Thromboembolic Events after COVID-19 Vaccination: An Italian Retrospective Real-World Safety Study
Abstract
:1. Introduction
2. Methods
2.1. Study Design and Data Source
2.2. Data Extraction
2.3. Descriptive and Statistical Analyses
2.4. Ethics
3. Results
3.1. Descriptive Results from SINFONIA
3.2. Descriptive Results from RNF
3.3. Statistical Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stokel-Walker, C. What do we know about covid vaccines and preventing transmission? BMJ 2022, 376, o298. [Google Scholar] [CrossRef] [PubMed]
- EMA. COVID-19 Vaccines|European Medicines Agency. 2023. Available online: https://www.ema.europa.eu/en/human-regulatory/overview/public-health-threats/coronavirus-disease-covid-19/treatments-vaccines/covid-19-vaccines (accessed on 12 January 2023).
- Burn, E.; Roel, E.; Pistillo, A.; Fernández-Bertolín, S.; Aragón, M.; Raventós, B.; Reyes, C.; Verhamme, K.; Rijnbeek, P.; Li, X.; et al. Thrombosis and thrombocytopenia after vaccination against and infection with SARS-CoV-2 in Catalonia, Spain. Nat. Commun. 2022, 13, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Wise, J. Covid-19: European countries suspend use of Oxford-AstraZeneca vaccine after reports of blood clots. BMJ 2021, 372, n699. [Google Scholar] [CrossRef] [PubMed]
- EMA. COVID-19 Safety Update Vaxzevria Vaccine—14 April 2021. 2021. Available online: https://www.ema.europa.eu/en/documents/covid-19-vaccine-safety-update/covid-19-vaccine-safety-update-vaxzevria-previously-covid-19-vaccine-astrazeneca-14-april-2021_en.pdf (accessed on 12 January 2023).
- Shay, D.K.; Gee, J.; Su, J.R.; Myers, T.R.; Marquez, P.; Liu, R.; Zhang, B.; Licata, C.; Clark, T.A.; Shimabukuro, T.T. Safety Monitoring of the Janssen (Johnson & Johnson) COVID-19 Vaccine—United States, March–April 2021. MMWR Morb. Mortal. Wkly. Rep. 2021, 70, 680–684. [Google Scholar] [CrossRef] [PubMed]
- EMA. Signal Assessment Report on Embolic and Thrombotic Events (SMQ) with COVID-19 Vaccine (ChAdOx1-S [Recombinant])—Vaxzevria (Previously COVID-19 Vaccine AstraZeneca) (Other Viral Vaccines) EPITT no:19683. 2021. Available online: https://www.ema.europa.eu/en/documents/prac-recommendation/signal-assessment-report-embolic-thrombotic-events-smq-covid-19-vaccine-chadox1-s-recombinant_en.pdf (accessed on 12 January 2023).
- EMA. COVID-19 Vaccine Janssen: EMA Finds Possible Link to Very Rare Cases of Unusual Blood Clots with Low Blood Platelets|European Medicines Agency. 2020. Available online: https://www.ema.europa.eu/en/news/covid-19-vaccine-janssen-ema-finds-possible-link-very-rare-cases-unusual-blood-clots-low-blood (accessed on 12 January 2023).
- EMA. COVID-19 Vaccine Safety Update of 21 May 2021 VAXZEVRIA AstraZeneca AB. 2021. Available online: https://www.ema.europa.eu/en/documents/covid-19-vaccine-safety-update/covid-19-vaccine-safety-update-vaxzevria-previously-covid-19-vaccine-astrazeneca-21-may-2021_en.pdf (accessed on 12 January 2023).
- EMA. COVID-19 Vaccine Safety Update of 11 November 2021 VAXZEVRIA AstraZeneca AB. 2021. Available online: https://www.ema.europa.eu/en/documents/covid-19-vaccine-safety-update/covid-19-vaccine-safety-update-vaxzevria-previously-covid-19-vaccine-astrazeneca-11-november-2021_en.pdf (accessed on 12 January 2023).
- Pottegård, A.; Lund, L.C.; Karlstad, Ø.; Dahl, J.; Andersen, M.; Hallas, J.; Lidegaard, Ø.; Tapia, G.; Gulseth, H.L.; Ruiz, P.L.-D.; et al. Arterial events, venous thromboembolism, thrombocytopenia, and bleeding after vaccination with Oxford-AstraZeneca ChAdOx1-S in Denmark and Norway: Population based cohort study. BMJ 2021, 373, n1114. [Google Scholar] [CrossRef] [PubMed]
- Simpson, C.R.; Shi, T.; Vasileiou, E.; Katikireddi, S.V.; Kerr, S.; Moore, E.; McCowan, C.; Agrawal, U.; Shah, S.A.; Ritchie, L.D.; et al. First-dose ChAdOx1 and BNT162b2 COVID-19 vaccines and thrombocytopenic, thromboembolic and hemorrhagic events in Scotland. Nat. Med. 2021, 27, 1290–1297. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.-J.; Cines, D.B.; Gernsheimer, T.; Kessler, C.; Michel, M.; Tarantino, M.D.; Semple, J.W.; Arnold, D.M.; Godeau, B.; Lambert, M.P.; et al. Thrombocytopenia following Pfizer and Moderna SARS-CoV-2 vaccination. Am. J. Hematol. 2021, 96, 534–537. [Google Scholar] [CrossRef] [PubMed]
- Perrella, A.; Mucherino, S.; Guarino, I.; Nerilli, M.; Maraolo, A.E.; Capoluongo, N.; Coscioni, E.; Trama, U.; Menditto, E.; Orlando, V. Postvaccination SARS-CoV-2 Infections among Healthcare Professionals: A Real World Evidence Study. Vaccines 2022, 10, 511. [Google Scholar] [CrossRef]
- Mani, A.; Ojha, V. Thromboembolism after COVID-19 Vaccination: A Systematic Review of Such Events in 286 Patients. Ann. Vasc. Surg. 2022, 84, 12. [Google Scholar] [CrossRef]
- Lai, D.; Zhang, Y.D.; Lu, J. Venous Thromboembolism following Two Doses of COVID-19 mRNA Vaccines in the US Population, 2020–2022. Vaccines 2022, 10, 1317. [Google Scholar] [CrossRef]
- Hviid, A.; Hansen, J.V.; Thiesson, E.M.; Wohlfahrt, J. Association of AZD1222 and BNT162b2 COVID-19 Vaccination With Thromboembolic and Thrombocytopenic Events in Frontline Personnel: A Retrospective Cohort Study. Ann. Intern. Med. 2022, 175, 541–546. [Google Scholar] [CrossRef] [PubMed]
- Pawlowski, C.; Rincón-Hekking, J.; Awasthi, S.; Pandey, V.; Lenehan, P.; Venkatakrishnan, A.; Bade, S.; O’Horo, J.C.; Virk, A.; Swift, M.D.; et al. Cerebral Venous Sinus Thrombosis is not Significantly Linked to COVID-19 Vaccines or Non-COVID Vaccines in a Large Multi-State Health System. J. Stroke Cerebrovasc. Dis. 2021, 30, 105923. [Google Scholar] [CrossRef]
- Li, X.; Burn, E.; Duarte-Salles, T.; Yin, C.; Reich, C.; Delmestri, A.; Verhamme, K.; Rijnbeek, P.; A Suchard, M.; Li, K.; et al. Comparative risk of thrombosis with thrombocytopenia syndrome or thromboembolic events associated with different covid-19 vaccines: International network cohort study from five European countries and the US. BMJ 2022, 379, e071594. [Google Scholar] [CrossRef] [PubMed]
- Hippisley-Cox, J.; Patone, M.; Mei, X.W.; Saatci, D.; Dixon, S.; Khunti, K.; Zaccardi, F.; Watkinson, P.; Shankar-Hari, M.; Doidge, J.; et al. Risk of thrombocytopenia and thromboembolism after covid-19 vaccination and SARS-CoV-2 positive testing: Self-controlled case series study. BMJ 2021, 374, n1931. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Liu, Y.; Wang, X.; Yang, L.; Li, H.; Wang, Y.; Liu, M.; Zhao, X.; Xie, Y.; Yang, Y.; et al. SARS-CoV-2 binds platelet ACE2 to enhance thrombosis in COVID-19. J. Hematol. Oncol. 2020, 13, 120. [Google Scholar] [CrossRef] [PubMed]
- Schultz, N.H.; Sørvoll, I.H.; Michelsen, A.E.; Munthe, L.A.; Lund-Johansen, F.; Ahlen, M.T.; Wiedmann, M.; Aamodt, A.-H.; Skattør, T.H.; Tjønnfjord, G.E.; et al. Thrombosis and Thrombocytopenia after ChAdOx1 nCoV-19 Vaccination. N. Engl. J. Med. 2021, 384, 2124–2130. [Google Scholar] [CrossRef] [PubMed]
- Greinacher, A.; Thiele, T.; Warkentin, T.E.; Weisser, K.; Kyrle, P.A.; Eichinger, S. Thrombotic Thrombocytopenia after ChAdOx1 nCov-19 Vaccination. N. Engl. J. Med. 2021, 384, 2092–2101. [Google Scholar] [CrossRef]
- Greinacher, A.; Selleng, K.; Mayerle, J.; Palankar, R.; Wesche, J.; Reiche, S.; Aebischer, A.; E Warkentin, T.; Muenchhoff, M.; Hellmuth, J.C.; et al. Anti-platelet factor 4 antibodies causing VITT do not cross-react with SARS-CoV-2 spike protein. Blood 2021, 138, 1269–1277. [Google Scholar] [CrossRef]
- Dotan, A.; Shoenfeld, Y. Perspectives on vaccine induced thrombotic thrombocytopenia. J. Autoimmun. 2021, 121, 102663. [Google Scholar] [CrossRef]
- Perricone, C.; Ceccarelli, F.; Nesher, G.; Borella, E.; Odeh, Q.; Conti, F.; Shoenfeld, Y.; Valesini, G. Immune thrombocytopenic purpura (ITP) associated with vaccinations: A review of reported cases. Immunol. Res. 2014, 60, 226–235. [Google Scholar] [CrossRef]
- Cecinati, V.; Principi, N.; Brescia, L.; Giordano, P.; Esposito, S. Vaccine administration and the development of immune thrombocytopenic purpura in children. Hum. Vaccines Immunother. 2013, 9, 1158–1162. [Google Scholar] [CrossRef]
- Stone, D.; Liu, Y.; Shayakhmetov, D.; Li, Z.-Y.; Ni, S.; Lieber, A. Adenovirus-platelet interaction in blood causes virus sequestration to the reticuloendothelial system of the liver. J. Virol. 2007, 81, 4866–4871. [Google Scholar] [CrossRef]
- Jin, Y.-Y.; Yu, X.-N.; Qu, Z.-Y.; Zhang, A.-A.; Xing, Y.-L.; Jiang, L.-X.; Shang, L.; Wang, Y.-C. Adenovirus type 3 induces platelet activation in vitro. Mol. Med. Rep. 2014, 9, 370–374. [Google Scholar] [CrossRef]
- Chander, C.K.; Ajay, G. Mechanism of Thrombosis with AstraZeneca and J & J Vaccines: Expert Opinion by Kate Chander Chiang & Ajay Gupta, MD|Leaders in Pharmaceutical Business Intelligence (LPBI) Group. 2021. Available online: https://pharmaceuticalintelligence.com/2021/04/14/mechanism-of-thrombosis-with-astrazeneca-and-j-j-vaccines-expert-opinion-by-kate-chander-chiang-ajay-gupta-md/ (accessed on 17 January 2023).
- Kim, S.-Y.; Kwon, W.-A.; Shin, S.-P.; Seo, H.K.; Lim, S.-J.; Jung, Y.-S.; Han, H.-K.; Jeong, K.-C.; Lee, S.-J. Electrostatic interaction of tumor-targeting adenoviruses with aminoclay acquires enhanced infectivity to tumor cells inside the bladder and has better cytotoxic activity. Drug Deliv. 2018, 25, 49–58. [Google Scholar] [CrossRef]
- Leng, X.-H.; Hong, S.Y.; Larrucea, S.; Zhang, W.; Li, T.-T.; López, J.A.; Bray, P.F. Platelets of female mice are intrinsically more sensitive to agonists than are platelets of males. Arterioscler. Thromb. Vasc. Biol. 2004, 24, 376–381. [Google Scholar] [CrossRef]
- Perrella, A.; Bisogno, M.; D’Argenzio, A.; Trama, U.; Coscioni, E.; Orlando, V. Risk of SARS-CoV-2 Infection Breakthrough among the Non-Vaccinated and Vaccinated Population in Italy: A Real-World Evidence Study Based on Big Data. Healthcare 2022, 10, 1085. [Google Scholar] [CrossRef] [PubMed]
Variable | Level | Vaccine Doses (N = 12,692,852) | |
---|---|---|---|
N | % | ||
Gender | Female | 6,509,475 | 51.28 |
Male | 6,183,377 | 48.72 | |
Age | 5–11 years | 242,449 | 1.91 |
12–19 years | 1,086,703 | 8.56 | |
20–29 years | 1,548,365 | 12.20 | |
30–39 years | 1,595,933 | 12.57 | |
40–49 years | 1,957,496 | 15.42 | |
50–59 years | 2,232,236 | 17.59 | |
60–69 years | 1,827,060 | 14.39 | |
70–79 years | 1,374,019 | 10.83 | |
80–89 years | 708,684 | 5.58 | |
>90 years | 119,901 | 0.94 | |
Not available | 6 | 0.00 | |
Doses | First | 4,718,844 | 37.18 |
Second | 4,239,383 | 33.40 | |
Third | 3,572,382 | 28.14 | |
Fourth | 162,243 | 1.28 | |
Type of vaccine | Pfizer-BioNtech | 8,257,218 | 65.05 |
Moderna | 3,085,673 | 24.31 | |
Oxford–AstraZeneca | 1,232,608 | 9.71 | |
Janssen | 116,061 | 0.91 | |
Novavax | 1292 | 0.02 |
Variable | Level | Pfizer-BioNtech (N = 398) | Oxford–AstraZeneca (N = 148) | Moderna (N = 82) | Janssen (N = 13) |
---|---|---|---|---|---|
Number of vascular events per ICSR | Mean | 3.7 | 3.8 | 4.7 | 2.6 |
Gender | Female (%) | 275 (69.10) | 117 (79.05) | 55 (67.07) | 6 (46.15) |
Male (%) | 122 (30.65) | 28 (18.92) | 27 (32.93) | 7 (53.85) | |
Unknown (%) | 1 (0.25) | 3 (2.03) | - | - | |
Age | Median (IQR) | 47.97 (57.35–35.54) | 56.22 (65-87–45.55) | 45.00 (56.87–33.03) | 27.00 (39.53–18.99) |
Seriousness | Serious (%) | 147 (36.93) | 66 (44.59) | 45 (54.88) | 3 (23.08) |
Not serious (%) | 251 (63.07) | 82 (55.41) | 37 (45.12) | 10 (76.92) | |
Doses | First dose (%) | 180 (45.23) | 105 (70.95) | 38 (46.34) | 6 (46.15) |
Second dose (%) | 131 (32.91) | 9 (6.08) | 19 (23.17) | - | |
Third dose (%) | 41 (10.30) | - | 11 (13.42) | - | |
Not available (%) | 46 (11.56) | 34 (22.97) | 14 (17.07) | 7 (53.85) |
Thrombotic Events (Preferred Terms of MedDRA) | Oxford–AstraZeneca Vaccine | Janssen Vaccine | Moderna Vaccine | Pfizer-BioNtech Vaccine | Total |
---|---|---|---|---|---|
Thrombosis | 8 | 1 | 2 | 6 | 17 |
Venous thrombosis | 3 | 0 | 1 | 6 | 10 |
Deep vein thrombosis | 4 | 0 | 2 | 3 | 9 |
D-dimer of fibrin increased | 5 | 0 | 2 | 2 | 9 |
Thrombophlebitis of the leg | 4 | 0 | 0 | 3 | 7 |
Thrombophlebitis | 1 | 1 | 1 | 4 | 7 |
Phlebitis | 2 | 0 | 2 | 3 | 7 |
Infarction | 1 | 0 | 0 | 5 | 6 |
Pulmonary embolism | 1 | 0 | 4 | 1 | 6 |
Thrombosis of the leg | 2 | 0 | 0 | 3 | 5 |
Thrombosis of saphenous vein | 4 | 0 | 0 | 1 | 5 |
Ischemia | 2 | 0 | 1 | 1 | 4 |
Deep vein thrombosis of a limb | 1 | 1 | 1 | 1 | 4 |
Blood clot | 3 | 0 | 0 | 0 | 3 |
Thrombus | 1 | 0 | 0 | 2 | 3 |
Deep vein thrombosis (limbs) | 1 | 0 | 0 | 2 | 3 |
Fibrinogen increased | 2 | 0 | 1 | 0 | 3 |
Thromboembolism | 0 | 1 | 0 | 1 | 2 |
Arterial thrombosis of a limb | 1 | 0 | 0 | 1 | 2 |
Arterial occlusion, not specified | 1 | 0 | 1 | 0 | 2 |
Deep vein thrombosis of a leg | 1 | 0 | 0 | 1 | 2 |
Femoral deep vein thrombosis | 0 | 0 | 1 | 1 | 2 |
Transient ischemic attack | 0 | 0 | 0 | 1 | 1 |
D-dimer of fibrin abnormal | 1 | 0 | 0 | 0 | 1 |
Coagulation disorder | 0 | 0 | 0 | 1 | 1 |
Phlebitis of the arm | 1 | 0 | 0 | 0 | 1 |
Phlebitis of a lower limb | 0 | 0 | 0 | 1 | 1 |
Phlebothrombosis | 0 | 0 | 0 | 1 | 1 |
Phlebothrombosis of a lower limb | 0 | 0 | 0 | 1 | 1 |
Ischemic stroke | 0 | 0 | 0 | 1 | 1 |
Infarction of spleen | 0 | 0 | 0 | 1 | 1 |
Intestinal infarction | 0 | 0 | 0 | 1 | 1 |
Myocardial infarction | 0 | 0 | 0 | 1 | 1 |
Cerebral ischemia | 1 | 0 | 0 | 0 | 1 |
Chronic cerebral ischemia | 0 | 0 | 0 | 1 | 1 |
Ischemia not specified | 1 | 0 | 0 | 0 | 1 |
Splenic ischemia | 0 | 0 | 0 | 1 | 1 |
Micro-embolism | 0 | 0 | 0 | 1 | 1 |
Cerebral arterial occlusion | 0 | 0 | 0 | 1 | 1 |
Pulmonary thromboembolism | 0 | 0 | 1 | 0 | 1 |
Venous thromboembolism | 0 | 0 | 0 | 1 | 1 |
Deep thrombophlebitis | 1 | 0 | 0 | 0 | 1 |
Thrombosis of the arm | 1 | 0 | 0 | 0 | 1 |
Femoral arterial thrombosis | 0 | 0 | 1 | 0 | 1 |
Thrombosis of the axillary vein | 0 | 0 | 0 | 1 | 1 |
Thrombosis of varicose veins | 1 | 0 | 0 | 0 | 1 |
Venous thrombosis (limbs) | 1 | 0 | 0 | 0 | 1 |
Venous thrombosis of the arm | 1 | 0 | 0 | 0 | 1 |
Deep vein thrombosis of the arm | 0 | 0 | 0 | 1 | 1 |
Left deep vein thrombosis | 0 | 0 | 1 | 0 | 1 |
Total | 57 | 4 | 22 | 63 | 146 |
COVID-19 Vaccine | Reporting Rate (95% CI) |
---|---|
Oxford–AstraZeneca | 4.62 (3.50–5.99) |
Janssen | 3.45 (0.94–8.82) |
Pfizer-BioNtech | 0.76 (0.59–0.98) |
Moderna | 0.71 (0.45–1.08) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bernardi, F.F.; Mascolo, A.; Sarno, M.; Capoluongo, N.; Trama, U.; Ruggiero, R.; Sportiello, L.; Fusco, G.M.; Bisogno, M.; Coscioni, E.; et al. Thromboembolic Events after COVID-19 Vaccination: An Italian Retrospective Real-World Safety Study. Vaccines 2023, 11, 1575. https://doi.org/10.3390/vaccines11101575
Bernardi FF, Mascolo A, Sarno M, Capoluongo N, Trama U, Ruggiero R, Sportiello L, Fusco GM, Bisogno M, Coscioni E, et al. Thromboembolic Events after COVID-19 Vaccination: An Italian Retrospective Real-World Safety Study. Vaccines. 2023; 11(10):1575. https://doi.org/10.3390/vaccines11101575
Chicago/Turabian StyleBernardi, Francesca Futura, Annamaria Mascolo, Marina Sarno, Nicolina Capoluongo, Ugo Trama, Rosanna Ruggiero, Liberata Sportiello, Giovanni Maria Fusco, Massimo Bisogno, Enrico Coscioni, and et al. 2023. "Thromboembolic Events after COVID-19 Vaccination: An Italian Retrospective Real-World Safety Study" Vaccines 11, no. 10: 1575. https://doi.org/10.3390/vaccines11101575