 26 | … | 31 | 32 | 33 | 34 | … | 43 | 44 | 45 | 46 | … | 52 | 53 | 54 | 55 | 56 | 57 | 58 | … | 62 | 63 | 64 | … | 172 | ||||
T10N | 1 | 2 | 3 | … | 8 | ||||||||||||||||||||||||||||||
T5N | 1 | 2 | 3 | … | 12 | ||||||||||||||||||||||||||||||
T2N | 1 | 2 | 3 | … | 9 | ||||||||||||||||||||||||||||||
N | 1 | 2 | 3 | 4 | 5 | 6 | … | 10 | 11 | 12 | … | 120 | |||||||||||||||||||||||
NF *** | 1 | 2 | 3 | … | 7 | 8 | 9 | … | 117 | ||||||||||||||||||||||||||
X | 1 | 2 | 3 | … | 111 | ||||||||||||||||||||||||||||||
F | 1 | 2 | … | 110 |
T15 | T15N | N | NF | F | X | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Passage No. | Titer * | Passage No. | Titer | Passage No. | Titer | Passage No. | Titer | Passage No. | Titer | Passage No. | Titer |
P10 | 3.50 ± 0.00 | P10 | 3.67 ± 0.14 | P10 | P10 | P10 | P10 | ||||
P20 | 4.58 ± 0.14 | P20 | 4.75 ± 0.00 | P20 | P20 | P20 | P20 | ||||
P30 | 5.42 ± 0.29 | P30 | 5.92 ± 0.14 | P30 | P30 | P30 | P30 | ||||
P40 | 6.00 ± 0.25 | P40 | 5.42 ± 0.14 | P40 | P40 | P40 | P40 | ||||
P50 | 6.17 ± 0.14 | P50 | 6.50 ± 0.25 | P50 | P50 | P50 | P50 | ||||
P60 | 5.33 ± 0.29 | P60 | 5.33 ± 0.52 | P60 | P60 | P60 | P60 | ||||
P70 | 6.08 ± 0.38 | P70 | 5.50 ± 0.00 | P70 | P70 | P70 | P70 | ||||
P80 | 6.00 ± 0.00 | P80 | 5.85 ± 0.14 | P80 | 7.17 ± 0.14 | P80 | 6.67 ± 0.14 | P80 | 6.33 ± 0.14 | P80 | 6.75 ± 0.00 |
P90 | 6.33 ± 0.14 | P90 | 5.75 ± 0.43 | P90 | 7.08 ± 0.29 | P90 | 7.00 ± 0.43 | P90 | 6.83 ± 0.38 | P90 | 6.92 ± 0.38 |
P100 | 5.50 ± 0.00 | P100 | 4.83 ± 0.14 | P100 | 7.25 ± 0.43 | P100 | 5.92 ± 0.14 | P100 | 6.83 ± 0.14 | P100 | 6.75 ± 0.25 |
P110 | 6.58 ± 0.14 | P110 | 7.08 ± 0.14 | P110 | 7.42 ± 0.38 | P110 | 6.67 ± 0.52 | P110 | 6.75 ± 0.00 | P110 | 6.42 ± 0.29 |
P120 | 6.33 ± 0.14 | P120 | 6.92 ± 0.38 | P120 | 7.83 ± 0.29 | P120 | 7.83 ± 0.29 | P120 | 7.00 ± 0.00 | P120 | 7.17 ± 0.52 |
P130 | 6.58 ± 0.14 | P130 | 6.42 ± 0.29 | P130 | 8.25 ± 0.25 | P130 | 7.08 ± 0.38 | P130 | 7.08 ± 0.29 | P130 | 6.83 ± 0.38 |
P140 | 7.42 ± 0.14 | P140 | 7.67 ± 0.29 | P140 | 8.67 ± 0.29 | P140 | 7.28 ± 0.29 | P140 | 7.33 ± 0.14 | P140 | 7.25 ± 0.25 |
P150 | 8.30 ± 0.14 | P150 | 8.50 ± 0.00 | P150 | 8.50 ± 0.25 | P150 | 7.08 ± 0.14 | P150 | 7.17 ± 0.14 | P150 | 7.42 ± 0.52 |
P160 | 7.33 ± 0.38 | P160 | 7.08 ± 0.29 | P160 | 8.25 ± 0.66 | P160 | 8.33 ± 0.14 | P160 | 7.92 ± 0.14 | P160 | 7.83 ± 0.14 |
P170 | 7.25 ± 0.25 | P170 | 7.50 ± 0.25 | P170 | 8.00 ± 0.00 | P170 | 7.67 ± 0.14 | P170 | 7.00 ± 0.25 | P170 | 6.83 ± 0.29 |
P180 | 7.00 ± 0.00 | P180 | 7.83 ± 0.14 | P180 | 8.25 ± 0.25 | P180 | 7.92 ± 0.14 | P180 | 7.25 ± 0.25 | P180 | 6.92 ± 0.14 |
Group | Inoculum | Route | No. of Pigs | Mortality Rate * [% (No/Total)] | Severe Diarrhea Rate [% (No/Total)] | Clinical Symptoms | Virus Shedding | Peak Fecal Virus Shedding Titer [log10 Copies/μL], dpi |
---|---|---|---|---|---|---|---|---|
1 | Positive control | Oral | 3 | 100 (3/3) | 100 (3/3) | NA ** (>4) | Started at 1 dpi | 5.05 ± 0.24, 2 |
2 | Negative control | 3 | 0 (0/3) | 0 (0/3) | No diarrhea | N/D *** | NA | |
3 | CKT-7 T15 | 3 | 0 (0/3) | 0 (0/3) | Mild | Limited | NA | |
4 | CKT-7 T15N | 3 | 0 (0/3) | 0 (0/3) | Mild | Started at 4 dpi | 2.48 ± 0.13, 5 | |
5 | CKT-7 N | 3 | 0 (0/3) | 0 (0/3) | No diarrhea | N/D | NA | |
6 | CKT-7 NF | 3 | 0 (0/3) | 0 (0/3) | Mild | Limited | NA | |
7 | CKT-7 F | 3 | 0 (0/3) | 0 (0/3) | No diarrhea | N/D | NA | |
8 | CKT-7 X | 3 | 0 (0/3) | 0 (0/3) | No diarrhea | Started at 2 dpi | 2.68 ± 0.49, 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, D.-M.; Moon, S.-H.; Kim, S.-C.; Cho, H.-S.; Tark, D. Development of Effective PEDV Vaccine Candidates Based on Viral Culture and Protease Activity. Vaccines 2023, 11, 923. https://doi.org/10.3390/vaccines11050923
Kim D-M, Moon S-H, Kim S-C, Cho H-S, Tark D. Development of Effective PEDV Vaccine Candidates Based on Viral Culture and Protease Activity. Vaccines. 2023; 11(5):923. https://doi.org/10.3390/vaccines11050923
Chicago/Turabian StyleKim, Dae-Min, Sung-Hyun Moon, Seung-Chai Kim, Ho-Seong Cho, and Dongseob Tark. 2023. "Development of Effective PEDV Vaccine Candidates Based on Viral Culture and Protease Activity" Vaccines 11, no. 5: 923. https://doi.org/10.3390/vaccines11050923