Two-Tailed Dogs, Social Unrest and COVID-19 Vaccination: Politics, Hesitancy and Vaccine Choice in Hungary and Thailand
Abstract
:1. Introduction
1.1. Theoretical Perspective
1.2. Our Studies
2. Materials and Methods. Study 1: Vaccine Uptake and Vaccine Choice in the Unvaccinated in Hungary
2.1. Methods
2.1.1. Participants
2.1.2. Measures
2.1.3. Statistical Analysis
2.2. Results
2.3. Willingness to Vaccinate Contrasting FIDESZ vs. Other Parties
2.4. Predicting Willingness to Vaccinate by the Right vs. Centre/Left Political Orientation
2.5. Predicting Willingness to Vaccinate by the Political Tendency (Very Left to Very Right, from 0–100)
2.6. Vaccine Choice and Politics
2.7. Discussion of Study 1
3. Study 2: Vaccine Willingness and Choice for a Further Vaccine in Thailand
3.1. Methods
3.1.1. Participants
3.1.2. Sample
3.1.3. Measures
3.1.4. Analytic Strategy
3.1.5. Descriptive Data
3.2. Multivariate Analyses
3.2.1. Previous Vaccine and Political Choice
3.2.2. Next Vaccine Preference and Political Choice
3.2.3. Political Choice and Preferences for Eastern vs. Western Vaccines
3.2.4. Discussion: Study 2
4. Discussion
4.1. Limitations
4.2. Implications
4.3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
B | Std. Error | Wald | Sig. | Exp (B) | 95% Confidence Interval Exp (B) | |
---|---|---|---|---|---|---|
East-Vaccine onlyn = 60 5.7% (reference group = no vaccine) | ||||||
Sex (male = 0 female = 1) | −0.43 | 0.32 | 1.78 | 0.18 | 0.65 | 0.35, 1.22 |
Age | 0.03 * | 0.01 | 6.08 | 0.01 | 1.03 | 1.01, 1.06 |
Education | 0.71 ** | 0.25 | 7.94 | 0.005 | 2.02 | 1.24, 3.30 |
Income | 0.03 | 0.14 | 0.04 | 0.84 | 1.03 | 0.78, 1.36 |
Anti-government (0) vs. Pro (1) | 0.04 | 0.34 | 0.01 | 0.90 | 1.04 | 0.54, 2.01 |
West-Vaccine onlyn = 638 60.6% (reference group = no vaccine) | ||||||
Sex (male = 0 female = 1) | −0.24 | 0.17 | 1.98 | 0.16 | 0.78 | 0.56, 1.10 |
Age | 0.01 | 0.01 | 1.75 | 0.19 | 1.10 | 1.00, 1.02 |
Education | 0.12 | 0.13 | 0.93 | 0.34 | 1.13 | 0.88, 1.45 |
Income | 0.03 | 0.07 | 0.16 | 0.69 | 1.03 | 0.89, 1.19 |
Anti-government (0) vs. Pro (1) | 0.61 ** | 0.19 | 10.64 | 0.001 | 1.84 | 1.28, 2.66 |
Both West and East vaccinen = 56 5.3% (reference group = no vaccine) | ||||||
Sex (male = 0 female = 1) | −0.37 | 0.38 | 0.96 | 0.33 | 0.69 | 0.33, 1.45 |
Age | 0.03 * | 0.02 | 4.33 | 0.04 | 1.03 | 1.00, 1.07 |
Education | 0.39 | 0.28 | 1.92 | 0.17 | 1.48 | 0.85, 2.57 |
Income | −0.10 | 0.17 | 0.33 | 0.56 | 0.91 | 0.65, 1.26 |
Anti-government (0) vs. Pro (1) | 0.03 | 0.40 | 0.004 | 0.950 | 1.03 | 0.47, 2.23 |
References
- Featherstone, J.D.; Bell, R.A.; Ruiz, J.B. Relationship of people’s sources of health information and political ideology with acceptance of conspiratorial beliefs about vaccines. Vaccine 2019, 37, 2993–2997. [Google Scholar] [CrossRef] [PubMed]
- Dubé, E.; Laberge, C.; Guay, M.; Bramadat, P.; Roy, R.; Bettinger, J.A. Vaccine Hesitancy. Hum. Vaccin. Immunother. 2013, 9, 1763–1773. [Google Scholar] [CrossRef] [PubMed]
- Ruisch, B.C.; Moore, C.; Granados Samayoa, J.; Boggs, S.; Ladanyi, J.; Fazio, R. Examining the Left-Right Divide Through the Lens of a Global Crisis: Ideological Differences and Their Implications for Responses to the COVID-19 Pandemic. Polit. Psychol. 2021, 42, 795–816. [Google Scholar] [CrossRef]
- Peretti-Watel, P.; Seror, V.; Cortaredona, S.; Launay, O.; Raude, J.; Verger, P.; Fressard, L.; Beck, F.; Legleye, S.; L’Haridon, O.; et al. A Future Vaccination Campaign against COVID-19 at Risk of Vaccine Hesitancy and Politicisation. Lancet Infect. Dis. 2020, 20, 769–770. [Google Scholar] [CrossRef]
- Ward, J.K.; Alleaume, C.; Peretti-Watel, P.; Seror, V.; Cortaredona, S.; Launay, O.; Raude, J.; Verger, P.; Beck, F.; Legleye, S.; et al. The French Public’s Attitudes to a Future COVID-19 Vaccine: The Politicization of a Public Health Issue. Soc. Sci. Med. 2020, 265, 113414. [Google Scholar] [CrossRef]
- Pertwee, E.; Simas, C.; Larson, H.J. An Epidemic of Uncertainty: Rumors, Conspiracy Theories and Vaccine Hesitancy. Nat. Med. 2022, 28, 456–459. [Google Scholar] [CrossRef]
- Ruiz, J.B.; Bell, R.A. Predictors of Intention to Vaccinate against COVID-19: Results of a Nationwide Survey. Vaccine 2021, 39, 1080–1086. [Google Scholar] [CrossRef]
- SteelFisher, G.K.; Blendon, R.J.; Caporello, H. An Uncertain Public—Encouraging Acceptance of Covid-19 Vaccines. N. Engl. J. Med. 2021, 384, 1483–1487. [Google Scholar] [CrossRef]
- Gramacho, W.G.; Turgeon, M. When Politics Collides with Public Health: COVID-19 Vaccine Country of Origin and Vaccination Acceptance in Brazil. Vaccine 2021, 39, 2608–2612. [Google Scholar] [CrossRef]
- Hénin, P.-Y.; Insel, A. Hungary’s U-Turn in Kornai’s System Paradigm Perspective: A Case for National Authoritarian Capitalism. Public Choice 2021, 187, 235–245. [Google Scholar] [CrossRef]
- Győri, G. Hungarian Politics in 2020. Policy Solutions 2021. Available online: https://www.policysolutions.hu/en/news/518/Hungarian_politics_in_2020_publication (accessed on 10 April 2022).
- Blood, D. Vaccine Efficacy Data Published by the Government Are Difficult to Accept Professionally. Telex 2021. [Google Scholar]
- Preszinsky, J. Now Is the Opposition Really Anti-Vaccination? Telex 2021. Available online: https://telex.hu/belfold/2021/04/09/fidesz-kormany-oltasellenes-ellenzek-kampany-fact-checking (accessed on 10 April 2022).
- GLOBSEC. GLOBSEC Vaccination Trends: Perceptions from Central and Eastern Europe; GLOBSEC Policy Institute: Bratislava, Slovakia, 2021. [Google Scholar]
- Popa, A.D.; Enache, A.I.; Popa, I.V.; Antoniu, S.A.; Dragomir, R.A.; Burlacu, A. Determinants of the Hesitancy toward COVID-19 Vaccination in Eastern European Countries and the Relationship with Health and Vaccine Literacy: A Literature Review. Vaccines 2022, 10, 672. [Google Scholar] [CrossRef]
- Jarernpanit, T. The Contestation of “Good Politics”: Explaining Conflict and Polarisation in Thailand. Asian Stud. Rev. 2019, 43, 657–673. [Google Scholar] [CrossRef]
- Lorch, J. Elite Capture, Civil Society and Democratic Backsliding in Bangladesh, Thailand and the Philippines. Democratization 2021, 28, 81–102. [Google Scholar] [CrossRef]
- Kitro, A.; Sirikul, W.; Piankusol, C.; Rirermsoonthorn, P.; Seesen, M.; Wangsan, K.; Assavanopakun, P.; Surawattanasakul, V.; Kosai, A.; Sapbamrer, R. Acceptance, Attitude, and Factors Affecting the Intention to Accept COVID-19 Vaccine among Thai People and Expatriates Living in Thailand. Vaccine 2021, 39, 7554–7561. [Google Scholar] [CrossRef]
- Thanapluetiwong, S.; Chansirikarnjana, S.; Sriwannopas, O.; Assavapokee, T.; Ittasakul, P. Factors Associated with COVID-19 Vaccine Hesitancy in Thai Seniors. Patient Prefer. Adherence 2021, 15, 2389–2403. [Google Scholar] [CrossRef]
- Oxford Analytica. Vaccine delays will hold back Thai tourism revival. In Expert Briefings; Emerald Briefings: Bingley, UK, 2021; Available online: https://doi.org/10.1108/OXAN-DB259562 (accessed on 10 April 2022).
- Sirikalyanpaiboon, M.; Ousirimaneechai, K.; Phannajit, J.; Pitisuttithum, P.; Jantarabenjakul, W.; Chaiteerakij, R.; Paitoonpong, L. COVID-19 Vaccine Acceptance, Hesitancy, and Determinants among Physicians in a University-Based Teaching Hospital in Thailand. BMC Infect. Dis. 2021, 21, 1174. [Google Scholar] [CrossRef]
- Sanglee, T. Commentary: Sinovac Use Sparks New Spat in Politically Split Thailand. Available online: https://www.channelnewsasia.com/commentary/covid-19-vaccine-sinovac-effective-thailand-prayut-phuea-china-1823791 (accessed on 10 April 2022).
- Cárdenas, D.; Orazani, N.; Stevens, M.; Cruwys, T.; Platow, M.; Zekulin, M.; Reynolds, K.J. United We Stand, Divided We Fall: Sociopolitical Predictors of Physical Distancing and Hand Hygiene During the COVID-19 Pandemic. Polit. Psychol. 2021, 42, 845–861. [Google Scholar] [CrossRef]
- Abrams, D.; Lalot, F.; Hogg, M.A. Intergroup and Intragroup Dimensions of COVID-19: A Social Identity Perspective on Social Fragmentation and Unity. Group Processes Intergroup Relat. 2021, 24, 201–209. [Google Scholar] [CrossRef]
- Falomir-Pichastor, J.M.; Toscani, L.; Despointes, S.H. Determinants of Flu Vaccination among Nurses: The Effects of Group Identification and Professional Responsibility. Appl. Psychol. 2009, 58, 42–58. [Google Scholar] [CrossRef] [Green Version]
- Van Bavel, J.J.; Cichocka, A.; Capraro, V.; Sjåstad, H.; Nezlek, J.B.; Pavlović, T.; Alfano, M.; Gelfand, M.J.; Azevedo, F.; Birtel, M.D.; et al. National Identity Predicts Public Health Support during a Global Pandemic. Nat. Commun. 2022, 13, 517. [Google Scholar] [CrossRef]
- Chan, H.; Wang, X.; Zuo, S.; Chiu, C.P.; Liu, L.; Yiu, D.W.; Hong, Y. War Against COVID-19: How Is National Identification Linked with the Adoption of Disease-Preventive Behaviors in China and the United States? Polit. Psychol. 2021, 42, 767–793. [Google Scholar] [CrossRef]
- Goldenberg, J.L.; Arndt, J. The Implications of Death for Health: A Terror Management Health Model for Behavioral Health Promotion. Psychol. Rev. 2008, 115, 1032–1053. [Google Scholar] [CrossRef]
- Pyszczynski, T.; Lockett, M.; Greenberg, J.; Solomon, S. Terror Management Theory and the COVID-19 Pandemic. J. Humanist. Psychol. 2021, 61, 173–189. [Google Scholar] [CrossRef]
- van der Weerd, W.; Timmermans, D.R.; Beaujean, D.J.; Oudhoff, J.; van Steenbergen, J.E. Monitoring the Level of Government Trust, Risk Perception and Intention of the General Public to Adopt Protective Measures during the Influenza A (H1N1) Pandemic in the Netherlands. BMC Public Health 2011, 11, 575. [Google Scholar] [CrossRef] [Green Version]
- Cruwys, T.; Stevens, M.; Greenaway, K.H. A Social Identity Perspective on COVID-19: Health Risk Is Affected by Shared Group Membership. Br. J. Soc. Psychol. 2020, 59, 584–593. [Google Scholar] [CrossRef]
- Yang, R.; Penders, B.; Horstman, K. Addressing Vaccine Hesitancy in China: A Scoping Review of Chinese Scholarship. Vaccines 2019, 8, 2. [Google Scholar] [CrossRef] [Green Version]
- Washer, P. Representations of SARS in the British Newspapers. Soc. Sci. Med. 2004, 59, 2561–2571. [Google Scholar] [CrossRef]
- Wagner, W.; Elejabarrieta, F.; Lahnsteiner, I. How the Sperm Dominates the Ovum—Objectification by Metaphor in the Social Representation of Conception. Eur. J. Soc. Psychol. 1995, 25, 671–688. [Google Scholar] [CrossRef]
- Sereemongkonpol, P. What’s in a (Vaccine) Name? Bangk. Post 2021. Available online: https://www.bangkokpost.com/opinion/opinion/2149699/whats-in-a-vaccine-name- (accessed on 10 April 2022).
- Sanglee, T. Sinovac or Not: Thai Vaccine Politics. Available online: https://fulcrum.sg/sinovac-or-not-thai-vaccine-politics/ (accessed on 10 April 2022).
- Jaspal, R.; Nerlich, B. Social Representations of COVID-19 Skeptics: Denigration, Demonization, and Disenfranchisement. Polit. Groups Identities 2022, 1–21. [Google Scholar] [CrossRef]
- Viswanath, K.; Bekalu, M.; Dhawan, D.; Pinnamaneni, R.; Lang, J.; McCloud, R. Individual and Social Determinants of COVID-19 Vaccine Uptake. BMC Public Health 2021, 21, 818. [Google Scholar] [CrossRef]
- Wise, J. Pfizer Accused of Testing New Drug without Ethical Approval. Br. Med. J. 2021, 322, 194. [Google Scholar] [CrossRef] [Green Version]
- Oroszi, B.; Juhasz, A.; Nagy, C.; Korvath, J.; Komlos, K.; Turi, G.; McKee, M.; Adany, R. Characteristics of the Third COVID-19 Pandemic Wave with Special Focus on Socioeconomic Inequalities in Morbidity, Mortality and the Uptake of COVID-19 Vaccination in Hungary. J. Pers. Med. 2022, 12, 388. [Google Scholar] [CrossRef]
- Thawan, T. Private Hospitals in Thailand to Offer Moderna Vaccine Packages for 3400 Baht. Thaiger. 2021. Available online: https://thethaiger.com/coronavirus/private-hospitals-in-thailand-to-offer-moderna-vaccine-packages-for-3400-baht (accessed on 10 April 2022).
- Setboonsarng, C. Thais Resell Private COVID-19 Vaccination Slots as Free Supplies Build. Available online: https://www.reuters.com/world/asia-pacific/thais-resell-private-covid-19-vaccination-slots-free-supplies-build-2021-12-20/ (accessed on 10 April 2022).
- Teeratanabodee, W. Why Vaccine Hesitancy is Rising Among Thailand’s Youth the Diplomat. 2021. Available online: https://thediplomat.com/2021/10/why-vaccine-hesitancy-is-rising-among-thailands-youth/ (accessed on 10 April 2022).
- Yorsaeng, R.; Vichaiwattana, P.; Klinfueng, S.; Wongsrisang, L.; Sudhinaraset, N.; Vongpunsawad, S.; Poovorawan, Y. Immune response elicited from heterologous SARS-CoV-2 vaccination: Sinovac (CoronaVac) followed by AstraZeneca (Vaxzevria). medRxiv 2021. [Google Scholar] [CrossRef]
- Setboonsarng, C. Vaccine Hesitancy Grows Ahead of Thailand’s Mass Inoculation Rollout. Available online: https://www.reuters.com/world/asia-pacific/vaccine-hesitancy-grows-ahead-thailands-mass-inoculation-rollout-2021-05-25/ (accessed on 10 April 2022).
- Robinson, E.; Jones, A.; Lesser, I.; Daly, M. International Estimates of Intended Uptake and Refusal of COVID-19 Vaccines: A Rapid Systematic Review and Meta-Analysis of Large Nationally Representative Samples. Vaccine 2021, 39, 2024–2034. [Google Scholar] [CrossRef]
- Murphy, J.; Vallières, F.; Bentall, R.P.; Shevlin, M.; McBride, O.; Hartman, T.K.; McKay, R.; Bennett, K.; Mason, L.; Gibson-Miller, J.; et al. Psychological Characteristics Associated with COVID-19 Vaccine Hesitancy and Resistance in Ireland and the United Kingdom. Nat. Commun. 2021, 12, 29. [Google Scholar] [CrossRef]
- Lazarus, J.V.; Ratzan, S.C.; Palayew, A.; Gostin, L.O.; Larson, H.J.; Rabin, K.; Kimball, S.; El-Mohandes, A. A Global Survey of Potential Acceptance of a COVID-19 Vaccine. Nat. Med. 2021, 27, 225–228. [Google Scholar] [CrossRef]
- Voko, Z.; Kiss, Z.; Surjan, G.; Surjan, O.; Barcza, S.; Palyi, B.; Formanek-Balku, E.; Molnar, G.; Herczeg, R.; Gyenesei, A.; et al. Nationwide Effectiveness of Five SARS-CoV-2 Vaccines in Hungary—the HUN-VE Study. Clin. Microbiol. Infect. 2021, 28, 398–404. [Google Scholar] [CrossRef]
- Byrne, B.; Byrne, B. Structural Equation Modeling with EQS; Lawrence Erlbaum: Mahwah, NJ, USA, 2006. [Google Scholar]
- Hu, L.; Bentler, P.M. Cutoff Criteria for Fit Indexes in Covariance Structure Analysis: Conventional Criteria versus New Alternatives. Struct. Equ. Model. A Multidiscip. J. 1999, 6, 1–55. [Google Scholar] [CrossRef]
- Perera, R.; Fletcher, J. Thromboembolism and the Oxford-AstraZeneca Vaccine. BMJ 2021, 373, n1159. [Google Scholar] [CrossRef]
- Galistiani, G.F.; Matuz, M.; Matuszka, N.; Doró, P.; Schváb, K.; Engi, Z.; Benkő, R. Determinants of Influenza Vaccine Uptake and Willingness to Be Vaccinated by Pharmacists among the Active Adult Population in Hungary: A Cross-Sectional Exploratory Study. BMC Public Health 2021, 21, 521. [Google Scholar] [CrossRef]
- Ritchie, H.; Mathieu, E.; Rodés-Guirao, L.; Appel, C.; Giattino, C.; Ortiz-Ospina, E.; Hasell, J.; Macdonald, B.; Dattani, S.; Roser, M. Coronavirus Pandemic (COVID-19). Available online: https://ourworldindata.org/coronavirus (accessed on 10 April 2022).
- World Health Organization. Available online: https://www.who.int/news-room/spotlight/ten-threats-to-global-health-in-2019 (accessed on 10 April 2022).
- Piraveenan, M.; Sawleshwarkar, S.; Walsh, M.; Zablotska, I.; Bhattacharyya, S.; Farooqui, H.; Bhatnagar, T.; Karan, A.; Murhekar, M.; Zodpey, S.; et al. Optimal Governance and Implementation of Vaccination Programmes to Contain the COVID-19 Pandemic. R. Soc. Open Sci. 2021, 8, 210429. [Google Scholar] [CrossRef]
- Petersen, M.B.; Jorgensen, F.; Lindholt, M. Did the European Suspension of the AstraZeneca Vaccine Decrease Vaccine Acceptance during the COVID-19 Pandemic? Vaccine 2022, 4, 558–561. [Google Scholar] [CrossRef] [PubMed]
- Haszan, Z. Valamit Kellene Mondani Azoknak, Akiknek a Tesztje Az Oltás Után Nem Mutatott Ki Antitestet. [Something Should Be Said to Those Whose Test Showed No Antibody after Vaccination]. Available online: https://444.hu/2021/04/23/valamit-kellene-mondani-azoknak-akiknek-a-tesztje-az-oltas-utan-nem-mutatott-ki-antitestet (accessed on 10 April 2022).
- Machida, M.; Nakamura, I.; Kojima, T.; Saito, R.; Nakaya, T.; Hanibuchi, T.; Takamiya, T.; Odagiri, Y.; Fukushima, N.; Kikuchi, H.; et al. Acceptance of a COVID-19 Vaccine in Japan during the COVID-19 Pandemic. Vaccines 2021, 9, 210. [Google Scholar] [CrossRef] [PubMed]
- Roozenbeek, J.; Schneider, C.R.; Dryhurst, S.; Kerr, J.; Freeman, A.L.J.; Recchia, G.; van der Bles, A.M.; van der Linden, S. Susceptibility to Misinformation about COVID-19 around the World. R. Soc. Open Sci. 2020, 7, 201199. [Google Scholar] [CrossRef] [PubMed]
- Hlatshwako, T.G.; Shah, S.J.; Kosana, P.; Adebayo, E.; Hendriks, J.; Larsson, E.C.; Hensel, D.J.; Erausquin, J.T.; Marks, M.; Michielsen, K.; et al. Online Health Survey Research during COVID-19. Lancet Digit. Heal 2021, 3, e76–e77. [Google Scholar] [CrossRef]
- Baker, R.; Brick, J.M.; Bates, N.A.; Battaglia, M.; Couper, M.P.; Dever, J.A.; Gile, K.J.; Tourangeau, R. Summary Report of the AAPOR Task Force on Non-Probability Sampling. J. Surv. Stat. Methodol. 2013, 1, 90–143. [Google Scholar] [CrossRef]
- Ling, M.; Kothe, E.J.; Mullan, B.A. Predicting Intention to Receive a Seasonal Influenza Vaccination Using Protection Motivation Theory. Soc. Sci. Med. 2019, 233, 87–92. [Google Scholar] [CrossRef] [Green Version]
- Chakraborty, C.; Sharma, A.; Bhattacharya, M.; Agoramoorthym, G.; Lee, S.-S. The Current Second Wave and COVID-19 Vaccination Status in India. Brain. Behav. Immun. 2021, 96, 1–4. [Google Scholar] [CrossRef]
- Sasipornkarn, E. Thailand: Growing COVID Crisis Heats up Political Tension. Available online: https://www.dw.com/en/thailand-growing-covid-crisis-heats-up-political-tension/a-58831927 (accessed on 10 April 2022).
- Borkowska, M.; Laurence, J. Coming Together or Coming Apart? Changes in Social Cohesion during the Covid-19 Pandemic in England. Eur. Soc. 2021, 23, S618–S636. [Google Scholar] [CrossRef]
- Vignoles, V.L.; Jaser, Z.; Taylor, F.; Ntontis, E. Harnessing Shared Identities to Mobilize Resilient Responses to the COVID-19 Pandemic. Polit. Psychol. 2021, 42, 817–826. [Google Scholar] [CrossRef] [PubMed]
- Holt, E. Covid-19 Vaccination among Roma Populations in Europe. Lancet Microbe 2021, 2, e289. [Google Scholar] [CrossRef]
- Karafillakis, E.; Van Damme, P.; Hendrickx, G.; Larson, H. COVID-19 in Europe: New Challenges for Addressing Vaccine Hesitancy. Lancet 2022, 399, 699–701. [Google Scholar] [CrossRef]
- Behavioural Insights Team. Using Behavioural Insights to Create a Covid-19 Text Service for the NHS. Available online: https://www.bi.team/blogs/using-behavioural-insights-to-create-a-covid-19-text-service-for-the-nhs/ (accessed on 10 April 2022).
- Wolf, L.J.; Haddock, G.; Manstead, A.S.R.; Maio, G.R. The Importance of (Shared) Human Values for Containing the COVID-19 Pandemic. Br. J. Soc. Psychol. 2020, 59, 618–627. [Google Scholar] [CrossRef]
Frequency | Percent | Mean | SD | |
---|---|---|---|---|
Age | 50.53 | 15.92 | ||
Sex (female) | 618 | 54.7 | ||
Education (highest level attained) | ||||
- Primary | 44 | 4.8 | ||
- Secondary | 647 | 57.3 | ||
- College/BA | 276 | 24.4 | ||
- Masters or Doctoral level | 163 | 14.4 | ||
Region | ||||
- Central | 336 | 33.9 | ||
- Western | 288 | 29.1 | ||
- Eastern | 367 | 37.0 | ||
Previously had COVID (yes) | 124 | 11.1 | ||
Knew someone previously ill from COVID (yes) | 687 | 60.7 | ||
Self-rated health (4 point, low (1) to high (4)) | 2.71 | 0.77 | ||
Risk group membership (yes) | 469 | 41.5 | ||
Support for FIDESZ or other parties | ||||
- FIDESZ | 173 | 27.0 | ||
- Other parties | 468 | 73.0 | ||
Political positioning | ||||
- Left wing/centre | 300 | 46.8 | ||
- Right wing | 341 | 53.2 | ||
Political party supported | ||||
- FIDESZ | 173 | 19.1 | ||
- Jobbik | 122 | 13.5 | ||
- Democratic Coalition | 105 | 11.6 | ||
- Opposition Alliance | 72 | 8.0 | ||
- Momentum | 59 | 6.5 | ||
- Two tailed dogs | 32 | 3.5 | ||
- Right list | 25 | 2.8 | ||
- Greens | 17 | 1.9 | ||
- Our homeland | 14 | 1.5 | ||
- Socialist | 14 | 1.5 | ||
- Christian democrat | 7 | 0.8 | ||
- Communist | 1 | 0.1 | ||
- No preference | 78 | 8.6 | ||
- Won’t say or Don’t know | 186 | 20.5 |
Government Approved Vaccine | EMA Approved Vaccine | |||||
---|---|---|---|---|---|---|
1. FIDESZ vs. other Parties | p | β | b | p | β | B |
Sex (male = 1, female = 0) | <0.001 | 0.13 | 0.37 *** | 0.19 | 0.12 | 0.33 |
Age | 0.19 | 0 | 0 | 0.003 | 0.09 | 0.01 ** |
Education | 0.01 | 0.08 | 0.14 ** | <0.001 | 0.2 | 0.33 *** |
Risk group (yes) | 0.08 | 0.06 | 0.17 | 0.03 | 0.07 | 0.20 * |
Covid personally infected (no) | 0.55 | −0.02 | −0.08 | 0.86 | −0.01 | −0.02 |
Covid others infected (no) | <0.001 | −0.09 | −0.27 *** | 0.003 | −0.09 | −0.27 ** |
Self rated health | 0.98 | 0 | 0 | 0.004 | −0.07 | −0.13 ** |
FIDESZ (1) vs. others (0) | <0.001 | 0.37 | 1.21 *** | 0.02 | 0.08 | 0.27 * |
2. Right vs. centre/left political party | ||||||
Sex (male = 1, female = 0) | <0.001 | 0.1 | 0.29 *** | <0.001 | 0.1 | 0.29 *** |
Age | 0.07 | 0.06 | 0.01 | 0.01 | 0.09 | 0.01 ** |
Education | 0.004 | 0.09 | 0.15 ** | <0.001 | 0.17 | 0.29 *** |
Risk group (yes) | 0.14 | 0.05 | 0.15 | 0.04 | 0.07 | 0.20 * |
Covid personally infected (no) | 0.51 | −0.02 | −0.09 | 0.92 | 0 | −0.01 |
Covid others infected (no) | 0.001 | −0.09 | −0.28 ** | <0.001 | −0.1 | −0.27 ** |
Self rated health | 0.94 | 0 | 0.01 | 0.03 | −0.07 | −0.13 * |
Right party (1) vs. centre or Left party (0) | <0.001 | 0.25 | 0.73 *** | 0.14 | −0.05 | −0.16 |
3. Political leaning (percentage scale) | ||||||
Sex (male = 1, female = 0) | 0.01 | 0.08 | 0.28 *** | 0 | 0.11 | 0.31 *** |
Age | 0.06 | 0.06 | 0.01 | 0.01 | 0.09 | 0.01 ** |
Education | 0.27 | 0.03 | 0.06 | 0 | 0.18 | 0.31 *** |
Risk group (yes) | 0.07 | 0.03 | 0.18 | 0.04 | 0.07 | 0.20 * |
Covid personally infected (no) | 0.55 | −0.02 | −0.08 | 0.09 | 0 | −0.02 |
Covid others infected (no) | 0 | −0.1 | −0.29 *** | 0 | −0.09 | −0.27 *** |
Self rated health | 0.96 | 0 | 0 | 0.02 | −0.07 | −0.13 * |
Political tendency | 0 | 0.22 | 0.02 *** | 0.24 | −0.03 | 0 |
Political Grouping of Right vs. Left | Political Grouping of FIDESZ vs. Other Parties | Political Tendency (Left-Right Percentage) | |||||||
---|---|---|---|---|---|---|---|---|---|
Background Variables | b | Wald | p | b | Wald | p | b | Wald | p |
Sex (male = 1) | −0.31 | 2.81 | 0.09 | −0.78 *** | 13.07 | 0 | 1.09 | 0.03 | 0.39 |
Age | −0.02 ** | 12.06 | 0.001 | −0.004 | 0.31 | 0.58 | −0.12 ** | −0.1 | 0.005 |
Education | −0.51 *** | 18.23 | 0 | −0.38 ** | 6.91 | 0.01 | 0.69 | 0.03 | 0.37 |
Risk group (yes) | 0.1 | 0.24 | 0.62 | −0.03 | 0.01 | 0.92 | −1.87 | −0.05 | 0.2 |
Covid: personally infected (yes) | 0.52 | 3.13 | 0.08 | 0.39 | 1.18 | 0.28 | 2.2 | 0.03 | 0.26 |
Covid: others infected (yes) | −0.04 | 0.05 | 0.82 | 0.1 | 0.23 | 0.64 | 0.5 | 0.01 | 0.7 |
Self Rated Health | −0.03 | 0.05 | 0.82 | 0.04 | 0.05 | 0.82 | 0.25 | 0.01 | 0.78 |
Vaccine types | |||||||||
Johnson/Johnson | −0.3 | 1.73 | 0.19 | 0.03 | 0.01 | 0.92 | −2.43 | −0.05 | 0.12 |
Moderna | −0.66 ** | 8.88 | 0.003 | −0.93 ** | 10.53 | 0.001 | −3.10 * | −0.07 | 0.05 |
AstraZeneca | 0.14 | 0.19 | 0.66 | −0.28 | 0.53 | 0.47 | 0.79 | 0.01 | 0.73 |
Pfizer | −0.46 * | 4.89 | 0.03 | 0.01 | 0.003 | 0.96 | −2.93 * | −0.07 | 0.04 |
Sinopharm | 1.28 *** | 16.75 | 0 | 1.58 *** | 30.76 | 0 | 11.23 *** | 0.18 | 0 |
Sputnik | 0.83 ** | 11.85 | 0.001 | 1.37 *** | 31 | 0 | 3.42 * | 0.07 | 0.03 |
Variable | Number | Percent | Mean | SD |
---|---|---|---|---|
Sex (female) | 537 | 51 | ||
Age | 39.01 | 12.99 | ||
Education (highest) | ||||
- Elementary or lower | 134 | 12.7 | ||
- High school | 386 | 36.7 | ||
- Bachelor | 515 | 49.0 | ||
- Masters and above | 17 | 1.6 | ||
Occupation | ||||
- Business owner | 102 | 9.7 | ||
- Government worker | 115 | 10.9 | ||
- Company worker | 390 | 37.1 | ||
- contract worker/part-time/freelance | 241 | 22.9 | ||
- Unemployed | 26 | 2.5 | ||
- Student | 89 | 8.5 | ||
- Retired | 16 | 1.5 | ||
- Housewife/husband | 73 | 6.9 | ||
Province | ||||
- Bangkok | 290 | 27.6 | ||
- Bangkok Metropolitan | 128 | 12.2 | ||
- Northern | 166 | 15.8 | ||
- North Eastern | 156 | 14.8 | ||
- Central | 158 | 15.0 | ||
- Southern | 154 | 14.6 | ||
Household income | ||||
- Very high | 183 | 17.4 | ||
- High | 122 | 11.6 | ||
- Medium | 451 | 42.9 | ||
- Low | 156 | 14.8 | ||
- Very low | 140 | 13.3 |
B | S.E. | Wald | Sig. | Exp (B) | 95% Confidence Interval for Exp (B) | |
---|---|---|---|---|---|---|
Sex (male = 0 female = 1) | −0.46 * | 0.20 | 5.18 | 0.02 | 0.63 | 0.43, 0.94 |
Age | 0.03 *** | 0.01 | 12.20 | 0.000 | 1.03 | 1.01, 1.05 |
Education | 0.93 *** | 0.16 | 34.77 | 0.000 | 2.54 | 1.86, 3.46 |
Income | 0.13 *** | 0.04 | 12.90 | 0.000 | 1.14 | 1.06, 1.23 |
Pro vs. Anti-government Against (0) or for (1) | 0.03 | 0.26 | 0.01 | 0.92 | 1.03 | 0.62, 1.70 |
Trust government vaccines are safe and effective | 0.36 ** | 0.12 | 9.50 | 0.002 | 1.43 | 1.14, 1.80 |
B | S.E. | Wald | Sig. | Exp (B) | 95% Confidence Interval for Exp (B) | |
---|---|---|---|---|---|---|
Sex (male = 0 female = 1) | 0.31 | 0.17 | 3.06 | 0.08 | 1.36 | 0.96, 1.91 |
Age | 0.03 *** | 0.01 | 21.86 | 0.00 | 1.03 | 1.02, 1.05 |
Education | 0.37 ** | 0.13 | 8.00 | 0.005 | 1.45 | 1.12, 1.88 |
Income | −0.01 | 0.08 | 0.01 | 0.94 | 0.99 | 0.85, 1.16 |
Sinovac | 0.11 | 0.70 | 0.02 | 0.88 | 1.11 | 0.28, 4.40 |
Astrazeneca | 0.45 * | 0.21 | 4.44 | 0.035 | 1.57 | 1.03, 2.37 |
Pfizer | −0.59 ** | 0.20 | 9.17 | 0.002 | 0.55 | 0.38, 0.81 |
Moderna | 0.03 | 0.21 | 0.02 | 0.89 | 1.03 | 0.68, 1.56 |
Johnson & Johnson | −0.41 | 0.35 | 1.31 | 0.25 | 0.67 | 0.33, 1.33 |
Sinopharm | 0.39 | 0.29 | 1.82 | 0.18 | 1.48 | 0.84, 2.59 |
Chula | 0.35 | 0.50 | 0.50 | 0.48 | 1.43 | 0.53, 3.83 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Goodwin, R.; Nguyen Luu, L.A.; Wiwattanapantuwong, J.; Kovács, M.; Suttiwan, P.; Levin, Y. Two-Tailed Dogs, Social Unrest and COVID-19 Vaccination: Politics, Hesitancy and Vaccine Choice in Hungary and Thailand. Vaccines 2022, 10, 789. https://doi.org/10.3390/vaccines10050789
Goodwin R, Nguyen Luu LA, Wiwattanapantuwong J, Kovács M, Suttiwan P, Levin Y. Two-Tailed Dogs, Social Unrest and COVID-19 Vaccination: Politics, Hesitancy and Vaccine Choice in Hungary and Thailand. Vaccines. 2022; 10(5):789. https://doi.org/10.3390/vaccines10050789
Chicago/Turabian StyleGoodwin, Robin, Lan Anh Nguyen Luu, Juthatip Wiwattanapantuwong, Mónika Kovács, Panrapee Suttiwan, and Yafit Levin. 2022. "Two-Tailed Dogs, Social Unrest and COVID-19 Vaccination: Politics, Hesitancy and Vaccine Choice in Hungary and Thailand" Vaccines 10, no. 5: 789. https://doi.org/10.3390/vaccines10050789