Protective Efficacy of BCG Vaccine against Mycobacterium leprae and Non-Tuberculous Mycobacterial Infections
Abstract
:1. Introduction
2. Mycobacterium leprae
2.1. Pathogenesis and Etiology
2.2. Vaccination
2.3. Treatment and Current Research
3. Mycobacterium avium
3.1. Pathogenesis
3.2. Treatment and Vaccines
4. Mycobacterium abscessus
4.1. Characteristics
4.2. Transmission and Pathogenesis
4.3. Management of Infection
4.4. Vaccination
5. Mycobacterium marinum
5.1. Pathogenicity and Etiology
5.2. Diagnosis
5.3. Current Treatment and Prevention
5.4. Vaccination
6. Mycobacterium ulcerans
6.1. Pathogenicity
6.2. Diagnosing
6.3. Current Treatment
6.4. Vaccination
6.5. Future Studies
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- CDC. Diseases and Organisms in Healthcare Settings. 2019. Available online: https://www.cdc.gov/hai/organisms/nontuberculous-mycobacteria.html (accessed on 8 July 2021).
- Nogueira, L.B.; Garcia, C.N.; da Costa, M.S.C.; de Moraes, M.B.; Kurizky, P.S.; Gomes, C.M. Non-tuberculous cutaneous mycobacterioses. An. Bras. Dermatol. 2021, 96, 527–538. [Google Scholar] [CrossRef] [PubMed]
- Porvaznik, I.; Solovic, I.; Mokry, J. Non-Tuberculous Mycobacteria: Classification, Diagnostics, and Therapy. Adv. Exp. Med. Biol. 2017, 944, 19–25. [Google Scholar]
- Faria, S.; Joao, I.; Jordao, L. General Overview on Nontuberculous Mycobacteria, Biofilms, and Human Infection. J. Pathog. 2015, 2015, 809014. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brode, S.K.; Daley, C.L.; Marras, T.K. The epidemiologic relationship between tuberculosis and non-tuberculous mycobacterial disease: A systematic review. Int. J. Tuberc. Lung Dis. 2014, 18, 1370–1377. [Google Scholar] [CrossRef]
- Kothavade, R.J.; Dhurat, R.S.; Mishra, S.N.; Kothavade, U.R. Clinical and laboratory aspects of the diagnosis and management of cutaneous and subcutaneous infections caused by rapidly growing mycobacteria. Eur. J. Clin. Microbiol. 2012, 32, 161–188. [Google Scholar] [CrossRef]
- Honda, J.R.; Virdi, R.; Chan, E.D. Global Environmental Nontuberculous Mycobacteria and Their Contemporaneous Man-Made and Natural Niches. Front. Microbiol. 2018, 9, 2029. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, U.-I.; Holland, S.M. Host susceptibility to non-tuberculous mycobacterial infections. Lancet Infect. Dis. 2015, 15, 968–980. [Google Scholar] [CrossRef] [Green Version]
- Feng, Z.; Bai, X.; Wang, T.; Garcia, C.; Bai, A.; Li, L.; Honda, J.R.; Nie, X.; Chan, E.D. Differential Responses by Human Macrophages to Infection With Mycobacterium tuberculosis and Non-tuberculous Mycobacteria. Front. Microbiol. 2020, 11, 116. [Google Scholar] [CrossRef] [Green Version]
- Lange, C.; Aaby, P.; Behr, M.A.; Donald, P.R.; Kaufmann, S.H.E.; Netea, M.G.; Mandalakas, A.M. 100 years of Mycobacterium bovis bacille Calmette-Guérin. Lancet Infect. Dis. 2022, 22, e2–e12. [Google Scholar] [CrossRef]
- Luca, S.; Mihaescu, T. History of BCG Vaccine. Maedica 2013, 8, 53–58. [Google Scholar]
- Romanus, V.; Hallander, H.; Wåhlén, P.; Olinder-Nielsen, A.; Magnusson, P.; Juhlin, I. Atypical mycobacteria in extrapulmonary disease among children. Incidence in Sweden from 1969 to 1990, related to changing BCG-vaccination coverage. Tuber. Lung Dis. 1995, 76, 300–310. [Google Scholar] [CrossRef]
- Katila, M.; Brander, E.; Backman, A. Neonatal bcg vaccination and mycobacterial cervical adenitis in childhood. Tubercle 1987, 68, 291–296. [Google Scholar] [CrossRef]
- Lapinel, N.C.; Jolley, S.E.; Ali, J.; Welsh, D.A. Prevalence of non-tuberculous mycobacteria in HIV-infected patients admitted to hospital with pneumonia. Int. J. Tuberc. Lung Dis. 2019, 23, 491–497. [Google Scholar] [CrossRef]
- Chiang, C.-H.; Tang, P.-U.; Lee, G.H.; Chiang, T.-H.; Ma, K.S.-K.; Fang, C.-T. Prevalence of Nontuberculous Mycobacterium Infections versus Tuberculosis among Autopsied HIV Patients in Sub-Saharan Africa: A Systematic Review and Meta-Analysis. Am. J. Trop. Med. Hyg. 2021, 104, 628–633. [Google Scholar] [CrossRef]
- Charoenlap, S.; Piromsopa, K.; Charoenlap, C. Potential role of Bacillus Calmette-Guérin (BCG) vaccination in COVID-19 pandemic mortality: Epidemiological and Immunological aspects. Asian Pac. J. Allergy Immunol. 2020, 38, 150–161. [Google Scholar]
- Hart, P.D.; Sutherland, I. BCG and vole bacillus vaccines in the prevention of tuberculosis in adolescence and early adult life. BMJ 1977, 2, 293–295. [Google Scholar] [CrossRef] [Green Version]
- Comstock, G.W.; Shaw, L.W. Controlled Trial of BCG Vaccination in a School Population: Tuberculosis Studies in Muscogee County, Ga. Public Health Rep. 1960, 75, 583–594. [Google Scholar] [CrossRef]
- Comstock, G.W.; Webster, R.G. Tuberculosis studies in Muscogee County, Georgia. VII. A twenty-year evaluation of BCG vaccination in a school population. Am. Rev. Respir. Dis. 1969, 100, 839–845. [Google Scholar] [CrossRef]
- Comstock, G.W.; Palmer, C.E. Long-term results of BCG vaccination in the southern United States. Am. Rev. Respir. Dis. 1966, 93, 171–183. [Google Scholar] [CrossRef]
- Comstock, G.W.; Woolpert, S.F.; Livesay, V.T. Tuberculosis studies in Muscogee County, Georgia. Twenty-year evaluation of a community trial of BCG vaccination. Public Health Rep. 1976, 91, 276–280. [Google Scholar]
- Comstock, G.W.; Edwards, P.Q. An American view of BCG vaccination, illustrated by results of a controlled trial in Puerto Rico. Scand. J. Respir. Dis. 1972, 53, 207–217. [Google Scholar]
- Comstock, G.W.; Livesay, V.T.; Woolpert, S.F. Evaluation of BCG vaccination among Puerto Rican children. Am. J. Public Health 1974, 64, 283–291. [Google Scholar] [CrossRef] [Green Version]
- Palmer, C.E.; Long, M.W. Effects of infection with atypical mycobacteria on BCG vaccination and tuberculosis. Am. Rev. Respir. Dis. 1966, 94, 553–568. [Google Scholar] [CrossRef] [PubMed]
- Fine, P. Variation in protection by BCG: Implications of and for heterologous immunity. Lancet 1995, 346, 1339–1345. [Google Scholar] [CrossRef]
- Wilson, M.E.; Fineberg, H.V.; Colditz, G.A. Geographic Latitude and the Efficacy of Bacillus Calmette-Guerin Vaccine. Clin. Infect. Dis. 1995, 20, 982–991. [Google Scholar] [CrossRef]
- Zodpey, S.P.; Shrikhande, S.N. The geographic location (latitude) of studies evaluating protective effect of BCG vaccine and it’s efficacy/effectiveness against tuberculosis. Indian J. Public Health 2007, 51, 205–210. [Google Scholar] [PubMed]
- Tuberculosis Prevention TRIAL. Trial of BCG vaccines in south India for tuberculosis prevention: First report—Tuberculosis Prevention Trial. Bull. World Health Organ. 1979, 57, 819–827. [Google Scholar]
- Tuberculois Research Centre. Fifteen year follow up of trial of BCG vaccines in south India for tuberculosis prevention. Indian J. Med. Res. 2013, 137, 571. [Google Scholar]
- Das, S.D.; Narayanan, P.R.; Kolappan, C.; Colston, M.J. The cytokine response to bacille Calmette Guérin vaccination in South India. Int. J. Tuberc. Lung Dis. 1998, 2, 836–843. [Google Scholar] [PubMed]
- Yang, H.; Kruh-Garcia, N.; Dobos, K.M. Purified protein derivatives of tuberculin—past, present, and future. FEMS Immunol. Med. Microbiol. 2012, 66, 273–280. [Google Scholar] [CrossRef] [Green Version]
- Schiller, I.; Vordermeier, H.M.; Waters, W.R.; Kyburz, A.; Cagiola, M.; Whelan, A.; Palmer, M.V.; Thacker, T.C.; Meijlis, J.; Carter, C.; et al. Comparison of tuberculin activity using the interferon-gamma assay for the diagnosis of bovine tuberculosis. Vet. Rec. 2010, 167, 322–326. [Google Scholar] [CrossRef] [PubMed]
- Flores-Valdez, M.A. After 100 Years of BCG Immunization against Tuberculosis, What Is New and Still Outstanding for This Vaccine? Vaccines 2021, 10, 57. [Google Scholar] [CrossRef] [PubMed]
- Dockrell, H.M.; Smith, S. What Have We Learnt about BCG Vaccination in the Last 20 Years? Front. Immunol. 2017, 8, 1134. [Google Scholar] [CrossRef]
- Poyntz, H.C.; Stylianou, E.; Griffiths, K.L.; Marsay, L.; Checkley, A.M.; McShane, H. Non-tuberculous mycobacteria have diverse effects on BCG efficacy against Mycobacterium tuberculosis. Tuberculosis 2014, 94, 226–237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fischer, M. Leprosy—An overview of clinical features, diagnosis, and treatment. JDDG J. Dtsch. Dermatol. Ges. 2017, 15, 801–827. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Franco-Paredes, C.; Marcos, L.A.; Henao-Martínez, A.F.; Rodríguez-Morales, A.J.; Villamil-Gómez, W.E.; Gotuzzo, E.; Bonifaz, A. Cutaneous Mycobacterial Infections. Clin. Microbiol. Rev. 2018, 32, e00069-18. [Google Scholar] [CrossRef] [Green Version]
- Lastória, J.C.; Abreu, M.A. Leprosy: Review of the epidemiological, clinical, and etiopathogenic aspects—Part 1. An. Bras. Dermatol. 2014, 89, 205–218. [Google Scholar] [CrossRef] [Green Version]
- Ploemacher, T.; Faber, W.R.; Menke, H.; Rutten, V.P.; Pieters, T. Reservoirs and transmission routes of leprosy; A systematic review. PLoS Negl. Trop. Dis. 2020, 14, e0008276. [Google Scholar] [CrossRef]
- Ramos-e-Silva, M.; Rebello, P.F.B. Leprosy: Recognition and treatment. Am. J. Clin. Dermatol. 2001, 2, 203–211. [Google Scholar] [CrossRef] [PubMed]
- Silva, C.A.M.; Danelishvili, L.; McNamara, M.; Berredo-Pinho, M.; Bildfell, R.; Biet, F.; Rodrigues, L.S.; Oliveira, A.V.; Bermudez, L.E.; Pessolani, M.C.V. Interaction of Mycobacterium leprae with Human Airway Epithelial Cells: Adherence, Entry, Survival, and Identification of Potential Adhesins by Surface Proteome Analysis. Infect. Immun. 2013, 81, 2645–2659. [Google Scholar] [CrossRef] [Green Version]
- Bhandari, J.; Awais, M.; Gupta, V. Leprosy. In StatPearls; StatPearls Publishing LLC.: Treasure Island, FL, USA, 2021. [Google Scholar]
- Worobec, S. Current approaches and future directions in the treatment of leprosy. Res. Rep. Trop. Med. 2012, 3, 79–91. [Google Scholar] [CrossRef] [Green Version]
- Bhat, R.M.; Prakash, C. Leprosy: An Overview of Pathophysiology. Interdiscip. Perspect. Infect. Dis. 2012, 2012, 181089. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ridley, D.S.; Jopling, W.H. Classification of leprosy according to immunity. A five-group system. Int. J. Lepr. Other Mycobact. Dis. 1966, 34, 255–273. [Google Scholar] [PubMed]
- Nery, J.A.D.C.; Filho, F.B.; Quintanilha, J.; Machado, A.M.; Oliveira, S.D.S.C.; Sales, A.M. Understanding the type 1 reactional state for early diagnosis and treatment: A way to avoid disability in leprosy. An. Bras. Dermatol. 2013, 88, 787–792. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scollard, D.M.; Adams, L.B.; Gillis, T.P.; Krahenbuhl, J.L.; Truman, R.W.; Williams, D.L. The Continuing Challenges of Leprosy. Clin. Microbiol. Rev. 2006, 19, 338–381. [Google Scholar] [CrossRef] [Green Version]
- van ‘t Noordende, A.T.; Korfage, I.J.; Lisam, S.; Arif, M.A.; Kumar, A.; van Brakel, W.H. The role of perceptions and knowledge of leprosy in the elimination of leprosy: A baseline study in Fatehpur district, northern India. PLoS Negl. Trop. Dis. 2019, 13, e0007302. [Google Scholar] [CrossRef] [PubMed]
- Maeda, Y.; Mukai, T.; Spencer, J.; Makino, M. Identification of an Immunomodulating Agent from Mycobacterium leprae. Infect. Immun. 2005, 73, 2744–2750. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hashimoto, K.; Maeda, Y.; Kimura, H.; Suzuki, K.; Masuda, A.; Matsuoka, M.; Makino, M. Mycobacterium leprae Infection in Monocyte-Derived Dendritic Cells and Its Influence on Antigen-Presenting Function. Infect. Immun. 2002, 70, 5167–5176. [Google Scholar] [CrossRef] [Green Version]
- Pinheiro, R.O.; Salles, J.D.S.; Sarno, E.N.; Sampaio, E.P. Mycobacterium leprae–host-cell interactions and genetic determinants in leprosy: An overview. Futur. Microbiol. 2011, 6, 217–230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sinsimer, D.; Fallows, D.; Peixoto, B.; Krahenbuhl, J.; Kaplan, G.; Manca, C. Mycobacterium leprae actively modulates the cytokine response in naive human monocytes. Infect. Immun. 2010, 78, 293–300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamazaki-Nakashimada, M.A.; Unzueta, A.; Gámez-González, L.B.; González-Saldaña, N.; Sorensen, R.U. BCG: A vaccine with multiple faces. Hum. Vaccines Immunother. 2020, 16, 1841–1850. [Google Scholar] [CrossRef] [PubMed]
- Schoenmakers, A.; Mieras, L.; Budiawan, T.; van Brakel, W.H. The State of Affairs in Post-Exposure Leprosy Prevention: A Descriptive Meta-Analysis on Immuno- and Chemo-Prophylaxis. Res. Rep. Trop. Med. 2020, 11, 97–117. [Google Scholar] [CrossRef]
- Kaufmann, S.H.; Weiner, J.; von Reyn, C.F. Novel approaches to tuberculosis vaccine development. Int. J. Infect. Dis. 2017, 56, 263–267. [Google Scholar] [CrossRef] [Green Version]
- Gupta, S.K.; Kumari, S. Chronic recalcitrant erythema nodosum leprosum: Therapeutic dilemma and role of mycobacterium indicus pranii vaccine. An. Bras. Dermatol. 2021, 97, 49–53. [Google Scholar] [CrossRef]
- Saqib, M.; Khatri, R.; Singh, B.; Gupta, A.; Kumar, A.; Bhaskar, S. Mycobacterium indicus pranii as a booster vaccine enhances BCG induced immunity and confers higher protection in animal models of tuberculosis. Tuberculosis 2016, 101, 164–173. [Google Scholar] [CrossRef]
- Ebenezer, G.J.; Scollard, D.M. Treatment and Evaluation Advances in Leprosy Neuropathy. Neurotherapeutics 2021, 18, 2337–2350. [Google Scholar] [CrossRef]
- Gombart, A.F. The vitamin D—Antimicrobial peptide pathway and its role in protection against infection. Futur. Microbiol. 2009, 4, 1151–1165. [Google Scholar] [CrossRef] [Green Version]
- Zavala, K.; Gottlieb, C.A.; Teles, R.; Adams, J.S.; Hewison, M.; Modlin, R.L.; Liu, P.T. Intrinsic activation of the vitamin D antimicrobial pathway by M. leprae infection is inhibited by type I IFN. PLoS Negl. Trop. Dis. 2018, 12, e0006815. [Google Scholar] [CrossRef]
- Forman, H.J.; Zhang, H.; Rinna, A. Glutathione: Overview of its protective roles, measurement, and biosynthesis. Mol. Asp. Med. 2009, 30, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Swathi, M.; Tagore, R. Study of oxidative stress in different forms of leprosy. Indian J. Dermatol. 2015, 60, 321. [Google Scholar] [CrossRef]
- Prasad, C.B.; Kodliwadmath, M.V.; Kodliwadmath, G.B. Erythrocyte glutathione peroxidase, glutathione reductase activities and blood glutathione content in leprosy. J. Infect. 2008, 56, 469–473. [Google Scholar] [CrossRef]
- Pizzino, G.; Irrera, N.; Cucinotta, M.; Pallio, G.; Mannino, F.; Arcoraci, V.; Squadrito, F.; Altavilla, D.; Bitto, A. Oxidative Stress: Harms and Benefits for Human Health. Oxid. Med. Cell. Longev. 2017, 2017, 8416763. [Google Scholar] [CrossRef]
- Busatto, C.; Vianna, J.S.; da Silva, L.V.; Ramis, I.B.; da Silva, P.E.A. Mycobacterium avium: An overview. Tuberculosis 2019, 114, 127–134. [Google Scholar] [CrossRef] [PubMed]
- Akram, S.M.; Attia, F.N. Mycobacterium Avium Intracellulare. In StatPearls; StatPearls Publishing LLC.: Treasure Island, FL, USA, 2021. [Google Scholar]
- Martin, E.; Triccas, J.A.; Kamath, A.T.; Winter, N.; Britton, W.J. Comparative protective effects of recombinant DNA and Mycobacterium bovis bacille Calmette-Guérin vaccines against M. avium infection. Clin. Exp. Immunol. 2001, 126, 482–487. [Google Scholar] [CrossRef] [PubMed]
- To, K.; Cao, R.; Yegiazaryan, A.; Owens, J.; Venketaraman, V. General Overview of Nontuberculous Mycobacteria Opportunistic Pathogens: Mycobacterium avium and Mycobacterium abscessus. J. Clin. Med. 2020, 9, 2541. [Google Scholar] [CrossRef]
- Munjal, S.; Munjal, S.; Gao, J.; Venketaraman, V. Exploring Potential COPD Immunosuppression Pathways Causing Increased Susceptibility for MAC Infections among COPD Patients. Clin. Pract. 2021, 11, 77. [Google Scholar] [CrossRef]
- Bermudez, L.E.; Wagner, D.; Sosnowska, D. Mechanisms of Mycobacterium Avium Pathogenesis. Anxiety Anxiolytic Drugs 2001, 48, 153–166. [Google Scholar] [CrossRef]
- Ratnatunga, C.; Lutzky, V.P.; Kupz, A.; Doolan, D.L.; Reid, D.W.; Field, M.; Bell, S.; Thomson, R.M.; Miles, J.J. The Rise of Non-Tuberculosis Mycobacterial Lung Disease. Front. Immunol. 2020, 11, 303. [Google Scholar] [CrossRef] [Green Version]
- Verma, D.; Chan, E.D.; Ordway, D.J. The double-edged sword of Tregs in M tuberculosis, M avium, and M. absessus infection. Immunol. Rev. 2021, 301, 48–61. [Google Scholar] [CrossRef]
- Hussain, T.; Shah, S.Z.A.; Zhao, D.; Sreevatsan, S.; Zhou, X. The role of IL-10 in Mycobacterium avium subsp. paratuberculosis infection. Cell Commun. Signal. 2016, 14, 29. [Google Scholar] [CrossRef] [Green Version]
- Koh, W.-J. Nontuberculous Mycobacteria—Overview. Microbiol. Spectr. 2017, 5, 653–661. [Google Scholar] [CrossRef]
- Daley, C.L.; Schlossberg, D. Mycobacterium avium Complex Disease. Microbiol. Spectr. 2017, 5. [Google Scholar] [CrossRef] [PubMed]
- Dyer, J.; Weiss, J.; Steiner, W.S.; Barber, J.A. Primary cutaneous Mycobacterium avium complex infection following squamous cell carcinoma excision. Cutis 2016, 98, E8–E11. [Google Scholar] [PubMed]
- Xu, X.; Lao, X.; Zhang, C.; Cao, C.; Ding, H.; Pang, Y.; Ning, Q.; Zou, J.; Zang, N.; Hu, D.; et al. Chronic Mycobacterium avium skin and soft tissue infection complicated with scalp osteomyelitis possibly secondary to anti-interferon-γ autoantibody formation. BMC Infect. Dis. 2019, 19, 203. [Google Scholar] [CrossRef]
- Larsen, S.E.; Reese, V.A.; Pecor, T.; Berube, B.J.; Cooper, S.K.; Brewer, G.; Ordway, D.; Henao-Tamayo, M.; Podell, B.K.; Baldwin, S.L.; et al. Subunit vaccine protects against a clinical isolate of Mycobacterium avium in wild type and immunocompromised mouse models. Sci. Rep. 2021, 11, 9040. [Google Scholar] [CrossRef] [PubMed]
- Abate, G.; Hamzabegovic, F.; Eickhoff, C.S.; Hoft, D.F. BCG Vaccination Induces M. avium and M. abscessus Cross-Protective Immunity. Front. Immunol. 2019, 10, 234. [Google Scholar] [CrossRef] [Green Version]
- Brown-Elliott, B.A.; Wallace, R.J. Clinical and Taxonomic Status of Pathogenic Nonpigmented or Late-Pigmenting Rapidly Growing Mycobacteria. Clin. Microbiol. Rev. 2002, 15, 716–746. [Google Scholar] [CrossRef] [Green Version]
- Johansen, M.D.; Herrmann, J.-L.; Kremer, L. Non-tuberculous mycobacteria and the rise of Mycobacterium abscessus. Nat. Rev. Microbiol. 2020, 18, 392–407. [Google Scholar] [CrossRef]
- Kusunoki, S.; Ezaki, T. Proposal of Mycobacterium peregrinum sp. nov., nom. rev., and Elevation of Mycobacterium chelonae subsp. abscessus (Kubica et al.) to Species Status: Mycobacterium abscessus comb. nov. Int. J. Syst. Bacteriol. 1992, 42, 240–245. [Google Scholar] [CrossRef] [PubMed]
- Medjahed, H.; Gaillard, J.-L.; Reyrat, J.-M. Mycobacterium abscessus: A new player in the mycobacterial field. Trends Microbiol. 2010, 18, 117–123. [Google Scholar] [CrossRef] [PubMed]
- Ryan, K.; Byrd, T.F. Mycobacterium abscessus: Shapeshifter of the Mycobacterial World. Front. Microbiol. 2018, 9, 2642. [Google Scholar] [CrossRef] [PubMed]
- Howard, S.T.; Rhoades, E.; Recht, J.; Pang, X.; Alsup, A.; Kolter, R.; Lyons, C.R.; Byrd, T.F. Spontaneous reversion of Mycobacterium abscessus from a smooth to a rough morphotype is associated with reduced expression of glycopeptidolipid and reacquisition of an invasive phenotype. Microbiology 2006, 152, 1581–1590. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nessar, R.; Reyrat, J.-M.; Davidson, L.B.; Byrd, T.F. Deletion of the mmpL4b gene in the Mycobacterium abscessus glycopeptidolipid biosynthetic pathway results in loss of surface colonization capability, but enhanced ability to replicate in human macrophages and stimulate their innate immune response. Microbiology 2011, 157, 1187–1195. [Google Scholar] [CrossRef] [Green Version]
- Jonsson, B.E.; Gilljam, M.; Lindblad, A.; Ridell, M.; Wold, A.E.; Welinder-Olsson, C. Molecular Epidemiology of Mycobacterium abscessus, with Focus on Cystic Fibrosis. J. Clin. Microbiol. 2007, 45, 1497–1504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rhoades, E.R.; Archambault, A.S.; Greendyke, R.; Hsu, F.-F.; Streeter, C.; Byrd, T.F. Mycobacterium abscessus Glycopeptidolipids Mask Underlying Cell Wall Phosphatidyl-myo-Inositol Mannosides Blocking Induction of Human Macrophage TNF-α by Preventing Interaction with TLR2. J. Immunol. 2009, 183, 1997–2007. [Google Scholar] [CrossRef] [Green Version]
- Mycobacterium Abscessus in Healthcare Settings. 2010. Available online: https://www.cdc.gov/hai/organisms/mycobacterium.html (accessed on 21 November 2021).
- Clary, G.; Sasindran, S.J.; Nesbitt, N.; Mason, L.; Cole, S.; Azad, A.; McCoy, K.; Schlesinger, L.S.; Hall-Stoodley, L. Mycobacterium abscessus Smooth and Rough Morphotypes Form Antimicrobial-Tolerant Biofilm Phenotypes but Are Killed by Acetic Acid. Antimicrob. Agents Chemother. 2018, 62, e01782-17. [Google Scholar] [CrossRef] [Green Version]
- Griffith, D.E.; Aksamit, T.; Brown-Elliott, B.A.; Catanzaro, A.; Daley, C.; Gordin, F.; Holland, S.M.; Horsburgh, R.; Huitt, G.; Iademarco, M.F.; et al. An Official ATS/IDSA Statement: Diagnosis, Treatment, and Prevention of Nontuberculous Mycobacterial Diseases. Am. J. Respir. Crit. Care Med. 2007, 175, 367–416. [Google Scholar] [CrossRef]
- Exner, M.; Kramer, A.; Lajoie, L.; Gebel, J.; Engelhart, S.; Hartemann, P. Prevention and control of health care–associated waterborne infections in health care facilities. Am. J. Infect. Control 2005, 33, S26–S40. [Google Scholar] [CrossRef] [PubMed]
- Nash, K.A.; Wallace, R.J., Jr.; Brown-Elliott, B.A. A novel gene, erm(41), confers inducible macrolide resistance to clinical isolates of Mycobacterium abscessus but is absent from Mycobacterium chelonae. Antimicrob. Agents Chemother. 2009, 53, 1367–1376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Del Grosso, M.; Northwood, J.G.E.; Farrell, D.J.; Pantosti, A. The Macrolide Resistance Genes erm(B) and mef(E) Are Carried by Tn2010 in Dual-Gene Streptococcus pneumoniae Isolates Belonging to Clonal Complex CC271. Antimicrob. Agents Chemother. 2007, 51, 4184–4186. [Google Scholar] [CrossRef] [Green Version]
- Champney, W.S.; Tober, C.L. Specific Inhibition of 50S Ribosomal Subunit Formation in Staphylococcus aureus Cells by 16-Membered Macrolide, Lincosamide, and Streptogramin B Antibiotics. Curr. Microbiol. 2000, 41, 126–135. [Google Scholar] [CrossRef]
- Goldman, R.C.; Kadam, S.K. Binding of novel macrolide structures to macrolides-lincosamides-streptogramin B-resistant ribosomes inhibits protein synthesis and bacterial growth. Antimicrob. Agents Chemother. 1989, 33, 1058–1066. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, H.; Jhun, B.W.; Kim, S.-Y.; Kim, D.H.; Lee, H.; Jeon, K.; Kwon, O.J.; Huh, H.J.; Ki, C.-S.; Lee, N.Y.; et al. Treatment outcomes of macrolide-susceptible Mycobacterium abscessus lung disease. Diagn. Microbiol. Infect. Dis. 2018, 90, 293–295. [Google Scholar] [CrossRef]
- Koh, W.-J.; Jeong, B.-H.; Kim, S.-Y.; Jeon, K.; Park, K.U.; Jhun, B.W.; Lee, H.; Park, H.Y.; Kim, D.H.; Huh, H.J.; et al. Mycobacterial Characteristics and Treatment Outcomes in Mycobacterium abscessus Lung Disease. Clin. Infect. Dis. 2016, 64, 309–316. [Google Scholar] [CrossRef]
- Koh, W.-J.; Stout, J.; Yew, W.-W. Advances in the management of pulmonary disease due to Mycobacterium abscessus complex. Int. J. Tuberc. Lung Dis. 2014, 18, 1141–1148. [Google Scholar] [CrossRef] [PubMed]
- Shallom, S.J.; Moura, N.S.; Olivier, K.N.; Sampaio, E.P.; Holland, S.M.; Zelazny, A.M. New Real-Time PCR Assays for Detection of Inducible and Acquired Clarithromycin Resistance in the Mycobacterium abscessus Group. J. Clin. Microbiol. 2015, 53, 3430–3437. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Serisier, D.J.; Martin, M.L.; McGuckin, M.A.; Lourie, R.; Chen, A.C.; Brain, B.; Biga, S.; Schlebusch, S.; Dash, P.; Bowler, S.D. Effect of long-term, low-dose erythromycin on pulmonary exacerbations among patients with non-cystic fibrosis bronchiectasis: The BLESS randomized controlled trial. JAMA 2013, 309, 1260–1267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, M.-R.; Sheng, W.-H.; Hung, C.-C.; Yu, C.-J.; Lee, L.-N.; Hsueh, P.-R. Mycobacterium abscessus Complex Infections in Humans. Emerg. Infect. Dis. 2015, 21, 1638–1646. [Google Scholar] [CrossRef] [PubMed]
- Meir, M.; Barkan, D. Alternative and Experimental Therapies of Mycobacterium abscessus Infections. Int. J. Mol. Sci. 2020, 21, 6793. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.W.; Cheng, B.; Yeoh, S.F.; Lin, R.T.P.; Teo, J.W.P. Tedizolid Activity Against Clinical Mycobacterium abscessus Complex Isolates—An in vitro Characterization Study. Front. Microbiol. 2018, 9, 2095. [Google Scholar] [CrossRef] [Green Version]
- Akram, S.M.; Aboobacker, S. Mycobacterium Marinum. In StatPearls; StatPearls Publishing LLC.: Treasure Island, FL, USA, 2021. [Google Scholar]
- Bonamonte, D.; De Vito, D.; Vestita, M.; Delvecchio, S.; Ranieri, L.D.; Santantonio, M.; Angelini, G. Aquarium-borne Mycobacterium marinum skin infection. Report of 15 cases and review of the literature. Eur. J. Dermatol. 2013, 23, 510–516. [Google Scholar] [CrossRef] [PubMed]
- Hodgkinson, J.W.; Ge, J.-Q.; Grayfer, L.; Stafford, J.; Belosevic, M. Analysis of the immune response in infections of the goldfish (Carassius auratus L.) with Mycobacterium marinum. Dev. Comp. Immunol. 2012, 38, 456–465. [Google Scholar] [CrossRef]
- Hashish, E.; Merwad, A.-R.; Elgaml, S.; Amer, A.; Kamal, H.; Elsadek, A.; Marei, A.; Sitohy, M. Mycobacterium marinum infection in fish and man: Epidemiology, pathophysiology and management: A review. Veter-Q. 2018, 38, 35–46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tobin, D.M.; Ramakrishnan, L. Comparative pathogenesis of Mycobacterium marinum and Mycobacterium tuberculosis. Cell. Microbiol. 2008, 10, 1027–1039. [Google Scholar] [CrossRef] [PubMed]
- Aubry, A.; Chosidow, O.; Caumes, E.; Robert, J.; Cambau, E. Sixty-three cases of Mycobacterium marinum infection: Clinical features, treatment, and antibiotic susceptibility of causative isolates. Arch. Intern. Med. 2002, 162, 1746–1752. [Google Scholar] [CrossRef] [Green Version]
- Clark, H.F.; Shepard, C.C. effect of environmental temperatures on infection with Mycobacterium marinum (balnei) of Mice and a number of poikilothermic species. J. Bacteriol. 1963, 86, 1057–1069. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pandian, T.; DeZiel, P.; Otley, C.; Eid, A.; Razonable, R. Mycobacterium marinum infections in transplant recipients: Case report and review of the literature. Transpl. Infect. Dis. 2008, 10, 358–363. [Google Scholar] [CrossRef] [PubMed]
- Schubert, N.; Schill, T.; Plüß, M.; Korsten, P. Flare or foe?—Mycobacterium marinum infection mimicking rheumatoid arthritis tenosynovitis: Case report and literature review. BMC Rheumatol. 2020, 4, 11. [Google Scholar] [CrossRef]
- Lewis, F.M.T.; Marsh, B.J.; Von Reyn, C.F. Fish Tank Exposure and Cutaneous Infections Due to Mycobacterium marinum: Tuberculin Skin Testing, Treatment, and Prevention. Clin. Infect. Dis. 2003, 37, 390–397. [Google Scholar] [CrossRef]
- Wenlong, H.; Qiunan, Y.; Wenhao, C.; Yumo, L.; Tingting, Z.; Hong, R. The combination of photodynamic therapy and fractional CO2 laser for Mycobacterium marinum infection. Photodiagn. Photodyn. Ther. 2021, 35, 102391. [Google Scholar] [CrossRef]
- Tian, W.-W.; Wang, Q.-Q.; Liu, W.-D.; Shen, J.-P.; Wang, H.-S. Mycobacterium marinum: A potential immunotherapy for Mycobacterium tuberculosis infection. Drug Des. Dev. Ther. 2013, 7, 669–680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cui, Z.; Samuel-Shaker, D.; Watral, V.; Kent, M.L. Attenuated Mycobacterium marinum protects zebrafish against mycobacteriosis. J. Fish Dis. 2010, 33, 371–375. [Google Scholar] [CrossRef] [Green Version]
- Lai, L.-Y.; Lin, T.-L.; Chen, Y.-Y.; Hsieh, P.-F.; Wang, J.-T. Role of the Mycobacterium marinum ESX-1 Secretion System in Sliding Motility and Biofilm Formation. Front. Microbiol. 2018, 9, 1160. [Google Scholar] [CrossRef] [PubMed]
- Gröschel, M.I.; Sayes, F.; Shin, S.J.; Frigui, W.; Pawlik, A.; Orgeur, M.; Canetti, R.; Honoré, N.; Simeone, R.; van der Werf, T.; et al. Recombinant BCG Expressing ESX-1 of Mycobacterium marinum Combines Low Virulence with Cytosolic Immune Signaling and Improved TB Protection. Cell Rep. 2017, 18, 2752–2765. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnson, P.D.R.; Stinear, T.; Small, P.L.C.; Pluschke, G.; Merritt, R.W.; Portaels, F.; Huygen, K.; Hayman, J.A.; Asiedu, K. Buruli ulcer (M. ulcerans infection): New insights, new hope for disease control. PLoS Med. 2005, 2, e108. [Google Scholar] [CrossRef] [Green Version]
- Amissah, N.A.; Glasner, C.; Ablordey, A.; Tetteh, C.S.; Kotey, N.K.; Prah, I.; van der Werf, T.; Rossen, J.; Van Dijl, J.M.; Stienstra, Y. Genetic Diversity of Staphylococcus aureus in Buruli Ulcer. PLoS Negl. Trop. Dis. 2015, 9, e0003421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fenner, F. The Pathogenic Behavior of Micobacterium Ulcerans and Mycobacterium Balnei in the Mouse and the Developing Chick Embryo. Am. Rev. Tuberc. Pulm. Dis. 1956, 73, 650–673. [Google Scholar]
- Coutanceau, E.; Decalf, J.; Martino, A.; Babon, A.; Winter, N.; Cole, S.T.; Albert, M.L.; Demangel, C. Selective suppression of dendritic cell functions by Mycobacterium ulcerans toxin mycolactone. J. Exp. Med. 2007, 204, 1395–1403. [Google Scholar] [CrossRef] [PubMed]
- Merritt, R.W.; Walker, E.D.; Small, P.L.C.; Wallace, J.R.; Johnson, P.D.R.; Benbow, M.E.; Boakye, D.A. Ecology and Transmission of Buruli Ulcer Disease: A Systematic Review. PLoS Negl. Trop. Dis. 2010, 4, e911. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- En, J.; Goto, M.; Nakanaga, K.; Higashi, M.; Ishii, N.; Saito, H.; Yonezawa, S.; Hamada, H.; Small, P.L.C. Mycolactone is Responsible for the Painlessness of Mycobacterium ulcerans Infection (Buruli Ulcer) in a Murine Study. Infect. Immun. 2008, 76, 2002–2007. [Google Scholar] [CrossRef] [Green Version]
- Van der Werf, T.S.; Van der Graaf, W.T.; Tappero, J.W.; Asiedu, K. Mycobacterium ulcerans infection. Lancet 1999, 354, 1013–1018. [Google Scholar] [CrossRef]
- Röltgen, K.; Cruz, I.; Ndung’u, J.M.; Pluschke, G. Laboratory Diagnosis of Buruli Ulcer: Challenges and Future Perspectives. In Buruli Ulcer: Mycobacterium Ulcerans Disease; Pluschke, G., Röltgen, K., Eds.; Springer: Berlin/Heidelberg, Germany, 2019; pp. 183–202. [Google Scholar]
- Stinear, T.; Mve-Obiang, A.; Small, P.L.C.; Frigui, W.; Pryor, M.J.; Brosch, R.; Jenkin, G.A.; Johnson, P.D.R.; Davies, J.K.; Lee, R.; et al. Giant plasmid-encoded polyketide synthases produce the macrolide toxin of Mycobacterium ulcerans. Proc. Natl. Acad. Sci. USA 2004, 101, 1345–1349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mihret, A. The role of dendritic cells in Mycobacterium tuberculosis infection. Virulence 2012, 3, 654–659. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- George, K.M.; Chatterjee, D.; Gunawardana, G.; Welty, D.; Hayman, J.; Lee, R.; Small, P.L.C. Mycolactone: A Polyketide Toxin from Mycobacterium ulcerans Required for Virulence. Science 1999, 283, 854–857. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stienstra, Y.; Van Der Graaf, W.T.A.; Meerman, G.J.T.; The, T.H.; De Leij, L.F.; Van Der Werf, T.S. Susceptibility to development of Mycobacterium ulcerans disease: Review of possible risk factors. Trop. Med. Int. Health 2001, 6, 554–562. [Google Scholar] [CrossRef] [Green Version]
- Song, O.-R.; Kim, H.-B.; Jouny, S.; Ricard, I.; Vandeputte, A.; Deboosere, N.; Marion, E.; Queval, C.J.; Lesport, P.; Bourinet, E.; et al. A Bacterial Toxin with Analgesic Properties: Hyperpolarization of DRG Neurons by Mycolactone. Toxins 2017, 9, 227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amissah, N.A.; Chlebowicz, M.A.; Ablordey, A.; Tetteh, C.S.; Prah, I.; van der Werf, T.S.; Friedrich, A.W.; van Dijl, J.M.; Stienstra, Y.; Rossen, J.W. Virulence potential of Staphylococcus aureus isolates from Buruli ulcer patients. Int. J. Med. Microbiol. 2017, 307, 223–232. [Google Scholar] [CrossRef] [PubMed]
- Sakyi, S.A.; Aboagye, S.Y.; Otchere, I.D.; Yeboah-Manu, D. Clinical and Laboratory Diagnosis of Buruli Ulcer Disease: A Systematic Review. Can. J. Infect. Dis. Med. Microbiol. 2016, 2016, 5310718. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bretzel, G.; Siegmund, V.; Nitschke, J.; Herbinger, K.H.; Thompson, W.; Klutse, E.; Crofts, K.; Massavon, W.; Etuaful, S.; Asamoah-Opare, K.; et al. A stepwise approach to the laboratory diagnosis of Buruli ulcer disease. Trop. Med. Int. Health 2006, 12, 89–96. [Google Scholar] [CrossRef] [PubMed]
- Rondini, S.; Horsfield, C.; Mensah-Quainoo, E.; Junghanss, T.; Lucas, S.; Pluschke, G. Contiguous spread of Mycobacterium ulcerans in Buruli ulcer lesions analysed by histopathology and real-time PCR quantification of mycobacterial DNA. J. Pathol. 2006, 208, 119–128. [Google Scholar] [CrossRef] [PubMed]
- Stinear, T.; Ross, B.C.; Davies, J.K.; Marino, L.; Robins-Browne, R.M.; Oppedisano, F.; Sievers, A.; Johnson, P.D. Identification and characterization of IS2404 and IS2606: Two distinct repeated sequences for detection of Mycobacterium ulcerans by PCR. J. Clin. Microbiol. 1999, 37, 1018–1023. [Google Scholar] [CrossRef] [Green Version]
- Converse, P.J.; Nuermberger, E.L.; Almeida, D.V.; Grosset, J.H. Treating Mycobacterium ulcerans disease (Buruli ulcer): From surgery to antibiotics, is the pill mightier than the knife? Futur. Microbiol. 2011, 6, 1185–1198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nienhuis, W.A.; Stienstra, Y.; Thompson, W.A.; Awuah, P.C.; Abass, K.M.; Tuah, W.; Awua-Boateng, N.Y.; Ampadu, E.O.; Siegmund, V.; Schouten, J.P.; et al. Antimicrobial treatment for early, limited Mycobacterium ulcerans infection: A randomised controlled trial. Lancet 2010, 375, 664–672. [Google Scholar] [CrossRef]
- Phillips, R.O.; Robert, J.; Abass, K.M.; Thompson, W.; Sarfo, F.S.; Wilson, T.; Sarpong, G.; Gateau, T.; Chauty, A.; Omollo, R.; et al. Rifampicin and clarithromycin (extended release) versus rifampicin and streptomycin for limited Buruli ulcer lesions: A randomised, open-label, non-inferiority phase 3 trial. Lancet 2020, 395, 1259–1267. [Google Scholar] [CrossRef]
- Frimpong, M.; Agbavor, B.; Duah, M.S.; Loglo, A.; Sarpong, F.N.; Boakye-Appiah, J.; Abass, K.M.; Dongyele, M.; Amofa, G.; Tuah, W.; et al. Paradoxical reactions in Buruli ulcer after initiation of antibiotic therapy: Relationship to bacterial load. PLoS Negl. Trop. Dis. 2019, 13, e0007689. [Google Scholar] [CrossRef] [PubMed]
- Nienhuis, W.A.; Stienstra, Y.; Abass, K.M.; Tuah, W.; Thompson, W.A.; Awuah, P.C.; Awuah-Boateng, N.Y.; Adjei, O.; Bretzel, G.; Schouten, J.P.; et al. Paradoxical Responses After Start of Antimicrobial Treatment in Mycobacterium ulcerans Infection. Clin. Infect. Dis. 2011, 54, 519–526. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mangas, K.M.; Buultjens, A.H.; Porter, J.L.; Baines, S.; Marion, E.; Marsollier, L.; Tobias, N.J.; Pidot, S.J.; Quinn, K.; Price, D.J.; et al. Vaccine-Specific Immune Responses against Mycobacterium ulcerans Infection in a Low-Dose Murine Challenge Model. Infect. Immun. 2020, 88, e00753-19. [Google Scholar] [CrossRef] [PubMed]
- Muhi, S.; Stinear, T.P. Systematic review of M. Bovis BCG and other candidate vaccines for Buruli ulcer prophylaxis. Vaccine 2021, 39, 7238–7252. [Google Scholar] [CrossRef] [PubMed]
- Nain, Z.; Karim, M.M.; Sen, M.K.; Adhikari, U.K. Structural basis and designing of peptide vaccine using PE-PGRS family protein of Mycobacterium ulcerans—An integrated vaccinomics approach. Mol. Immunol. 2020, 120, 146–163. [Google Scholar] [CrossRef] [PubMed]
- Förster, B.; Demangel, C.; Thye, T. Mycolactone induces cell death by SETD1B-dependent degradation of glutathione. PLoS Negl. Trop. Dis. 2020, 14, e0008709. [Google Scholar] [CrossRef] [PubMed]
- Schairer, D.O.; Chouake, J.S.; Kutner, A.J.; Makdisi, J.; Nosanchuk, J.D.; Friedman, A.J. Evaluation of the antibiotic properties of glutathione. J. Drugs Dermatol. 2013, 12, 1272–1277. [Google Scholar] [PubMed]
- Kwaffo, Y.A.; Sarpong-Duah, M.; Owusu-Boateng, K.; Gbewonyo, W.S.; Adjimani, J.P.; Mosi, L. Natural antioxidants attenuate mycolactone toxicity to RAW 264.7 macrophages. Exp. Biol. Med. 2021, 246, 1884–1894. [Google Scholar] [CrossRef] [PubMed]
- Fish Tank Granuloma—American Osteopathic College—AOCD. Available online: https://www.aocd.org/general/custom.asp?page=FishTankGranuloma (accessed on 20 December 2021).
- Hart, B.; Hale, L.P.; Lee, S. Immunogenicity and protection conferred by a recombinant Mycobacterium marinum vaccine against Buruli ulcer. Trials Vaccinol. 2016, 5, 88–91. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization (WHO). Treatment of Mycobacterium ulcerans disease (Buruli ulcer): Guidance for health workers. Available online: https://apps.who.int/iris/rest/bitstreams/109767/retrieve (accessed on 1 February 2022).
Treatment Category | Disease Manifestation | Treatment | Primary Aim | Diagnosis |
---|---|---|---|---|
Category I | Single small lesion (i.e., nodule, papule, plaque, and ulcer <5 cm in diameter) | Complete antibiotics. If at or near a joint, maintain same movement as on unaffected side. If surgery is needed in non-critical areas, consider this after 8 weeks of antibiotic treatment | Cure without surgery. Cure without movement limitations | Clinical diagnosis with or without laboratory confirmation |
Category II | Non-ulcerative and ulcerative plaque and edematous forms. Single large ulcerative lesion 5–15 cm in diameter | Complete antibiotics, before surgery if possible. If at or near a joint, maintain same movement as on unaffected side | Cure without surgery. Reduce the extent of surgical debridement when needed. Cure without movement limitations | Clinical diagnosis with or without laboratory confirmation |
Category III | Lesions in the head and neck region, particularly face. Disseminated and mixed forms such osteitis, osteomyelitis, joint involvement. Multiple lesions and osteomyelitis. Extensive lesion > 15 cm | Complete antibiotics, before surgery if possible. If at or near a joint, maintain same movement as on unaffected side | Cure without surgery and without movement limitations | Clinical diagnosis with or without laboratory confirmation |
M. ulcerans | M. leprae | M. abscessus | M. marinum | M. avium | |
---|---|---|---|---|---|
Toxin | Mycolactone | N/A | N/A | N/A | N/A |
Environment | Tropical rain forest | Soil, water, 9-banded armadillos | Soil, water, or equipment | Water | Soil and water worldwide |
Route of infection | Abraded skin | Respiratory | Wound contamination or intestinal | Fresh or saltwater injuries | Respiratory or intestinal |
Disease manifestation | Buruli ulcers | Skin and nerve lesions | Skin infection | Skin infection | Skin lesions, fibrocavitary disease in lung, multiorgan involvement in HIV+ |
Pathogenesis | Inhibits DC activation of Th-1 and AGTR-2 on nerve cells | Decreases DC activation of CD4+ and CD8+ T cells | N/A | Grows in extracellular, aerobic condition | Infects and inhibits macrophages and monocytes |
Optimal diagnostic method | PCR | Skin biopsy, serology, PCR | N/A | Skin biopsy and culture | N/A |
Optimal treatment method | Daily rifampin and streptomycin × 8 weeks | Multidrug antibiotic therapy | Surgical debridement and macrolides | Self-limited or monotherapy with minocycline, clarithromycin, or doxycycline | Multidrug antibiotics |
BCG vaccine efficacy | Mild cross-protection | Mild cross-protection | Moderate protection | Mild protection | Moderate protection (BCG-35) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Orujyan, D.; Narinyan, W.; Rangarajan, S.; Rangchaikul, P.; Prasad, C.; Saviola, B.; Venketaraman, V. Protective Efficacy of BCG Vaccine against Mycobacterium leprae and Non-Tuberculous Mycobacterial Infections. Vaccines 2022, 10, 390. https://doi.org/10.3390/vaccines10030390
Orujyan D, Narinyan W, Rangarajan S, Rangchaikul P, Prasad C, Saviola B, Venketaraman V. Protective Efficacy of BCG Vaccine against Mycobacterium leprae and Non-Tuberculous Mycobacterial Infections. Vaccines. 2022; 10(3):390. https://doi.org/10.3390/vaccines10030390
Chicago/Turabian StyleOrujyan, Davit, William Narinyan, Subhapradha Rangarajan, Patrida Rangchaikul, Chaya Prasad, Beatrice Saviola, and Vishwanath Venketaraman. 2022. "Protective Efficacy of BCG Vaccine against Mycobacterium leprae and Non-Tuberculous Mycobacterial Infections" Vaccines 10, no. 3: 390. https://doi.org/10.3390/vaccines10030390