Comparative Effectiveness of Bivalent (Original/Omicron BA.4/BA.5) COVID-19 Vaccines in Adults
Abstract
:1. Introduction
2. Methods
2.1. Data Source and Deidentification
2.2. Participants and Study Design
2.3. Study Objectives
2.4. Statistical Analysis
2.5. Sensitivity Analyses
3. Results
3.1. rVE against Hospitalized and Outpatient COVID-19
3.2. rVE by Age Group
3.3. Sensitivity Analyses
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Andersson, N.W.; Thiesson, E.M.; Baum, U.; Pihlström, N.; Starrfelt, J.; Faksová, K.; Poukka, E.; Meijerink, H.; Ljung, R.; Hviid, A. Comparative effectiveness of the bivalent BA.4-5 and BA.1 mRNA-booster vaccines in the Nordic countries. medRxiv 2023. [Google Scholar] [CrossRef]
- Mohammed, H.; Pham-Tran, D.D.; Yeoh, Z.Y.M.; Wang, B.; McMillan, M.; Andraweera, P.H.; Marshall, H.S. A Systematic Review and Meta-Analysis on the Real-World Effectiveness of COVID-19 Vaccines against Infection, Symptomatic and Severe COVID-19 Disease Caused by the Omicron Variant (B.1.1.529). Vaccines 2023, 11, 224. [Google Scholar] [CrossRef] [PubMed]
- Gravenstein, S.; DeVone, F.; Oyebanji, O.A.; Abul, Y.; Cao, Y.; Chan, P.A.; Halladay, C.W.; McConeghy, K.W.; Nugent, C.; Bosch, J.; et al. Durability of immunity and clinical protection in nursing home residents following bivalent SARS-CoV-2 vaccination. medRxiv 2023. [Google Scholar] [CrossRef]
- Chalkias, S.; Eder, F.; Essink, B.; Khetan, S.; Nestorova, B.; Feng, J.; Chen, X.; Chang, Y.; Zhou, H.; Montefiori, D.; et al. Safety, immunogenicity and antibody persistence of a bivalent Beta-containing booster vaccine against COVID-19: A phase 2/3 trial. Nat. Med. 2022, 28, 2388–2397. [Google Scholar] [CrossRef] [PubMed]
- Chalkias, S.; Harper, C.; Vrbicky, K.; Walsh, S.R.; Essink, B.; Brosz, A.; McGhee, N.; Tomassini, J.E.; Chen, X.; Chang, Y.; et al. A Bivalent Omicron-Containing Booster Vaccine against Covid-19. N. Engl. J. Med. 2022, 387, 1279–1291. [Google Scholar] [CrossRef] [PubMed]
- Hause, A.M.; Marquez, P.; Zhang, B.; Myers, T.R.; Gee, J.; Su, J.R.; Blanc, P.G.; Thomas, A.; Thompson, D.; Shimabukuro, T.T.; et al. Safety Monitoring of Bivalent COVID-19 mRNA Vaccine Booster Doses Among Persons Aged ≥12 Years—United States, 31 August–23 October 2022. MMWR Morb. Mortal. Wkly. Rep. 2022, 71, 1401–1406. [Google Scholar] [CrossRef]
- Tan, N.H.; Geers, D.; Sablerolles, R.S.G.; Rietdijk, W.J.R.; Goorhuis, A.; Postma, D.F.; Visser, L.G.; Bogers, S.; van Dijk, L.L.A.; Gommers, L.; et al. Immunogenicity of bivalent omicron (BA.1) booster vaccination after different priming regimens in health-care workers in The Netherlands (SWITCH ON): Results from the direct boost group of an open-label, multicentre, randomised controlled trial. Lancet Infect Dis. 2023, 23, 901–913. [Google Scholar] [CrossRef]
- Winokur, P.; Gayed, J.; Fitz-Patrick, D.; Thomas, S.J.; Diya, O.; Lockhart, S.; Xu, X.; Zhang, Y.; Bangad, V.; Schwartz, H.I.; et al. Bivalent Omicron BA.1-Adapted BNT162b2 Booster in Adults Older than 55 Years. N. Engl. J. Med. 2023, 388, 214–227. [Google Scholar] [CrossRef]
- Surie, D.; DeCuir, J.; Zhu, Y.; Gaglani, M.; Ginde, A.A.; Douin, D.J.; Talbot, H.K.; Casey, J.D.; Mohr, N.M.; Zepeski, A.; et al. Early Estimates of Bivalent mRNA Vaccine Effectiveness in Preventing COVID-19-Associated Hospitalization Among Immunocompetent Adults Aged ≥65 Years—IVY Network, 18 States, 8 September–30 November 2022. MMWR Morb. Mortal. Wkly. Rep. 2022, 71, 1625–1630. [Google Scholar] [CrossRef]
- Arbel, R.; Peretz, A.; Sergienko, R.; Friger, M.; Beckenstein, T.; Duskin-Bitan, H.; Yaron, S.; Hammerman, A.; Bilenko, N.; Netzer, D. Effectiveness of a bivalent mRNA vaccine booster dose to prevent severe COVID-19 outcomes: A retrospective cohort study. Lancet Infect. Dis. 2023, 23, 914–921. [Google Scholar] [CrossRef]
- El Sahly, H.M.; Baden, L.R.; Essink, B.; Doblecki-Lewis, S.; Martin, J.M.; Anderson, E.J.; Campbell, T.B.; Clark, J.; Jackson, L.A.; Fichtenbaum, C.J.; et al. Efficacy of the mRNA-1273 SARS-CoV-2 Vaccine at Completion of Blinded Phase. N. Engl. J. Med. 2021, 385, 1774–1785. [Google Scholar] [CrossRef] [PubMed]
- Lin, D.-Y.; Xu, Y.; Gu, Y.; Zeng, D.; Wheeler, B.; Young, H.; Sunny, S.K.; Moore, Z. Effectiveness of Bivalent Boosters against Severe Omicron Infection. N. Engl. J. Med. 2023, 388, 764–766. [Google Scholar] [CrossRef]
- Wagenhäuser, I.; Reusch, J.; Gabel, A.; Krone, L.B.; Kurzai, O.; Petri, N.; Krone, M. Bivalent BNT162b2 mRNA original/omicron BA.4-5 booster vaccination: Adverse reactions and inability to work compared with the monovalent COVID-19 booster. Clin. Microbiol. Infect. 2023, 29, 554–556. [Google Scholar] [CrossRef]
- US Food and Drug Administration. Coronavirus (COVID-19) Update: FDA Authorizes Moderna, Pfizer-BioNTech Bivalent COVID-19 Vaccines for Use as a Booster Dose. 2022. Available online: https://www.fda.gov/news-events/press-announcements/coronavirus-covid-19-update-fda-authorizes-moderna-pfizer-biontech-bivalent-covid-19-vaccines-use (accessed on 12 June 2023).
- Centers for Disease Control and Prevention (CDC). Interim Clinical Considerations for Use of COVID-19 Vaccines in the United States. 2023. Available online: https://www.cdc.gov/vaccines/covid-19/clinical-considerations/interim-considerations-us.html (accessed on 1 June 2023).
- Rosenblum, H.G.; Wallace, M.; Godfrey, M.; Roper, L.E.; Hall, E.; Fleming-Dutra, K.E.; Link-Gelles, R.; Pilishvili, T.; Williams, J.; Moulia, D.L.; et al. Interim Recommendations from the Advisory Committee on Immunization Practices for the Use of Bivalent Booster Doses of COVID-19 Vaccines—United States, October 2022. MMWR Morb. Mortal. Wkly. Rep. 2022, 71, 1436–1441. [Google Scholar] [CrossRef] [PubMed]
- Moulia, D.L.; Wallace, M.; Roper, L.E.; Godfrey, M.; Rosenblum, H.G.; Link-Gelles, R.; Britton, A.; Daley, M.F.; Meyer, S.; Fleming-Dutra, K.E.; et al. Interim Recommendations for Use of Bivalent mRNA COVID-19 Vaccines for Persons Aged ≥6 Months—United States, April 2023. MMWR Morb. Mortal. Wkly. Rep. 2023, 72, 657–662. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention. COVID Data Tracker. 2022. Available online: https://covid.cdc.gov/covid-data-tracker (accessed on 25 January 2023).
- Ferdinands, J.M.; Rao, S.; Dixon, B.E.; Mitchell, P.K.; DeSilva, M.B.; Irving, S.A.; Lewis, N.; Natarajan, K.; Stenehjem, E.; Grannis, S.J.; et al. Waning of vaccine effectiveness against moderate and severe covid-19 among adults in the US from the VISION network: Test negative, case-control study. BMJ 2022, 379, e072141. [Google Scholar] [CrossRef]
- Sinclair, A.H.; Taylor, M.K.; Weitz, J.S.; Beckett, S.J.; Samanez-Larkin, G.R. Reasons for Receiving or Not Receiving Bivalent COVID-19 Booster Vaccinations Among Adults—United States, 1 November–10 December 2022. MMWR Morb. Mortal. Wkly. Rep. 2023, 72, 73–75. [Google Scholar] [CrossRef] [PubMed]
- Fisher, J.D.; Fisher, W.A. An Information-Motivation-Behavioral Skills (IMB) Model of pandemic risk and prevention. Adv. Psychol. 2023, 1, 1–26. [Google Scholar] [CrossRef]
- Hulme, W.J.; Horne, E.M.F.; Parker, E.P.K.; Keogh, R.H.; Williamson, E.J.; Walker, V.; Palmer, T.M.; Curtis, H.J.; Walker, A.J.; Andrews, C.D.; et al. Comparative effectiveness of BNT162b2 versus mRNA-1273 covid-19 vaccine boosting in England: Matched cohort study in OpenSAFELY-TPP. BMJ 2023, 380, e072808. [Google Scholar] [CrossRef]
- Mayr, F.B.; Talisa, V.B.; Shaikh, O.S.; Omer, S.B.; Butt, A.A.; Yende, S. Comparative COVID-19 Vaccine Effectiveness Over Time in Veterans. Open Forum Infect. Dis. 2022, 9, ofac311. [Google Scholar] [CrossRef]
- Dickerman, B.A.; Gerlovin, H.; Madenci, A.L.; Figueroa Muñiz, M.J.; Wise, J.K.; Adhikari, N.; Ferolito, B.R.; Kurgansky, K.E.; Gagnon, D.R.; Cho, K.; et al. Comparative effectiveness of third doses of mRNA-based COVID-19 vaccines in US veterans. Nat. Microbiol. 2023, 8, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, V.H.; Boileau, C.; Bogdanov, A.; Sredl, M.; Bonafede, M.; Ducruet, T.; Chavers, S.; Rosen, A.; Martin, D.; Buck, P.; et al. Relative effectiveness of BNT162b2, mRNA-1273, and Ad26.COV2.S vaccines and homologous boosting in preventing COVID-19 in adults in the US. Open Forum Infect Dis 2023, 10, ofad288. [Google Scholar] [CrossRef]
- Harris, D.A.; Hayes, K.N.; Zullo, A.R.; Mor, V.; Chachlani, P.; Deng, Y.; McCarthy, E.P.; Djibo, D.A.; McMahill-Walraven, C.N.; Gravenstein, S. Comparative Risks of Potential Adverse Events Following COVID-19 mRNA Vaccination Among Older US Adults. JAMA Netw. Open. 2023, 6, e2326852. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020. [Google Scholar]
- Lin, D.Y.; Xu, Y.; Gu, Y.; Zeng, D.; Sunny, S.K.; Moore, Z. Durability of Bivalent Boosters against Omicron Subvariants. N. Engl. J. Med. 2023, 388, 1818–1820. [Google Scholar] [CrossRef]
- Al-Sadeq, D.W.; Shurrab, F.M.; Ismail, A.; Amanullah, F.H.; Thomas, S.; Aldewik, N.; Yassine, H.M.; Abdul Rahim, H.F.; Abu-Raddad, L.; Nasrallah, G.K. Comparison of antibody immune responses between BNT162b2 and mRNA-1273 SARS-CoV-2 vaccines in naïve and previously infected individuals. J. Travel Med. 2021, 28, taab190. [Google Scholar] [CrossRef] [PubMed]
- Doornek, T.; Shao, N.; Burton, P.; Ceddia, F.; Fraile, B. Antibody Response Following COVID-19 Boosters During the Omicron Wave in the United States: A Decentralized, Digital Health, Real-World Study. medRxiv 2022. [Google Scholar] [CrossRef]
- Gil-Manso, S.; Alonso, R.; Catalán, P.; Sanchez-Arcilla, I.; Marzola, M.; Correa-Rocha, R.; Pion, M.; Munoz, P. IgG anti-RBD levels during 8-month follow-up post-vaccination with BNT162b2 and mRNA-1273 vaccines in healthcare workers: A one-center study. Front. Cell. Infect. Microbiol. 2022, 12, 1035155. [Google Scholar] [CrossRef]
- Markewitz, R.; Pauli, D.; Dargvainiene, J.; Steinhagen, K.; Engel, S.; Herbst, V.; Zapf, D.; Krüger, C.; Sharifzadeh, S.; Schomburg, B.; et al. B-cell responses to vaccination with BNT162b2 and mRNA-1273 6 months after second dose. Clin. Microbiol. Infect. 2022, 28, 1024.e1021–1024.e1026. [Google Scholar] [CrossRef] [PubMed]
- Moncunill, G.; Aguilar, R.; Ribes, M.; Ortega, N.; Rubio, R.; Salmerón, G.; Molina, M.J.; Vidal, M.; Barrios, D.; Mitchell, R.A.; et al. Determinants of early antibody responses to COVID-19 mRNA vaccines in a cohort of exposed and naïve healthcare workers. eBioMedicine 2022, 75, 103805. [Google Scholar] [CrossRef]
- Prather, A.A.; Dutcher, E.G.; Robinson, J.; Lin, J.; Blackburn, E.; Hecht, F.M.; Mason, A.E.; Fromer, E.; Merino, B.; Frazier, R.; et al. Predictors of long-term neutralizing antibody titers following COVID-19 vaccination by three vaccine types: The BOOST study. Sci. Rep. 2023, 13, 6505. [Google Scholar] [CrossRef]
- LaFon, D.C.; Nahm, M.H. Measuring immune responses to pneumococcal vaccines. J. Immunol. Methods 2018, 461, 37–43. [Google Scholar] [CrossRef]
- Schäfer, A.; Muecksch, F.; Lorenzi, J.C.C.; Leist, S.R.; Cipolla, M.; Bournazos, S.; Schmidt, F.; Maison, R.M.; Gazumyan, A.; Martinez, D.R.; et al. Antibody potency, effector function, and combinations in protection and therapy for SARS-CoV-2 infection in vivo. J. Exp. Med. 2021, 218, e20201993. [Google Scholar] [CrossRef]
- Kaplonek, P.; Deng, Y.; Shih-Lu Lee, J.; Zar, H.J.; Zavadska, D.; Johnson, M.; Lauffenburger, D.A.; Goldblatt, D.; Alter, G. Hybrid immunity expands the functional humoral footprint of both mRNA and vector-based SARS-CoV-2 vaccines. Cell. Rep. Med. 2023, 4, 101048. [Google Scholar] [CrossRef] [PubMed]
- Kaplonek, P.; Cizmeci, D.; Fischinger, S.; Collier, A.-R.; Suscovich, T.; Linde, C.; Broge, T.; Mann, C.; Amanat, F.; Dayal, D.; et al. mRNA-1273 and BNT162b2 COVID-19 vaccines elicit antibodies with differences in Fc-mediated effector functions. Sci. Transl. Med. 2022, 14, eabm2311. [Google Scholar] [CrossRef] [PubMed]
- Tomer, H.; Shlomia, L.; Daniel, O.; Hannah, O.; Shosh, Z.; Alona, K.; Lilach, M.F.; Sanja, T.; David, B.; Lin, C.-Y.; et al. Correlates of protection for booster doses of the BNT162b2 vaccine. medRxiv 2022. [Google Scholar] [CrossRef]
- Geurtsvan Kessel, C.H.; Geers, D.; Schmitz, K.S.; Mykytyn, A.Z.; Lamers, M.M.; Bogers, S.; Scherbeijn, S.; Gommers, L.; Sablerolles, R.S.G.; Nieuwkoop, N.N.; et al. Divergent SARS-CoV-2 Omicron–reactive T and B cell responses in COVID-19 vaccine recipients. Sci. Immunol. 2022, 7, eabo2202. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Mateus, J.; Coelho, C.H.; Dan, J.M.; Moderbacher, C.R.; Gálvez, R.I.; Cortes, F.H.; Grifoni, A.; Tarke, A.; Chang, J.; et al. Humoral and cellular immune memory to four COVID-19 vaccines. Cell 2022, 185, 2434–2451.e2417. [Google Scholar] [CrossRef]
- Ben Ahmed, M.; Bellali, H.; Gdoura, M.; Zamali, I.; Kallala, O.; Ben Hmid, A.; Hamdi, W.; Ayari, H.; Fares, H.; Mechri, K.; et al. Humoral and Cellular Immunogenicity of Six Different Vaccines against SARS-CoV-2 in Adults: A Comparative Study in Tunisia (North Africa). Vaccines 2022, 10, 1189. [Google Scholar] [CrossRef] [PubMed]
- Gallagher, K.M.E.; Leick, M.B.; Larson, R.C.; Berger, T.R.; Katsis, K.; Yam, J.Y.; Maus, M.V. Differential T-Cell Immunity to Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) in mRNA-1273- and BNT162b2-Vaccinated Individuals. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2022, 75, e869–e873. [Google Scholar] [CrossRef]
- Ciabattini, A.; Nardini, C.; Santoro, F.; Garagnani, P.; Franceschi, C.; Medaglini, D. Vaccination in the elderly: The challenge of immune changes with aging. Semin. Immunol. 2018, 40, 83–94. [Google Scholar] [CrossRef] [PubMed]
- Liang, C.K.; Lee, W.J.; Peng, L.N.; Meng, L.C.; Hsiao, F.Y.; Chen, L.K. COVID-19 Vaccines in Older Adults: Challenges in Vaccine Development and Policy Making. Clin. Geriatr. Med. 2022, 38, 605–620. [Google Scholar] [CrossRef] [PubMed]
- Boikos, C.; Imran, M.; De Lusignan, S.; Ortiz, J.R.; Patriarca, P.A.; Mansi, J.A. Integrating Electronic Medical Records and Claims Data for Influenza Vaccine Research. Vaccines 2022, 10, 727. [Google Scholar] [CrossRef] [PubMed]
- Naranbhai, V.; Garcia-Beltran, W.F.; Chang, C.C.; Berrios Mairena, C.; Thierauf, J.C.; Kirkpatrick, G.; Onozato, M.L.; Cheng, J.; St Denis, K.J.; Lam, E.C.; et al. Comparative Immunogenicity and Effectiveness of mRNA-1273, BNT162b2, and Ad26.COV2.S COVID-19 Vaccines. J. Infect. Dis. 2022, 225, 1141–1150. [Google Scholar] [CrossRef]
- Bernstein, A.B.H.E.; Moss, A.J.; Allen, K.F.; Siller, A.B.; Tiggle, R.B. Health Care in America: Trends in Utilization; National Center for Health Statistics: Hyattsville, MD, USA, 2003. [Google Scholar]
- Regan, J.J.; Moulia, D.L.; Link-Gelles, R.; Godfrey, M.; Mak, J.; Najdowski, M.; Rosenblum, H.G.; Shah, M.M.; Twentyman, E.; Meyer, S.; et al. Use of Updated COVID-19 Vaccines 2023–2024 Formula for Persons Aged ≥6 Months: Recommendations of the Advisory Committee on Immunization Practices—United States, September 2023. MMWR Morb. Mortal. Wkly. Rep. 2023, 72, 1140–1146. [Google Scholar] [CrossRef] [PubMed]
- US Food and Drug Administration. FDA Takes Action on Updated mRNA COVID-19 Vaccines to Better Protect Against Currently Circulating Variants. 2023. Available online: https://www.fda.gov/news-events/press-announcements/fda-takes-action-updated-mrna-covid-19-vaccines-better-protect-against-currently-circulating (accessed on 26 October 2023).
Pre-Weighting | Post-Weighting | ||||||
---|---|---|---|---|---|---|---|
mRNA-1273.222 | BNT162b2 Bivalent | SMD | mRNA-1273.222 | BNT162b2 Bivalent | SMD | ||
Number of patients | 1,049,575 | 1,698,783 | 1,034,538 | 1,670,666 | |||
Age at index, mean (SD) | 60 (16.3) | 58 (16.9) | 0.1091 | 59 (16.5) | 58 (16.7) | 0.0238 | |
Sex | Female | 604,099 (57.6) | 989,261 (58.2) | 0.0137 | 598,134 (57.8) | 969,767 (58.0) | 0.0047 |
Male | 445,476 (42.4) | 709,522 (41.8) | 436,404 (42.2) | 700,899 (42.0) | |||
Race | Black | 41,438 (3.9) | 71,545 (4.2) | 0.0242 | 41,695 (4.0) | 68,926 (4.1) | 0.0064 |
Other | 43,292 (4.1) | 72,004 (4.2) | 43,444 (4.2) | 70,448 (4.2) | |||
White | 425,675 (40.6) | 670,704 (39.5) | 413,323 (40.0) | 663,768 (39.7) | |||
Unknown | 539,170 (51.4) | 884,530 (52.1) | 536,076 (51.8) | 867,524 (51.9) | |||
Ethnicity | Hispanic | 38,672 (3.7) | 66,301 (3.9) | 0.0140 | 39,044 (3.8) | 64,185 (3.8) | 0.0046 |
Non-Hispanic | 852,545 (81.2) | 1,371,939 (80.8) | 838,544 (81.1) | 1,351,443 (80.9) | |||
Unknown | 158,358 (15.1) | 260,543 (15.3) | 156,950 (15.2) | 255,038 (15.3) | |||
Region | Midwest | 201,029 (19.2) | 373,067 (22.0) | 0.0760 | 210,897 (20.4) | 354,455 (21.2) | 0.021 |
Northeast | 272,159 (25.9) | 437,311 (25.7) | 268,924 (26.0) | 432,274 (25.9) | |||
South | 314,939 (30.0) | 470,675 (27.7) | 296,959 (28.7) | 471,340 (28.2) | |||
West | 196,278 (18.7) | 315,809 (18.6) | 194,309 (18.8) | 311,409 (18.6) | |||
Unknown | 65,170 (6.2) | 101,921 (6.0) | 63,449 (6.1) | 101,188 (6.1) | |||
Month of index | August 2022 | 12 (<0.1) | 21 (<0.1) | 0.0645 | 13 (<0.1) | 21 (<0.1) | 0.0206 |
September 2022 | 252,601 (24.1) | 453,304 (26.7) | 259,247 (25.1) | 433,404 (25.9) | |||
October 2022 | 385,320 (36.7) | 619,160 (36.4) | 380,441 (36.8) | 609,256 (36.5) | |||
November 2022 | 230,341 (21.9) | 351,626 (20.7) | 221,444 (21.4) | 351,191 (21.0) | |||
December 2022 | 128,551 (12.2) | 194,995 (11.5) | 123,180 (11.9) | 196,156 (11.7) | |||
January 2023 | 42,133 (4) | 63,853 (3.8) | 40,173 (3.9) | 64,422 (3.9) | |||
February 2023 | 10,617 (1) | 15,824 (0.9) | 10,041 (1.0) | 16,215 (1.0) | |||
Primary series COVID-19 vaccine | Heterologous | 90,742 (8.6) | 179,627 (10.6) | 0.1652 | 102,076 (9.9) | 169,119 (10.1) | 0.0297 |
Homologous | 301,861 (28.8) | 369,852 (21.8) | 252,916 (24.4) | 387,485 (23.2) | |||
Not reported | 656,972 (62.6) | 1,149,304 (67.7) | 679,546 (65.7) | 1,114,062 (66.7) | |||
Time since last COVID-19 monovalent vaccination | ≤90 days | 15,489 (1.5) | 18,482 (1.1) | 0.2365 | 12,849 (1.2) | 20,336 (1.2) | 0.0440 |
91–180 days | 215,483 (20.5) | 216,131 (12.7) | 163,208 (15.8) | 238,465 (14.3) | |||
>180 days | 614,126 (58.5) | 1,029,498 (60.6) | 622,635 (60.2) | 1,015,967 (60.8) | |||
Not reported | 204,477 (19.5) | 434,672 (25.6) | 235,845 (22.8) | 395,898 (23.7) | |||
Time since last COVID-19 infection | ≤120 days | 34,542 (3.3) | 56,609 (3.3) | 0.0219 | 34,348 (3.3) | 55,608 (3.3) | 0.0059 |
121–180 days | 19,610 (1.9) | 31,653 (1.9) | 19,479 (1.9) | 31,327 (1.9) | |||
>180 days | 72,675 (6.9) | 127,046 (7.5) | 74,147 (7.2) | 122,306 (7.3) | |||
Not reported | 922,748 (87.9) | 1,483,475 (87.3) | 906,564 (87.6) | 1,461,425 (87.5) | |||
Follow-up duration, days, median (IQR) | 106 (70–134) | 108 (71–137) | 108 (70–135) | 107 (71–137) | |||
Underlying medical conditions | Asthma | 89,784 (8.6) | 146,786 (8.6) | 0.0031 | 88,608 (8.6) | 143,799 (8.6) | 0.0015 |
Cancer | 331,893 (31.6) | 507,975 (29.9) | 0.0373 | 317,902 (30.7) | 506,655 (30.3) | 0.0087 | |
Cerebrovascular disease | 57,932 (5.5) | 89,250 (5.3) | 0.0118 | 55,150 (5.3) | 88,816 (5.3) | 0.0007 | |
Chronic lung disease | 82,755 (7.9) | 126,674 (7.5) | 0.0161 | 78,570 (7.6) | 126,028 (7.5) | 0.0019 | |
Chronic liver disease | 11,770 (1.1) | 18,988 (1.1) | 0.0003 | 11,499 (1.1) | 18,673 (1.1) | 0.0006 | |
CKD | 90,134 (8.6) | 138,166 (8.1) | 0.0164 | 85,505 (8.3) | 137,539 (8.2) | 0.0012 | |
Cystic fibrosis | 235 (<0.1) | 343 (<0.1) | 0.0015 | 217 (<0.1) | 342 (<0.1) | 0.0004 | |
Diabetes type 1 or 2 | 210,600 (20.1) | 325,656 (19.2) | 0.0225 | 201,683 (19.5) | 323,800 (19.4) | 0.0029 | |
Disability | 69,181 (6.6) | 117,573 (6.9) | 0.0131 | 69,582 (6.7) | 114,107 (6.8) | 0.0041 | |
Heart conditions | 145,354 (13.8) | 220,523 (13.0) | 0.0255 | 137,513 (13.3) | 220,348 (13.2) | 0.0030 | |
HIV | 5471 (0.5) | 8770 (0.5) | 0.0007 | 5397 (0.5) | 8639 (0.5) | 0.0006 | |
Mental health disorders | 166,566 (15.9) | 284,385 (16.7) | 0.0236 | 167,713 (16.2) | 275,635 (16.5) | 0.0078 | |
Neurological conditions | 21,962 (2.1) | 39,359 (2.3) | 0.0153 | 22,279 (2.2) | 37,628 (2.3) | 0.0067 | |
Obesity | 210,605 (20.1) | 339,268 (20.0) | 0.0024 | 206,336 (19.9) | 333,651 (20.0) | 0.0007 | |
Primary immunodeficiencies | 69,102 (6.6) | 107,213 (6.3) | 0.0111 | 66,569 (6.4) | 106,563 (6.4) | 0.0023 | |
Pregnancy a | 2861 (0.3) | 5465 (0.3) | 0.0090 | 3109 (0.3) | 5160 (0.3) | 0.0015 | |
Physical inactivity | 975 (0.1) | 1608 (0.1) | 0.0006 | 962 (<0.1) | 1566 (<0.1) | 0.0003 | |
Smoking b | 125,869 (12) | 202,673 (11.9) | 0.0019 | 122,902 (11.9) | 199,274 (11.9) | 0.0015 | |
Solid organ or hematopoietic stem cell transplant | 9038 (0.9) | 14,493 (0.9) | 0.0009 | 8727 (0.8) | 14,231 (0.9) | 0.0009 | |
Tuberculosis | 325 (<0.1) | 537 (<0.1) | 0.0004 | 323 (<0.1) | 523 (<0.1) | 0.0001 | |
Use of immunosuppressants | 54,552 (5.2) | 84,577 (5.0) | 0.0100 | 52,537 (5.1) | 84,130 (5.0) | 0.0019 |
COVID-19-Related Outcome | Unadjusted rVE | Adjusted rVE | p Value a |
---|---|---|---|
Hospitalization | 9.8% (2.6–16.4%) | 9.8% (2.6–16.4%) | 0.008 |
Outpatient | 5.1% (3.2–6.9%) | 5.1% (3.2–6.9%) | <0.0001 |
COVID-19-Related Outcome | Unadjusted rVE | Adjusted rVE | p Value a |
---|---|---|---|
Subgroup analysis by age | |||
≥50 years | |||
Hospitalization | 11.0% (3.7–17.7%) | 11.0% (3.7–17.7%) | 0.004 |
Outpatient | 7.3% (5.3–9.3%) | 7.3% (5.3–9.3%) | <0.0001 |
≥65 years | |||
Hospitalization | 13.5% (5.5–20.8%) | 13.5% (5.5–20.8%) | 0.001 |
Outpatient | 10.7% (8.2–13.1%) | 10.7% (8.2–13.1%) | <0.0001 |
Sensitivity analysis | |||
Open claims | |||
Hospitalization | 12.9% (9.1–16.4%) | 12.9% (9.1–16.4%) | <0.0001 |
Outpatient | 5.8% (4.7–6.9%) | 5.8% (4.7–6.9%) | <0.0001 |
Cohort entry date 14 days post-vaccination closed claims | |||
Hospitalization | 10.6% (3.1–17.5%) | 10.6% (3.1–17.5%) | 0.006 |
Outpatient | 4.6% (2.6–6.5%) | 4.6% (2.6–6.5%) | <0.0001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kopel, H.; Nguyen, V.H.; Boileau, C.; Bogdanov, A.; Winer, I.; Ducruet, T.; Zeng, N.; Bonafede, M.; Esposito, D.B.; Martin, D.; et al. Comparative Effectiveness of Bivalent (Original/Omicron BA.4/BA.5) COVID-19 Vaccines in Adults. Vaccines 2023, 11, 1711. https://doi.org/10.3390/vaccines11111711
Kopel H, Nguyen VH, Boileau C, Bogdanov A, Winer I, Ducruet T, Zeng N, Bonafede M, Esposito DB, Martin D, et al. Comparative Effectiveness of Bivalent (Original/Omicron BA.4/BA.5) COVID-19 Vaccines in Adults. Vaccines. 2023; 11(11):1711. https://doi.org/10.3390/vaccines11111711
Chicago/Turabian StyleKopel, Hagit, Van Hung Nguyen, Catherine Boileau, Alina Bogdanov, Isabelle Winer, Thierry Ducruet, Ni Zeng, Mac Bonafede, Daina B. Esposito, David Martin, and et al. 2023. "Comparative Effectiveness of Bivalent (Original/Omicron BA.4/BA.5) COVID-19 Vaccines in Adults" Vaccines 11, no. 11: 1711. https://doi.org/10.3390/vaccines11111711
APA StyleKopel, H., Nguyen, V. H., Boileau, C., Bogdanov, A., Winer, I., Ducruet, T., Zeng, N., Bonafede, M., Esposito, D. B., Martin, D., Rosen, A., Van de Velde, N., Vermund, S. H., Gravenstein, S., & Mansi, J. A. (2023). Comparative Effectiveness of Bivalent (Original/Omicron BA.4/BA.5) COVID-19 Vaccines in Adults. Vaccines, 11(11), 1711. https://doi.org/10.3390/vaccines11111711