Pre-Clinical Development of an Adenovirus Vector Based RSV and Shingles Vaccine Candidate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Generation of Vectors
2.2. Western Blot Analysis
2.3. Mouse Study
2.4. Cotton Rat Challenge Study
2.5. Immune Assays
2.5.1. Enzyme-Linked Immuno-Spot Assay (ELISpot)
2.5.2. Enzyme-Linked Immunosorbent Assays (ELISA)
2.6. RSV Plaque-Reduction Neutralisation Test
2.7. Histopathology
2.8. RSV-A Lung and Nasal Viral Titrations
2.9. Statistical Analyses
3. Results
3.1. Generation of Recombinant Viral Vectors and Confirmation of Antigen Expression
3.2. Immunogenicity in Mice
3.3. Cotton Rat RSV Challenge
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Duan, Y.; Jiang, M.; Huang, Q.; Jia, M.; Yang, W.; Feng, L. Incidence, Hospitalization, and Mortality in Children Aged 5 Years and Younger with Respiratory Syncytial Virus-Related Diseases: A Systematic Review and Meta-Analysis. Influ. Other Respir. Viruses 2023, 17, e13145. [Google Scholar] [CrossRef]
- Falsey, A.R.; Hennessey, P.A.; Formica, M.A.; Cox, C.; Walsh, E.E. Respiratory Syncytial Virus Infection in Elderly and High-Risk Adults. N. Engl. J. Med. 2005, 352, 1749–1759. [Google Scholar] [CrossRef]
- Shi, T.; Denouel, A.; Tietjen, A.K.; Campbell, I.; Moran, E.; Li, X.; Campbell, H.; Demont, C.; Nyawanda, B.O.; Chu, H.Y.; et al. Global Disease Burden Estimates of Respiratory Syncytial Virus-Associated Acute Respiratory Infection in Older Adults in 2015: A Systematic Review and Meta-Analysis. J. Infect. Dis. 2020, 222, S577–S583. [Google Scholar] [CrossRef]
- Choi, Y.; Hill-Ricciuti, A.; Branche, A.R.; Sieling, W.D.; Saiman, L.; Walsh, E.E.; Phillips, M.; Falsey, A.R.; Finelli, L. Cost Determinants among Adults Hospitalized with Respiratory Syncytial Virus in the United States, 2017–2019. Influ. Other Respir. Viruses 2022, 16, 151–158. [Google Scholar] [CrossRef]
- Amand, C.; Tong, S.; Kieffer, A.; Kyaw, M.H. Healthcare Resource Use and Economic Burden Attributable to Respiratory Syncytial Virus in the United States: A Claims Database Analysis. BMC Health Serv. Res. 2018, 18, 294. [Google Scholar] [CrossRef] [PubMed]
- Prasad, N.; Newbern, E.C.; Trenholme, A.A.; Thompson, M.G.; McArthur, C.; Wong, C.A.; Jelley, L.; Aminisani, N.; Huang, Q.S.; Grant, C.C. The Health and Economic Burden of Respiratory Syncytial Virus Associated Hospitalizations in Adults. PLoS ONE 2020, 15, e0234235. [Google Scholar] [CrossRef]
- Mesa-Frias, M.; Rossi, C.; Emond, B.; Bookhart, B.; Anderson, D.; Drummond, S.; Wang, J.; Lefebvre, P.; Lamerato, L.E.; Lafeuille, M.-H. Incidence and Economic Burden of Respiratory Syncytial Virus among Adults in the United States: A Retrospective Analysis Using 2 Insurance Claims Databases. J. Manag. Care Spec. Pharm. 2022, 28, 753–765. [Google Scholar] [CrossRef]
- Papi, A.; Ison, M.G.; Langley, J.M.; Lee, D.-G.; Leroux-Roels, I.; Martinon-Torres, F.; Schwarz, T.F.; van Zyl-Smit, R.N.; Campora, L.; Dezutter, N.; et al. Respiratory Syncytial Virus Prefusion F Protein Vaccine in Older Adults. N. Engl. J. Med. 2023, 388, 595–608. [Google Scholar] [CrossRef]
- Commissioner, O. of the FDA Approves First Respiratory Syncytial Virus (RSV) Vaccine. Available online: https://www.fda.gov/news-events/press-announcements/fda-approves-first-respiratory-syncytial-virus-rsv-vaccine (accessed on 14 July 2023).
- Schmoele-Thoma, B.; Zareba, A.M.; Jiang, Q.; Maddur, M.S.; Danaf, R.; Mann, A.; Eze, K.; Fok-Seang, J.; Kabir, G.; Catchpole, A.; et al. Vaccine Efficacy in Adults in a Respiratory Syncytial Virus Challenge Study. N. Engl. J. Med. 2022, 386, 2377–2386. [Google Scholar] [CrossRef] [PubMed]
- Walsh, E.E.; Pérez Marc, G.; Zareba, A.M.; Falsey, A.R.; Jiang, Q.; Patton, M.; Polack, F.P.; Llapur, C.; Doreski, P.A.; Ilangovan, K.; et al. Efficacy and Safety of a Bivalent RSV Prefusion F Vaccine in Older Adults. N. Engl. J. Med. 2023, 388, 1465–1477. [Google Scholar] [CrossRef]
- Samy, N.; Reichhardt, D.; Schmidt, D.; Chen, L.M.; Silbernagl, G.; Vidojkovic, S.; Meyer, T.P.; Jordan, E.; Adams, T.; Weidenthaler, H.; et al. Safety and Immunogenicity of Novel Modified Vaccinia Ankara-Vectored RSV Vaccine: A Randomized Phase I Clinical Trial. Vaccine 2020, 38, 2608–2619. [Google Scholar] [CrossRef]
- Jordan, E.; Lawrence, S.J.; Meyer, T.P.H.; Schmidt, D.; Schultz, S.; Mueller, J.; Stroukova, D.; Koenen, B.; Gruenert, R.; Silbernagl, G.; et al. Broad Antibody and Cellular Immune Response from a Phase 2 Clinical Trial with a Novel Multivalent Poxvirus-Based Respiratory Syncytial Virus Vaccine. J. Infect. Dis. 2021, 223, 1062–1072. [Google Scholar] [CrossRef] [PubMed]
- Endt, K.; Wollmann, Y.; Haug, J.; Bernig, C.; Feigl, M.; Heiseke, A.; Kalla, M.; Hochrein, H.; Suter, M.; Chaplin, P.; et al. A Recombinant MVA-Based RSV Vaccine Induces T-Cell and Antibody Responses that Cooperate in the Protection against RSV Infection. Front. Immunol. 2022, 13, 841471. [Google Scholar] [CrossRef] [PubMed]
- Bavarian Nordic. A Phase 2a, Randomised, Double-Blinded, Placebo-Controlled Study to Assess the Safety, Immunogenicity and Efficacy of the Recombinant MVA-BN®-RSV Vaccine Against Respiratory Syncytial Virus Infection in the Virus Challenge Model in Healthy Adult Participants; clinicaltrials.gov: Bethesda, MD, USA, 2022.
- Cicconi, P.; Jones, C.; Sarkar, E.; Silva-Reyes, L.; Klenerman, P.; de Lara, C.; Hutchings, C.; Moris, P.; Janssens, M.; Fissette, L.A.; et al. First-in-Human Randomized Study to Assess the Safety and Immunogenicity of an Investigational Respiratory Syncytial Virus (RSV) Vaccine Based on Chimpanzee-Adenovirus-155 Viral Vector-Expressing RSV Fusion, Nucleocapsid, and Antitermination Viral Proteins in Healthy Adults. Clin. Infect. Dis. 2020, 70, 2073–2081. [Google Scholar] [CrossRef]
- GlaxoSmithKline. A Study to Evaluate Safety, Reactogenicity and Immunogenicity of GSK Biologicals’ RSV Investigational Vaccine Based on Viral Proteins Encoded by Chimpanzee-Derived Adenovector (ChAd155-RSV) (GSK3389245A) in Healthy Adults; clinicaltrials.gov: Bethesda, MD, USA, 2018.
- GlaxoSmithKline. A Phase 1/2, Randomized, Observer-Blind, Controlled, Multi-Center, Dose-Escalation Study to Evaluate Safety, Reactogenicity and Immunogenicity of GSK Biologicals’ Respiratory Syncytial Virus (RSV) Investigational Vaccine Based on the RSV Viral Proteins F, N and M2-1 Encoded by Chimpanzee-Derived Adenovector (ChAd155-RSV) (GSK3389245A), When Administered Intramuscularly According to a 0, 1-Month Schedule to RSV-Seropositive Infants Aged 12 to 23 Months; clinicaltrials.gov: Bethesda, MD, USA, 2021.
- Díez-Domingo, J.; Sáez-Llorens, X.; Rodriguez-Weber, M.A.; Epalza, C.; Chatterjee, A.; Chiu, C.-H.; Lin, C.-Y.; Berry, A.A.; Martinón-Torres, F.; Baquero-Artigao, F.; et al. Safety and Immunogenicity of a ChAd155-Vectored RSV Vaccine (ChAd155-RSV) in Healthy RSV-Seropositive Children 12–23 Months of Age. J. Infect. Dis. 2022, 227, 1293–1302. [Google Scholar] [CrossRef]
- Falsey, A.R.; Williams, K.; Gymnopoulou, E.; Bart, S.; Ervin, J.; Bastian, A.R.; Menten, J.; De Paepe, E.; Vandenberghe, S.; Chan, E.K.H.; et al. Efficacy and Safety of an Ad26.RSV.preF-RSV preF Protein Vaccine in Older Adults. N. Engl. J. Med. 2023, 388, 609–620. [Google Scholar] [CrossRef]
- Janssen Vaccines & Prevention, B.V. A Randomized, Double-Blind, Placebo-Controlled Phase 3 Efficacy Study of an Ad26.RSV.preF-Based Vaccine in the Prevention of Lower Respiratory Tract Disease Caused by RSV in Adults Aged 60 Years and Older; clinicaltrials.gov: Bethesda, MD, USA, 2023.
- Kingwell, K. RSV Vaccines Score Landmark FDA Approvals. Nat. Rev. Drug Discov. 2023, 22, 523–525. [Google Scholar] [CrossRef] [PubMed]
- Moderna Announces mRNA-1345, an Investigational Respiratory Syncytial Virus (RSV) Vaccine, Has Met Primary Efficacy Endpoints in Phase 3 Trial in Older Adults. Available online: https://investors.modernatx.com/news/news-details/2023/Moderna-Announces-mRNA-1345-an-Investigational-Respiratory-Syncytial-Virus-RSV-Vaccine-Has-Met-Primary-Efficacy-Endpoints-in-Phase-3-Trial-in-Older-Adults/default.aspx (accessed on 16 March 2023).
- Schmader, K. Herpes Zoster and Postherpetic Neuralgia in Older Adults. Clin. Geriatr. Med. 2007, 23, 615–632, vii–viii. [Google Scholar] [CrossRef] [PubMed]
- Pan, C.X.; Lee, M.S.; Nambudiri, V.E. Global Herpes Zoster Incidence, Burden of Disease, and Vaccine Availability: A Narrative Review. Ther. Adv. Vaccines Immunother. 2022, 10, 25151355221084535. [Google Scholar] [CrossRef]
- Harvey, M.; Prosser, L.A.; Rose, A.M.; Ortega-Sanchez, I.R.; Harpaz, R. Aggregate Health and Economic Burden of Herpes Zoster in the United States: Illustrative Example of a Pain Condition. Pain 2020, 161, 361–368. [Google Scholar] [CrossRef]
- Gater, A.; Uhart, M.; McCool, R.; Préaud, E. The Humanistic, Economic and Societal Burden of Herpes Zoster in Europe: A Critical Review. BMC Public Health 2015, 15, 193. [Google Scholar] [CrossRef] [PubMed]
- Weinberg, A.; Zhang, J.H.; Oxman, M.N.; Johnson, G.R.; Hayward, A.R.; Caulfield, M.J.; Irwin, M.R.; Clair, J.; Smith, J.G.; Stanley, H.; et al. Varicella-Zoster Virus-Specific Immune Responses to Herpes Zoster in Elderly Participants in a Trial of a Clinically Effective Zoster Vaccine. J. Infect. Dis. 2009, 200, 1068–1077. [Google Scholar] [CrossRef]
- Arvin, A.M.; Pollard, R.B.; Rasmussen, L.E.; Merigan, T.C. Cellular and Humoral Immunity in the Pathogenesis of Recurrent Herpes Viral Infections in Patients with Lymphoma. J. Clin. Investig. 1980, 65, 869–878. [Google Scholar] [CrossRef]
- Weinberg, A.; Lazar, A.A.; Zerbe, G.O.; Hayward, A.R.; Chan, I.S.F.; Vessey, R.; Silber, J.L.; MacGregor, R.R.; Chan, K.; Gershon, A.A.; et al. Influence of Age and Nature of Primary Infection on Varicella-Zoster Virus-Specific Cell-Mediated Immune Responses. J. Infect. Dis. 2010, 201, 1024–1030. [Google Scholar] [CrossRef] [PubMed]
- Lang, P.-O.; Aspinall, R. Vaccination for Quality of Life: Herpes-Zoster Vaccines. Aging Clin. Exp. Res. 2021, 33, 1113–1122. [Google Scholar] [CrossRef] [PubMed]
- Ouwendijk, W.J.D.; Laing, K.J.; Verjans, G.M.G.M.; Koelle, D.M. T-Cell Immunity to Human Alphaherpesviruses. Curr. Opin. Virol. 2013, 3, 452–460. [Google Scholar] [CrossRef]
- Levin, M.J.; Oxman, M.N.; Zhang, J.H.; Johnson, G.R.; Stanley, H.; Hayward, A.R.; Caulfield, M.J.; Irwin, M.R.; Smith, J.G.; Clair, J.; et al. Varicella-Zoster Virus-Specific Immune Responses in Elderly Recipients of a Herpes Zoster Vaccine. J. Infect. Dis. 2008, 197, 825–835. [Google Scholar] [CrossRef] [PubMed]
- Levin, M.J.; Weinberg, A. Immune Responses to Zoster Vaccines. Hum. Vaccin. Immunother. 2019, 15, 772–777. [Google Scholar] [CrossRef]
- Levin, M.J.; Weinberg, A. Immune Responses to Varicella-Zoster Virus Vaccines. In Varicella-Zoster Virus; Arvin, A.M., Moffat, J.F., Abendroth, A., Oliver, S.L., Eds.; Current Topics in Microbiology and Immunology; Springer International Publishing: Cham, Switzerland, 2021; Volume 438, pp. 223–246. ISBN 978-3-031-15304-4. [Google Scholar]
- Parikh, R.; Widenmaier, R.; Lecrenier, N. A Practitioner’s Guide to the Recombinant Zoster Vaccine: Review of National Vaccination Recommendations. Expert. Rev. Vaccines 2021, 20, 1065–1075. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, M. A Live Varicella Vaccine Used for Children in Hospitals. IARC Sci. Publ. (1971) 1978, 24 Pt 2, 1033–1036. [Google Scholar]
- Didierlaurent, A.M.; Laupèze, B.; Di Pasquale, A.; Hergli, N.; Collignon, C.; Garçon, N. Adjuvant System AS01: Helping to Overcome the Challenges of Modern Vaccines. Expert. Rev. Vaccines 2017, 16, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Levin, M.J.; Weinberg, A. Adjuvanted Recombinant Glycoprotein E Herpes Zoster Vaccine. Clin. Infect. Dis. 2020, 70, 1509–1515. [Google Scholar] [CrossRef]
- SK bioscience. Available online: https://www.skbioscience.com/en/news/news_01_01?mode=view&id=162 (accessed on 8 June 2023).
- Mbinta, J.F.; Nguyen, B.P.; Awuni, P.M.A.; Paynter, J.; Simpson, C.R. Post-Licensure Zoster Vaccine Effectiveness against Herpes Zoster and Postherpetic Neuralgia in Older Adults: A Systematic Review and Meta-Analysis. Lancet Healthy Longev. 2022, 3, e263–e275. [Google Scholar] [CrossRef]
- McGirr, A.; Widenmaier, R.; Curran, D.; Espié, E.; Mrkvan, T.; Oostvogels, L.; Simone, B.; McElhaney, J.E.; Burnett, H.; Haeussler, K.; et al. The Comparative Efficacy and Safety of Herpes Zoster Vaccines: A Network Meta-Analysis. Vaccine 2019, 37, 2896–2909. [Google Scholar] [CrossRef] [PubMed]
- Baxter, R.; Bartlett, J.; Fireman, B.; Marks, M.; Hansen, J.; Lewis, E.; Aukes, L.; Chen, Y.; Klein, N.P.; Saddier, P. Long-Term Effectiveness of the Live Zoster Vaccine in Preventing Shingles: A Cohort Study. Am. J. Epidemiol. 2018, 187, 161–169. [Google Scholar] [CrossRef] [PubMed]
- Strezova, A.; Diez-Domingo, J.; Al Shawafi, K.; Tinoco, J.C.; Shi, M.; Pirrotta, P.; Mwakingwe-Omari, A.; Zoster-049 Study Group. Long-Term Protection against Herpes Zoster by the Adjuvanted Recombinant Zoster Vaccine: Interim Efficacy, Immunogenicity, and Safety Results up to 10 Years after Initial Vaccination. Open Forum Infect. Dis. 2022, 9, ofac485. [Google Scholar] [CrossRef]
- Schmader, K.E.; Levin, M.J.; Grupping, K.; Matthews, S.; Butuk, D.; Chen, M.; Idrissi, M.E.; Fissette, L.A.; Fogarty, C.; Hartley, P.; et al. The Impact of Reactogenicity After the First Dose of Recombinant Zoster Vaccine on the Physical Functioning and Quality of Life of Older Adults: An Open-Label, Phase III Trial. J. Gerontol. A Biol. Sci. Med. Sci. 2019, 74, 1217–1224. [Google Scholar] [CrossRef] [PubMed]
- Colindres, R.; Wascotte, V.; Brecx, A.; Clarke, C.; Hervé, C.; Kim, J.H.; Levin, M.J.; Oostvogels, L.; Zahaf, T.; Schuind, A.; et al. Post Hoc Analysis of Reactogenicity Trends between Dose 1 and Dose 2 of the Adjuvanted Recombinant Zoster Vaccine in Two Parallel Randomized Trials. Hum. Vaccin. Immunother. 2020, 16, 2628–2633. [Google Scholar] [CrossRef]
- Fiore, J.; Co-van der Mee, M.M.; Maldonado, A.; Glasser, L.; Watson, P. Safety and Reactogenicity of the Adjuvanted Recombinant Zoster Vaccine: Experience from Clinical Trials and Post-Marketing Surveillance. Ther. Adv. Vaccines Immunother. 2021, 9, 25151355211057479. [Google Scholar] [CrossRef]
- Fernández-Tejada, A.; Chea, E.K.; George, C.; Pillarsetty, N.; Gardner, J.R.; Livingston, P.O.; Ragupathi, G.; Lewis, J.S.; Tan, D.S.; Gin, D.Y. Development of a Minimal Saponin Vaccine Adjuvant Based on QS-21. Nat. Chem. 2014, 6, 635–643. [Google Scholar] [CrossRef]
- GSK Pricing Information and Details|GSKForYou. Available online: https://www.gskforyou.com/gsk-pricing-information/ (accessed on 4 August 2023).
- Ewer, K.; Sebastian, S.; Spencer, A.J.; Gilbert, S.; Hill, A.V.S.; Lambe, T. Chimpanzee Adenoviral Vectors as Vaccines for Outbreak Pathogens. Hum. Vaccin. Immunother. 2017, 13, 3020–3032. [Google Scholar] [CrossRef]
- Joe, C.C.D.; Jiang, J.; Linke, T.; Li, Y.; Fedosyuk, S.; Gupta, G.; Berg, A.; Segireddy, R.R.; Mainwaring, D.; Joshi, A.; et al. Manufacturing a Chimpanzee Adenovirus-Vectored SARS-CoV-2 Vaccine to Meet Global Needs. Biotechnol. Bioeng. 2022, 119, 48–58. [Google Scholar] [CrossRef] [PubMed]
- Abrams, C.S.; Barnes, G.D. SARS-CoV-2 Vaccination-Induced Thrombotic Thrombocytopenia: A Rare but Serious Immunologic Complication. Annu. Rev. Med. 2023, 74, 65–74. [Google Scholar] [CrossRef] [PubMed]
- Dicks, M.D.J.; Spencer, A.J.; Edwards, N.J.; Wadell, G.; Bojang, K.; Gilbert, S.C.; Hill, A.V.S.; Cottingham, M.G. A Novel Chimpanzee Adenovirus Vector with Low Human Seroprevalence: Improved Systems for Vector Derivation and Comparative Immunogenicity. PLoS ONE 2012, 7, e40385. [Google Scholar] [CrossRef]
- Folegatti, P.M.; Bellamy, D.; Roberts, R.; Powlson, J.; Edwards, N.J.; Mair, C.F.; Bowyer, G.; Poulton, I.; Mitton, C.H.; Green, N.; et al. Safety and Immunogenicity of a Novel Recombinant Simian Adenovirus ChAdOx2 as a Vectored Vaccine. Vaccines 2019, 7, 40. [Google Scholar] [CrossRef] [PubMed]
- Jenkin, D.; Ritchie, A.J.; Aboagye, J.; Fedosyuk, S.; Thorley, L.; Provstgaad-Morys, S.; Sanders, H.; Bellamy, D.; Makinson, R.; Xiang, Z.Q.; et al. Safety and Immunogenicity of a Simian-Adenovirus-Vectored Rabies Vaccine: An Open-Label, Non-Randomised, Dose-Escalation, First-in-Human, Single-Centre, Phase 1 Clinical Trial. Lancet Microbe 2022, 3, e663–e671. [Google Scholar] [CrossRef]
- Fedosyuk, S.; Merritt, T.; Peralta-Alvarez, M.P.; Morris, S.J.; Lam, A.; Laroudie, N.; Kangokar, A.; Wright, D.; Warimwe, G.M.; Angell-Manning, P.; et al. Simian Adenovirus Vector Production for Early-Phase Clinical Trials: A Simple Method Applicable to Multiple Serotypes and Using Entirely Disposable Product-Contact Components. Vaccine 2019, 37, 6951–6961. [Google Scholar] [CrossRef]
- Zhang, C.; Berg, A.; Joe, C.C.D.; Dalby, P.A.; Douglas, A.D. Lyophilization to Enable Distribution of ChAdOx1 and ChAdOx2 Adenovirus-Vectored Vaccines without Refrigeration. NPJ Vaccines 2023, 8, 85. [Google Scholar] [CrossRef]
- Joyce, M.G.; Zhang, B.; Ou, L.; Chen, M.; Chuang, G.-Y.; Druz, A.; Kong, W.-P.; Lai, Y.-T.; Rundlet, E.J.; Tsybovsky, Y.; et al. Iterative Structure-Based Improvement of a Fusion-Glycoprotein Vaccine against RSV. Nat. Struct. Mol. Biol. 2016, 23, 811–820. [Google Scholar] [CrossRef]
- McLellan, J.S.; Chen, M.; Joyce, M.G.; Sastry, M.; Stewart-Jones, G.B.E.; Yang, Y.; Zhang, B.; Chen, L.; Srivatsan, S.; Zheng, A.; et al. Structure-Based Design of a Fusion Glycoprotein Vaccine for Respiratory Syncytial Virus. Science 2013, 342, 592–598. [Google Scholar] [CrossRef]
- gE—Envelope Glycoprotein E—Varicella-Zoster Virus (Strain Oka Vaccine) (HHV-3) | UniProtKB | UniProt. Available online: https://www.uniprot.org/uniprotkb/Q9J3M8/entry (accessed on 9 December 2022).
- Chng, J.; Wang, T.; Nian, R.; Lau, A.; Hoi, K.M.; Ho, S.C.L.; Gagnon, P.; Bi, X.; Yang, Y. Cleavage Efficient 2A Peptides for High Level Monoclonal Antibody Expression in CHO Cells. MAbs 2015, 7, 403–412. [Google Scholar] [CrossRef]
- Ulaszewska, M.; Merelie, S.; Sebastian, S.; Lambe, T. Preclinical Immunogenicity of an Adenovirus-Vectored Vaccine for Herpes Zoster. Hum. Vaccin. Immunother. 2023, 19, 2175558. [Google Scholar] [CrossRef] [PubMed]
- Vardeu, A.; Davis, C.; McDonald, I.; Stahlberg, G.; Thapa, B.; Piotrowska, K.; Marshall, M.A.; Evans, T.; Wheeler, V.; Sebastian, S.; et al. Intravenous Administration of Viral Vectors Expressing Prostate Cancer Antigens Enhances the Magnitude and Functionality of CD8+ T Cell Responses. J. Immunother. Cancer 2022, 10, e005398. [Google Scholar] [CrossRef]
- Crank, M.C.; Ruckwardt, T.J.; Chen, M.; Morabito, K.M.; Phung, E.; Costner, P.J.; Holman, L.A.; Hickman, S.P.; Berkowitz, N.M.; Gordon, I.J.; et al. A Proof of Concept for Structure-Based Vaccine Design Targeting RSV in Humans. Science 2019, 365, 505–509. [Google Scholar] [CrossRef] [PubMed]
- Leemans, A.; Boeren, M.; Van der Gucht, W.; Martinet, W.; Caljon, G.; Maes, L.; Cos, P.; Delputte, P. Characterization of the Role of N-Glycosylation Sites in the Respiratory Syncytial Virus Fusion Protein in Virus Replication, Syncytium Formation and Antigenicity. Virus Res. 2019, 266, 58–68. [Google Scholar] [CrossRef] [PubMed]
- Barrett, J.R.; Belij-Rammerstorfer, S.; Dold, C.; Ewer, K.J.; Folegatti, P.M.; Gilbride, C.; Halkerston, R.; Hill, J.; Jenkin, D.; Stockdale, L.; et al. Phase 1/2 Trial of SARS-CoV-2 Vaccine ChAdOx1 nCoV-19 with a Booster Dose Induces Multifunctional Antibody Responses. Nat. Med. 2021, 27, 279–288. [Google Scholar] [CrossRef] [PubMed]
- Boukhvalova, M.S.; Prince, G.A.; Blanco, J.C.G. The Cotton Rat Model of Respiratory Viral Infections. Biologicals 2009, 37, 152–159. [Google Scholar] [CrossRef]
- Blanco, J.C.G.; Pletneva, L.M.; Oue, R.O.; Patel, M.C.; Boukhvalova, M.S. Maternal Transfer of RSV Immunity in Cotton Rats Vaccinated during Pregnancy. Vaccine 2015, 33, 5371–5379. [Google Scholar] [CrossRef]
- Kim, H.W.; Canchola, J.G.; Brandt, C.D.; Pyles, G.; Chanock, R.M.; Jensen, K.; Parrott, R.H. Respiratory Syncytial Virus Disease in Infants despite Prior Administration of Antigenic Inactivated Vaccine. Am. J. Epidemiol. 1969, 89, 422–434. [Google Scholar] [CrossRef]
- Barros-Martins, J.; Hammerschmidt, S.I.; Cossmann, A.; Odak, I.; Stankov, M.V.; Morillas Ramos, G.; Dopfer-Jablonka, A.; Heidemann, A.; Ritter, C.; Friedrichsen, M.; et al. Immune Responses against SARS-CoV-2 Variants after Heterologous and Homologous ChAdOx1 nCoV-19/BNT162b2 Vaccination. Nat. Med. 2021, 27, 1525–1529. [Google Scholar] [CrossRef]
- Collignon, C.; Bol, V.; Chalon, A.; Surendran, N.; Morel, S.; van den Berg, R.A.; Capone, S.; Bechtold, V.; Temmerman, S.T. Innate Immune Responses to Chimpanzee Adenovirus Vector 155 Vaccination in Mice and Monkeys. Front. Immunol. 2020, 11, 579872. [Google Scholar] [CrossRef] [PubMed]
- Myers, M.G.; Connelly, B.L. Animal Models of Varicella. J. Infect. Dis. 1992, 166 (Suppl. 1), S48–S50. [Google Scholar] [CrossRef] [PubMed]
- Laemmle, L.; Goldstein, R.S.; Kinchington, P.R. Modeling Varicella Zoster Virus Persistence and Reactivation—Closer to Resolving a Perplexing Persistent State. Front. Microbiol. 2019, 10, 1634. [Google Scholar] [CrossRef] [PubMed]
- Zohar, T.; Hsiao, J.C.; Mehta, N.; Das, J.; Devadhasan, A.; Karpinski, W.; Callahan, C.; Citron, M.P.; DiStefano, D.J.; Touch, S.; et al. Upper and Lower Respiratory Tract Correlates of Protection against Respiratory Syncytial Virus Following Vaccination of Nonhuman Primates. Cell Host Microbe 2022, 30, 41–52.e5. [Google Scholar] [CrossRef]
- Ramasamy, M.N.; Minassian, A.M.; Ewer, K.J.; Flaxman, A.L.; Folegatti, P.M.; Owens, D.R.; Voysey, M.; Aley, P.K.; Angus, B.; Babbage, G.; et al. Safety and Immunogenicity of ChAdOx1 nCoV-19 Vaccine Administered in a Prime-Boost Regimen in Young and Old Adults (COV002): A Single-Blind, Randomised, Controlled, Phase 2/3 Trial. Lancet 2021, 396, 1979–1993. [Google Scholar] [CrossRef]
- Byazrova, M.G.; Astakhova, E.A.; Minnegalieva, A.R.; Sukhova, M.M.; Mikhailov, A.A.; Prilipov, A.G.; Gorchakov, A.A.; Filatov, A.V. Anti-Ad26 Humoral Immunity Does Not Compromise SARS-CoV-2 Neutralizing Antibody Responses Following Gam-COVID-Vac Booster Vaccination. NPJ Vaccines 2022, 7, 145. [Google Scholar] [CrossRef]
- Li, G.; Cappuccini, F.; Marchevsky, N.G.; Aley, P.K.; Aley, R.; Anslow, R.; Bibi, S.; Cathie, K.; Clutterbuck, E.; Faust, S.N.; et al. Safety and Immunogenicity of the ChAdOx1 nCoV-19 (AZD1222) Vaccine in Children Aged 6–17 Years: A Preliminary Report of COV006, a Phase 2 Single-Blind, Randomised, Controlled Trial. Lancet 2022, 399, 2212–2225. [Google Scholar] [CrossRef]
- Voysey, M.; Costa Clemens, S.A.; Madhi, S.A.; Weckx, L.Y.; Folegatti, P.M.; Aley, P.K.; Angus, B.; Baillie, V.L.; Barnabas, S.L.; Bhorat, Q.E.; et al. Single-Dose Administration and the Influence of the Timing of the Booster Dose on Immunogenicity and Efficacy of ChAdOx1 nCoV-19 (AZD1222) Vaccine: A Pooled Analysis of Four Randomised Trials. Lancet 2021, 397, 881–891. [Google Scholar] [CrossRef]
- Emary, K.R.W.; Golubchik, T.; Aley, P.K.; Ariani, C.V.; Angus, B.; Bibi, S.; Blane, B.; Bonsall, D.; Cicconi, P.; Charlton, S.; et al. Efficacy of ChAdOx1 nCoV-19 (AZD1222) Vaccine against SARS-CoV-2 Variant of Concern 202012/01 (B.1.1.7): An Exploratory Analysis of a Randomised Controlled Trial. Lancet 2021, 397, 1351–1362. [Google Scholar] [CrossRef]
- Fernández-Tejada, A.; Tan, D.S.; Gin, D.Y. Development of Improved Vaccine Adjuvants Based on the Saponin Natural Product QS-21 through Chemical Synthesis. Acc. Chem. Res. 2016, 49, 1741–1756. [Google Scholar] [CrossRef]
- EMA Vaxzevria (Previously COVID-19 Vaccine AstraZeneca). Available online: https://www.ema.europa.eu/en/medicines/human/EPAR/vaxzevria (accessed on 25 August 2023).
- Shingrix | European Medicines Agency. Available online: https://www.ema.europa.eu/en/medicines/human/EPAR/shingrix (accessed on 25 August 2023).
- CDC Shingles Vaccination Is the Best Way to Help Protect Yourself. Available online: https://www.cdc.gov/vaccines/vpd/shingles/public/shingrix/index.html (accessed on 23 August 2023).
- Summary of the Public Assessment Report (PAR) for Vaxzevria—Last Updated 03/23—GOV.UK. Available online: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/1148800/CMA_UKPAR_COVID_19_Vaccine_AstraZeneca_PAR_PAR_update_Annex_I.pdf (accessed on 25 August 2023).
- Patterson, B.J.; Chen, C.-C.; McGuiness, C.B.; Glasser, L.I.; Sun, K.; Buck, P.O. Early Examination of Real-World Uptake and Second-Dose Completion of Recombinant Zoster Vaccine in the United States from October 2017 to September 2019. Hum. Vaccin. Immunother. 2021, 17, 2482–2487. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petherbridge, L.; Davis, C.; Robinson, A.; Evans, T.; Sebastian, S. Pre-Clinical Development of an Adenovirus Vector Based RSV and Shingles Vaccine Candidate. Vaccines 2023, 11, 1679. https://doi.org/10.3390/vaccines11111679
Petherbridge L, Davis C, Robinson A, Evans T, Sebastian S. Pre-Clinical Development of an Adenovirus Vector Based RSV and Shingles Vaccine Candidate. Vaccines. 2023; 11(11):1679. https://doi.org/10.3390/vaccines11111679
Chicago/Turabian StylePetherbridge, Lawrence, Charlotte Davis, Angela Robinson, Thomas Evans, and Sarah Sebastian. 2023. "Pre-Clinical Development of an Adenovirus Vector Based RSV and Shingles Vaccine Candidate" Vaccines 11, no. 11: 1679. https://doi.org/10.3390/vaccines11111679
APA StylePetherbridge, L., Davis, C., Robinson, A., Evans, T., & Sebastian, S. (2023). Pre-Clinical Development of an Adenovirus Vector Based RSV and Shingles Vaccine Candidate. Vaccines, 11(11), 1679. https://doi.org/10.3390/vaccines11111679