A Plant-Produced Porcine Parvovirus 1-82 VP2 Subunit Vaccine Protects Pregnant Sows against Challenge with a Genetically Heterologous PPV1 Strain
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. PPV1-82 Strain Selection
3.2. PPV1-82 VP2 Protein Purification and Immunogenicity
3.3. Pathogenicity of the PPV1-190313 Strain
3.4. PPV1-82 VP2 Vaccination Protects Pregnant Sows and Fetuses against the PPV1-190313 Strain
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cartwright, S.F.; Huck, R. Viruses isolated in association with herd infertility absortions and stillbirths in pigs. Vet. Rec. 1967, 81, 196. [Google Scholar]
- Cartwright, S.F.; Lucas, M.; Huck, R.A. A small haemagglutinating porcine DNA virus. I. Isolation and properties. J. Comp. Pathol. 1969, 79, 371–377. [Google Scholar] [CrossRef] [PubMed]
- Streck, A.F.; Bonatto, S.L.; Homeier, T.; Souza, C.K.; Goncalves, K.R.; Gava, D.; Canal, C.W.; Truyen, U. High rate of viral evolution in the capsid protein of porcine parvovirus. J. Gen. Virol. 2011, 92, 2628–2636. [Google Scholar] [CrossRef] [PubMed]
- Cadar, D.; Dan, A.; Lőrincz, M.; Kiss, T.; Becskei, Z.; Spinu, M.; Tuboly, T.; Csagola, A. Phylogeny and evolutionary genetics of porcine parvovirus in wild boars. Infect. Genet. Evol. 2012, 12, 1163–1171. [Google Scholar] [CrossRef] [PubMed]
- Palinski, R.M.; Mitra, N.; Hause, B.M. Discovery of a novel Parvovirinae virus, porcine parvovirus 7, by metagenomic sequencing of porcine rectal swabs. Virus Genes 2016, 52, 564–567. [Google Scholar] [CrossRef]
- Streck, A.F.; Canal, C.W.; Truyen, U. Molecular epidemiology and evolution of porcine parvoviruses. Infect. Genet. Evol. 2015, 36, 300–306. [Google Scholar] [CrossRef]
- Lyoo, K.S.; Park, Y.H.; Park, B.K. Prevalence of porcine reproductive and respiratory syndrome virus, porcine circovirus type 2 and porcine parvovirus from aborted fetuses and pigs with respiratory problems in Korea. J. Vet. Sci. 2001, 2, 201–207. [Google Scholar] [CrossRef]
- Jeoung, H.-Y.; Lim, S.-I.; Kim, J.-J.; Cho, Y.-Y.; Kim, Y.K.; Song, J.-Y.; Hyun, B.H.; An, D.J. Serological prevalence of viral agents that induce reproductive failure in South Korean wild boar. BMC Vet. Res. 2015, 11, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Oh, W.T.; Kim, R.Y.; Nguyen, V.G.; Chung, H.C.; Park, B.K. Perspectives on the Evolution of Porcine Parvovirus. Viruses 2017, 9, 196. [Google Scholar] [CrossRef]
- Chung, H.C.; Nguyen, V.G.; Huynh, T.M.; Park, Y.H.; Park, K.T.; Park, B.K. PCR-based detection and genetic characterization of porcine parvoviruses in South Korea in 2018. BMC Vet. Res. 2020, 16, 113. [Google Scholar] [CrossRef] [Green Version]
- Park, G.N.; Song, S.; Cha, R.M.; Choe, S.; Shin, J.; Kim, S.Y.; Hyun, B.H.; Park, B.K.; An, D.J. Genetic analysis of porcine parvoviruses detected in South Korean wild boars. Arch. Virol. 2021, 166, 2249–2254. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.-C.; Kim, J.-H.; Kim, J.-Y.; Park, G.-S.; Jeong, C.-G.; Kim, W.-I. Prevalence of porcine parvovirus 1 through 7 (PPV1-PPV7) and co-factor association with PCV2 and PRRSV in Korea. BMC Vet. Res. 2022, 18, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Jozwik, A.; Manteufel, J.; Selbitz, H.J.; Truyen, U. Vaccination against porcine parvovirus protects against disease, but does not prevent infection and virus shedding after challenge infection with a heterologous virus strain. J. Gen. Virol. 2009, 90, 2437–2441. [Google Scholar] [CrossRef] [PubMed]
- Zeeuw, E.J.L.; Leinecker, N.; Herwig, V.; Selbitz, H.J.; Truyen, U. Study of the virulence and cross-neutralization capability of recent porcine parvovirus field isolates and vaccine viruses in experimentally infected pregnant gilts. J. Gen. Virol. 2007, 88, 420–427. [Google Scholar] [CrossRef]
- Foerster, T.; Streck, A.F.; Speck, S.; Selbitz, H.-J.; Lindner, T.; Truyen, U. An inactivated whole-virus porcine parvovirus vaccine protects pigs against disease but does not prevent virus shedding even after homologous virus challenge. J. Gen. Virol. 2016, 97, 1408–1413. [Google Scholar] [CrossRef]
- Phan, H.T.; Conrad, U. Plant-Based Vaccine Antigen Production. Methods Mol. Biol. 2016, 1349, 35–47. [Google Scholar] [CrossRef]
- Streatfield, S.J.; Jilka, J.M.; Hood, E.E.; Turner, D.D.; Bailey, M.R.; Mayor, J.M.; Woodard, S.L.; Beifuss, K.K.; Horn, M.E.; Delaney, D.E.; et al. Plant-based vaccines: Unique advantages. Vaccine 2001, 19, 2742–2748. [Google Scholar] [CrossRef]
- Schillberg, S.; Finnern, R. Plant molecular farming for the production of valuable proteins–Critical evaluation of achievements and future challenges. J. Plant Physiol. 2021, 258, 153359. [Google Scholar] [CrossRef]
- Nandi, S.; Kwong, A.T.; Holtz, B.R.; Erwin, R.L.; Marcel, S.; McDonald, K.A. Techno-economic analysis of a transient plant-based platform for monoclonal antibody production. MAbs 2016, 8, 1456–1466. [Google Scholar] [CrossRef]
- Lomonossoff, G.P.; D’Aoust, M.A. Plant-produced biopharmaceuticals: A case of technical developments driving clinical deployment. Science 2016, 353, 1237–1240. [Google Scholar] [CrossRef]
- Rybicki, E.P. Plant-made vaccines and reagents for the One Health initiative. Hum. Vaccin. Immunother. 2017, 13, 2912–2917. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.R.; Kwak, J.W.; Lee, J.; Hong, S.W.; Khan, M.R.I.; Lee, Y.; Lee, Y.; Lee, S.W.; Hwang, I. Cost-effective production of tag-less recombinant protein in Nicotiana benthamiana. Plant Biotechnol. J. 2019, 17, 1094–1105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeong, I.S.; Lee, S.; Bonkhofer, F.; Tolley, J.; Fukudome, A.; Nagashima, Y.; May, K.; Rips, S.; Lee, S.Y.; Gallois, P.; et al. Purification and characterization of Arabidopsis thaliana oligosaccharyltransferase complexes from the native host: A protein super-expression system for structural studies. Plant J. 2018, 94, 131–145. [Google Scholar] [CrossRef] [Green Version]
- Mengeling, W.L. Porcine parvovirus: Properties and prevalence of a strain isolated in the United States. Am. J. Vet. Res. 1972, 33, 2239–2248. [Google Scholar] [PubMed]
- Chapman, M.S.; Rossmann, M.G. Structure, sequence, and function correlations among parvoviruses. Virology 1993, 194, 491–508. [Google Scholar] [CrossRef] [PubMed]
- Meyer, D.; Aebischer, A.; Müller, M.; Grummer, B.; Greiser-Wilke, I.; Moennig, V.; Hofmann, M.A. New insights into the antigenic structure of the glycoprotein Erns of classical swine fever virus by epitope mapping. Virology 2012, 433, 45–54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, H.; Yao, G.; Cui, S. Production and purification of VP2 protein of porcine parvovirus expressed in an insect-baculovirus cell system. Virol. J. 2010, 7, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Martinez, C.; Dalsgaard, K.; de Turiso, J.A.L.; Cortes, E.; Vela, C.; Casal, J.I. Production of porcine parvovirus empty capsids with high immunogenic activity. Vaccine 1992, 10, 684–690. [Google Scholar] [CrossRef]
- Wang, J.; Liu, Y.; Chen, Y.; Wang, A.; Wei, Q.; Liu, D.; Zhang, G. Large-scale manufacture of VP2 VLP vaccine against porcine parvovirus in Escherichia coli with high-density fermentation. Appl. Microbiol. Biotechnol. 2020, 104, 3847–3857. [Google Scholar] [CrossRef]
- Hua, T.; Zhang, D.; Tang, B.; Chang, C.; Liu, G.; Zhang, X. The immunogenicity of the virus-like particles derived from the VP2 protein of porcine parvovirus. Vet. Microbiol. 2020, 248, 108795. [Google Scholar] [CrossRef]
- Mengeling, W.; Cutlip, R. Pathogenesis of in utero infection: Experimental infection of five-week-old porcine fetuses with porcine parvovirus. Am. J. Vet. Res. 1975, 36, 1173–1177. [Google Scholar] [PubMed]
- Joo, H.; Donaldson-Wood, C.; Johnson, R. Observations on the pathogenesis of porcine parvovirus infection. Arch. Virol. 1976, 51, 123–129. [Google Scholar] [CrossRef] [PubMed]
- Kailasan, S.; Agbandje-McKenna, M.; Parrish, C.R. Parvovirus family conundrum: What makes a killer? Annu. Rev. Virol. 2015, 2, 425–450. [Google Scholar] [CrossRef] [PubMed]
- Opriessnig, T.; Xiao, C.-T.; Gerber, P.F.; Halbur, P.G. Emergence of a novel mutant PCV2b variant associated with clinical PCVAD in two vaccinated pig farms in the US concurrently infected with PPV2. Vet. Microbiol. 2013, 163, 177–183. [Google Scholar] [CrossRef]
- Novosel, D.; Cadar, D.; Tuboly, T.; Jungic, A.; Stadejek, T.; Ait-Ali, T.; Cságola, A. Investigating porcine parvoviruses genogroup 2 infection using in situ polymerase chain reaction. BMC Vet. Res. 2018, 14, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Nelsen, A.; Lin, C.-M.; Hause, B.M. Porcine parvovirus 2 is predominantly associated with macrophages in porcine respiratory disease complex. Front. Vet. Sci. 2021, 8, 726884. [Google Scholar] [CrossRef]
Sample | Sow | DPC | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
0 | 3 | 5 | 7 | 14 | 21 | 28 | 35 | 42 | 49 | ||
Blood | W19-090 | − | + | + | + | + | + | + | + | + | + |
W19-117 | − | + | + | + | + | + | + | + | + | + | |
W19-118 | − | + | + | + | + | + | + | + | + | − | |
Nasal fluid | W19-090 | − | + | + | + | + | + | + | + | + | + |
W19-117 | − | + | + | + | + | + | + | + | + | + | |
W19-118 | − | + | + | + | + | + | + | + | + | + |
Tissue | ||||||||
---|---|---|---|---|---|---|---|---|
Sows | Fetuses | Brain | Lung | Heart | Liver | Kidney | Spleen | Umb * |
W19-090 (miscarried at 9 DPC) | 1 | + | + | + | ||||
2 | + | + | + | + | ||||
3 | + | − | ||||||
4 | − | + | ||||||
W19-117 (euthanized at 53 DPC) | 1 | − | + | + | + | + | + | − |
2 | + | − | + | − | + | − | − | |
3 | − | + | + | + | + | − | − | |
4 (mummy) | ||||||||
5 (mummy) | ||||||||
6 (mummy) | ||||||||
W19-118 (euthanized at 53 DPC) | 1 (mummy) | |||||||
2 (mummy) | ||||||||
3 (mummy) | ||||||||
4 (mummy) | ||||||||
5 (mummy) | ||||||||
6 (mummy) | ||||||||
7 (mummy) | ||||||||
8 (mummy) |
Sample | Sows | DPC | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Group | Number | 0 | 3 | 5 | 7 | 14 | 21 | 28 | 35 | 49 | |
Blood | PPV1-82 VP2 | 1 | − | − | − | − | − | − | − | − | − |
2 | − | − | − | − | − | − | − | − | − | ||
3 | − | − | − | − | − | − | − | − | − | ||
PPV1-190313 | 1 | − | + | + | + | − | − | − | − | − | |
Negative control | 1 | − | − | − | − | − | − | − | − | − | |
Nasal fluid | PPV1-82 VP2 | 1 | − | − | − | − | − | − | − | − | − |
2 | − | − | − | − | − | − | − | − | − | ||
3 | − | − | − | − | − | − | − | − | − | ||
PPV1-190313 | 1 | − | + | + | − | + | − | − | − | − | |
Negative control | 1 | − | − | − | − | − | − | − | − | − | |
Stool | PPV1-82 VP2 | 1 | − | − | − | − | − | − | − | − | − |
2 | − | + | − | − | − | − | − | − | − | ||
3 | − | − | − | − | − | − | − | − | − | ||
PPV1-190313 | 1 | − | + | + | + | − | − | − | − | − | |
Negative control | 2 | − | − | − | − | − | − | − | − | − |
Sows | Tissue | |||||||
---|---|---|---|---|---|---|---|---|
Group | Number | SMLN * | Heart | Lung | Liver | Kidney | Spleen | Brain |
PPV1-82 VP2 | 1 | − | − | − | − | − | − | − |
2 | − | − | − | − | − | − | − | |
3 | − | − | − | − | − | + | − | |
PPV1-190313 | 1 | + | + | + | + | + | + | − |
Negative control | 1 | − | − | − | − | − | − | − |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cho, K.-N.; Ouh, I.-O.; Park, Y.-M.; Park, M.-H.; Min, K.-M.; Kang, H.-J.; Yun, S.-Y.; Song, J.-Y.; Hyun, B.-H.; Park, C.-K.; et al. A Plant-Produced Porcine Parvovirus 1-82 VP2 Subunit Vaccine Protects Pregnant Sows against Challenge with a Genetically Heterologous PPV1 Strain. Vaccines 2023, 11, 54. https://doi.org/10.3390/vaccines11010054
Cho K-N, Ouh I-O, Park Y-M, Park M-H, Min K-M, Kang H-J, Yun S-Y, Song J-Y, Hyun B-H, Park C-K, et al. A Plant-Produced Porcine Parvovirus 1-82 VP2 Subunit Vaccine Protects Pregnant Sows against Challenge with a Genetically Heterologous PPV1 Strain. Vaccines. 2023; 11(1):54. https://doi.org/10.3390/vaccines11010054
Chicago/Turabian StyleCho, Kyou-Nam, In-Ohk Ouh, Young-Min Park, Min-Hee Park, Kyung-Min Min, Hyang-Ju Kang, Su-Yeong Yun, Jae-Young Song, Bang-Hun Hyun, Choi-Kyu Park, and et al. 2023. "A Plant-Produced Porcine Parvovirus 1-82 VP2 Subunit Vaccine Protects Pregnant Sows against Challenge with a Genetically Heterologous PPV1 Strain" Vaccines 11, no. 1: 54. https://doi.org/10.3390/vaccines11010054
APA StyleCho, K.-N., Ouh, I.-O., Park, Y.-M., Park, M.-H., Min, K.-M., Kang, H.-J., Yun, S.-Y., Song, J.-Y., Hyun, B.-H., Park, C.-K., Choi, B.-H., & Lee, Y.-H. (2023). A Plant-Produced Porcine Parvovirus 1-82 VP2 Subunit Vaccine Protects Pregnant Sows against Challenge with a Genetically Heterologous PPV1 Strain. Vaccines, 11(1), 54. https://doi.org/10.3390/vaccines11010054