Spatial, Temporal, and Demographic Patterns in the Prevalence of Hemorrhagic Septicemia in 41 Countries in 2005–2019: A Systematic Analysis with Special Focus on the Potential Development of a New-Generation Vaccine
Abstract
:1. Prevalence of Hemorrhagic Septicemia
2. Virulence Factors and Associated Genes in Pasteurella multocida B:2 and E:2
3. Vaccination against HS
3.1. Live-Attenuated Vaccines
3.2. Inactivated Vaccines
3.3. Nucleic Acid Vaccines
3.4. Subunit Vaccines
3.5. Virus-Like Particle Vaccines
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- De Alwis, M.C.L. Haemorrhagic Septicaemia ACIAR Monograph Series; The Australian Center for International Agricultural Research: Canberra, Australia, 1999. [Google Scholar]
- Blackall, M.; Blackall, P.J.; Hofacre, C.L. Pasteurellosis and other respiratory bacterial infections-fowl cholera. In Diseases of Poultry; Swayne, D.E., Boulianne, M., Logue, C.M., McDougald, L.R., Nair, V., Suarez, D.L., de Wit, S., Grimes, T., Johnson, D., Kromm, M., et al., Eds.; Wiley: Hoboken, NJ, USA, 2019; pp. 831–846. [Google Scholar]
- Liu, H.; Zhao, Z.; Xi, X.; Xue, Q.; Long, T.; Xue, Y. Occurrence of Pasteurella multocida among pigs with respiratory disease in China between 2011 and 2015. Ir. Vet. J. 2017, 70, 2–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Massacci, F.R.; Magistrali, C.F.; Cucco, L.; Curcio, L.; Bano, L.; Mangili, P.M.; Scoccia, E.; Bisgaard, M.; Aalbæk, B.; Christensen, H. Characterization of Pasteurella multocida involved in rabbit infections. Vet. Microbiol. 2018, 213, 66–72. [Google Scholar] [CrossRef] [PubMed]
- Reuben, R.C.; Sarkar, S.L.; Ibnat, H.; Setu, M.A.A.; Roy, P.C.; Jahid, I.K. Novel multi-strain probiotics reduces Pasteurella multocida induced fowl cholera mortality in broilers. Sci. Rep. 2021, 11, 8885. [Google Scholar] [CrossRef] [PubMed]
- Benkirane, A.; De Alwis, M.D.L. Haemorrhagic septicaemia, its significance, prevention and control in Asia. Vet. Med. 2002, 47, 234–240. [Google Scholar] [CrossRef] [Green Version]
- Ewers, C.; Lübke-Becker, A.; Bethe, A.; Kießling, S.; Filter, M.; Wieler, L.H. Virulence genotype of Pasteurella multocida strains isolated from different hosts with various disease status. Vet. Microbiol. 2006, 114, 304–317. [Google Scholar] [CrossRef]
- Mostaan, S.; Ghasemzadeh, A.; Ehsani, P.; Sardari, S.; Shokrgozar, M.A.; Abolhassani, M.; Brujeni, G.N. In silico analysis of Pasteurella multocida plpe protein epitopes as novel subunit vaccine candidates. Iran. Biomed. J. 2020, 25, 41–46. [Google Scholar] [CrossRef]
- Oehler, R.L.; Velez, A.P.; Mizrachi, M.; Lamarche, J.; Gompf, S. Bite-related and septic syndromes caused by cats and dogs. Lancet Infect. Dis. 2009, 9, 439–447. [Google Scholar] [CrossRef]
- Heydemann, J.; Heydemann, J.S.; Antony, S. Acute infection of a total knee arthroplasty caused by Pasteurella multocida: A case report and a comprehensive review of the literature in the last 10 years. Int. J. Infect. Dis. 2010, 14, 242–245. [Google Scholar] [CrossRef] [Green Version]
- Christensen, H.; Bossé, J.; Angen, Ø.; Nørskov-Lauritsen, N.; Bisgaard, M. Immunological and molecular techniques used for determination of serotypes in Pasteurellaceae. Methods Microbiol. 2020, 47, 117–149. [Google Scholar] [CrossRef]
- Townsend, K.M.; Boyce, J.D.; Chung, J.Y.; Frost, A.J.; Adler, B. Genetic organization of Pasteurella multocida cap loci and development of a multiplex capsular PCR typing system. J. Clin. Microbiol. 2001, 39, 924–929. [Google Scholar] [CrossRef] [Green Version]
- Harper, M.; John, M.; Turni, C.; Edmunds, M.; Michael, F.S.; Adler, B.; Blackall, P.J.; Cox, A.D.; Boyce, J.D. Development of a rapid multiplex PCR assay to genotype Pasteurella multocida strains by use of the lipopolysaccharide outer core biosynthesis locus. J. Clin. Microbiol. 2015, 53, 477–485. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boyce, J.D.; Adler, B. How does Pasteurella multocida respond to the host environment? Curr. Opin. Microbiol. 2006, 9, 117–122. [Google Scholar] [CrossRef] [PubMed]
- Cuevas, I.; Carbonero, A.; Cano, D.; García-Bocanegra, I.; Amaro, M.Á.; Borge, C. Antimicrobial resistance of Pasteurella multocida type B isolates associated with acute septicemia in pigs and cattle in Spain. BMC Vet. Res. 2020, 16, 222. [Google Scholar] [CrossRef] [PubMed]
- Wilkie, I.W.; Harper, M.; Boyce, J.D.; Adler, B. Pasteurella multocida: Diseases and Pathogenesis. In Pasteurella multocida Molecular Biology, Toxins and Infection; Springer: Berlin/Heidelberg, Germany, 2012; pp. 1–22. [Google Scholar]
- FAOSTAT. Available online: http://www.fao.org/faostat/en/#data/EK (accessed on 1 August 2021).
- Cuevas, I.; Carbonero, A.; Cano, D.; Pacheco, I.L.; Marin, J.C.; Borge, C. First outbreak of bovine haemorrhagic septicaemia caused by Pasteurella multocida type B in Spain-Short communication. Acta Vet. Hung. 2020, 68, 8–11. [Google Scholar] [CrossRef]
- Mohamed, R.A.; Abdelsalam, E.B. A Review on Pneumonic Pasteurellosis (Respiratory Mannheimiosis) with Emphasis on Pathogenesis, Virulence Mechanisms and Predisposing Factors. Bulg. J. Vet. Med. 2008, 11, 139–160. [Google Scholar]
- Shivachandra, S.B.; Viswas, K.N.; Kumar, A.A. A review of hemorrhagic septicemia in cattle and buffalo. Anim. Health Res. Rev. 2011, 12, 67–82. [Google Scholar] [CrossRef]
- Verma, R.; Jaiswal, T.N. Haemorrhagic septicaemia vaccines. Vaccine 1998, 16, 1184–1192. [Google Scholar] [CrossRef]
- Shome, R.; Deka, R.P.; Sahay, S.; Grace, D.; Lindahl, J.F. Seroprevalence of hemorrhagic septicemia in dairy cows in Assam, India. Infect. Ecol. Epidemiol. 2019, 9, 1604064. [Google Scholar] [CrossRef]
- Michael, F.S.; Cairns, C.M.; Fleming, P.; Vinogradov, E.V.; Boyce, J.D.; Harper, M.; Cox, A.D. The capsular polysaccharides of Pasteurella multocida serotypes B and E: Structural, genetic and serological comparisons. Glycobiology 2021, 31, 307–314. [Google Scholar] [CrossRef]
- OIE Old Classification of Diseases Notifiable to the OIE-List B: OIE-World Organisation for Animal Health. Available online: https://www.oie.int/en/what-we-do/animal-health-and-welfare/animal-diseases/old-classification-of-diseases-notifiable-to-the-oie-list-b/ (accessed on 2 February 2022).
- Rafidah, O.; Zamri-Saad, M.; Shahirudin, S.; Nasip, E. Efficacy of intranasal vaccination of field buffaloes against haemorrhagic septicaemia with a live gdhA derivative Pasteurella multocida B:2. Vet. Rec. 2012, 171, 175. [Google Scholar] [CrossRef]
- Wilson, B.A.; Ho, M. Pasteurella multocida: From Zoonosis to cellular microbiology. Clin. Microbiol. Rev. 2013, 26, 631–655. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muenthaisong, A.; Nambooppha, B.; Rittipornlertrak, A.; Tankaew, P.; Varinrak, T.; Muangthai, K.; Atthikanyaphak, K.; Sawada, T.; Sthitmatee, N.; Sthitmatee, N. An Intranasal Vaccination with a Recombinant Outer Membrane Protein H against Haemorrhagic Septicemia in Swamp Buffaloes. Vet. Med. Int. 2020, 2020, 3548973. [Google Scholar] [CrossRef] [PubMed]
- Harper, M.; Boyce, J.D. The myriad properties of Pasteurella multocida lipopolysaccharide. Toxins 2017, 9, 254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harper, M.; Boyce, J.D.; Adler, B. Pasteurella multocida pathogenesis: 125 Years after Pasteur. FEMS Microbiol. Lett. 2006, 265, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Verma, S.; Sharma, M.; Katoch, S.; Verma, L.; Kumar, S.; Dogra, V.; Chahota, R.; Dhar, P.; Singh, G. Profiling of virulence associated genes of Pasteurella multocida isolated from cattle. Vet. Res. Commun. 2013, 37, 83–89. [Google Scholar] [CrossRef]
- Dabo, S.M.; Taylor, J.D.; Confer, A.W. Pasteurella multocida and bovine respiratory disease. Anim. Heal. Res. Rev. 2007, 8, 129–150. [Google Scholar] [CrossRef] [Green Version]
- Doughty, S.W.; Ruffolo, C.G.; Adler, B. The type 4 fimbrial subunit gene of Pasteurella multocida. Vet. Microbiol. 2000, 72, 79–90. [Google Scholar] [CrossRef]
- Ruffolo, C.G.; Tennent, J.M.; Michalski, W.P.; Adler, B. Identification, purification, and characterization of the type 4 fimbriae of Pasteurella multocida. Infect. Immun. 1997, 65, 339–343. [Google Scholar] [CrossRef] [Green Version]
- Siju, J.; Kumar, A.A.; Shivachandra, S.B.; Chaudhuri, P.; Srivastava, S.K.; Singh, V.P. Cloning and characterization of type 4 fimbrial gene (ptfA) of Pasteurella multocida serogroup B:2 (Strain P52). Vet. Res. Commun. 2007, 31, 397–404. [Google Scholar] [CrossRef]
- Ratledge, C.; Dover, L.G. Iron metabolism in pathogenic bacteria. Annu. Rev. Microbiol. 2000, 54, 881–941. [Google Scholar] [CrossRef]
- Garrido, M.E.; Bosch, M.; Bigas, A.; Badiola, I.; Barbé, J.; Llagostera, M. Heterologous protective immunization elicited in mice by Pasteurella multocida fur ompH. Int. Microbiol. 2008, 11, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Vasfi Marandi, M.; Mittal, K.R. Role of outer membrane protein H (OmpH)- and OmpA-specific monoclonal antibodies from hybridoma tumors in protection of mice against Pasteurella multocida. Infect. Immun. 1997, 65, 4502–4508. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tan, H.Y.; Nagoor, N.H.; Sekaran, S.D. Cloning, expression and protective capacity of 37 kDa outer membrane protein gene (ompH) of Pasteurella multocida serotype B:2. Trop. Biomed. 2010, 27, 430–441. [Google Scholar]
- Harper, M.; Cox, A.; Michael, F.S.; Parnas, H.; Wilkie, I.; Blackall, P.J.; Adler, B.; Boyce, J.D. Decoration of Pasteurella multocida lipopolysaccharide with phosphocholine is important for virulence. J. Bacteriol. 2007, 189, 7384–7391. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harper, M.; Michael, F.S.; John, M.; Vinogradov, E.; Adler, B.; Boyce, J.D.; Cox, A.D. Pasteurella multocida Heddleston serovars 1 and 14 express different lipopolysaccharide structures but share the same lipopolysaccharide biosynthesis outer core locus. Vet. Microbiol. 2011, 150, 289–296. [Google Scholar] [CrossRef]
- Horadagoda, N.U.; Hodgson, J.C.; Moon, G.M.; Wijewardana, T.G.; Eckersall, P.D. Development of a clinical syndrome resembling haemorrhagic septicaemia in the buffalo following intravenous inoculation of Pasteurella multocida serotype B:2 endotoxin and the role of tumour necrosis factor-α. Res. Vet. Sci. 2002, 72, 194–200. [Google Scholar] [CrossRef]
- Boyce, J.D.; Harper, M.; Wilkie, I.; Adler, B. Pasteurella. In Pathogenesis of Bacterial Infections in Animals; John Wiley & Sons: Hoboken, NJ, USA, 2010; pp. 325–346. [Google Scholar]
- Boyce, J.D.; Adler, B. The capsule is a virulence determinant in the pathogenesis of Pasteurella multocida M1404 (B:2). Infect. Immun. 2000, 68, 3463–3468. [Google Scholar] [CrossRef] [Green Version]
- Jamal, H.; Chua, K.H.; Frederick, D.; Mahmood Ameen, A.; Salmah, I. Plasmid DNA Analysis of Pasteurella multocida Serotype B isolated from Haemorrhagic Septicaemia outbreaks in Malaysia. Malays. J. Microbiol. 2005, 1, 35–39. [Google Scholar] [CrossRef]
- Zamri-Saad, M.; Annas, S. Vaccination against hemorrhagic septicemia of bovines: A review. Pak. Vet. J. 2016, 36, 1–5. [Google Scholar]
- Gowralkar, M.; Chandrashekar, M.; Bhajantri, S.; Satav, J.; Chandakala, G.C.; Mayanna, A.; Byregowda, S.M.; Renukaprasad, C. Evaluation of immuno efficiency of hemorrhagic septicemia vaccine strain (vaccine seed). Asian Pac. J. Trop. Biomed. 2014, 4, S263–S267. [Google Scholar] [CrossRef]
- Myint, A.; Jones, T.O.; Nyunt, H.H. Erratum: Safety, efficacy and cross-protectivity of a live intranasal aerosol haemorrhagic septicaemia vaccine (Veterinary Record vol. 156 (41–45)). Vet. Rec. 2005, 156, 41. [Google Scholar] [CrossRef] [PubMed]
- Tabatabaei, M.; Jula, G.R.M.; Jabbari, A.R.; Esmailzadeh, M. Vaccine efficacy in cattle against hemorrhagic septicemia with live attenuated aroA mutant of Pasteurella multocida B: 2 strain. J. Cell Anim. Biol. 2007, 1, 62–65. [Google Scholar]
- De Alwis, M.C.L.; Carter, G.R.; Chengappa, M.M. Production and characterization of streptomycin dependent mutants of Pasteurella multocida from bovine haemorrhagic septicaemia. Can. J. Comp. Med. 1980, 44, 418–422. [Google Scholar] [PubMed]
- Schimmel, D. Isolation and Characterization and Vaccination Efficacy of a Temperature Sensitive Mutant of Pasteurella multocida Type B; The Australian Centre for International Agricultural Research (ACIAR): Bali, Indonesia, 1992; pp. 174–175. [Google Scholar]
- Tabatabaei, M.; Liu, Z.; Finucane, A.; Parton, R.; Coote, J. Protective immunity conferred by attenuated aroA derivatives of Pasteurella multocida B:2 strains in a mouse model of hemorrhagic septicemia. Infect. Immun. 2002, 70, 3355–3362. [Google Scholar] [CrossRef] [Green Version]
- Hodgson, J.C.; Finucane, A.; Dagleish, M.P.; Ataei, S.; Parton, R.; Coote, J.G. Efficacy of vaccination of calves against hemorrhagic septicemia with a live aroA derivative of Pasteurella multocida B:2 by two different routes of administration. Infect. Immun. 2005, 73, 1475–1481. [Google Scholar] [CrossRef] [Green Version]
- Oslan, S.N.H.; Halim, M.; Ramle, N.A.; Saad, M.Z.; Tan, J.S.; Kapri, M.R.; Ariff, A.B. Improved stability of live attenuated vaccine gdhA derivative Pasteurella multocida B:2 by freeze drying method for use as animal vaccine. Cryobiology 2017, 79, 1–8. [Google Scholar] [CrossRef]
- Ataei, S.; Burchmore, R.; Christopher Hodgson, J.; Finucane, A.; Parton, R.; Coote, J.G. Identification of immunogenic proteins associated with protection against haemorrhagic septicaemia after vaccination of calves with a live-attenuated aroA derivative of Pasteurella multocida B:2. Res. Vet. Sci. 2009, 87, 207–210. [Google Scholar] [CrossRef]
- Dagleish, M.P.; Hodgson, J.C.; Ataei, S.; Finucane, A.; Finlayson, J.; Sales, J.; Parton, R.; Coote, J.G. Safety and protective efficacy of intramuscular vaccination with a live aroA derivative of Pasteurella multocida B:2 against experimental hemorrhagic septicemia in calves. Infect. Immun. 2007, 75, 5837–5844. [Google Scholar] [CrossRef] [Green Version]
- Haesebrouck, F.; Pasmans, F.; Chiers, K.; Maes, D.; Ducatelle, R.; Decostere, A. Efficacy of vaccines against bacterial diseases in swine: What can we expect? Vet. Microbiol. 2004, 100, 255–268. [Google Scholar] [CrossRef]
- Hopkins, B.A.; Huang, T.H.; Olsonc, L.D. Differentiating Turkey Postvaccination Isolants of Pasteurella multocida Using Arbitrarily Primed Polymerase Chain Reaction. Avian Pathol. 1998, 42, 265–274. [Google Scholar] [CrossRef]
- El Idrissi, A.; Benkirane, A.; Johnson, A. Bacterial and Mycoplasma Vaccines. In Veterinary Vaccines; The Food and Agriculture Organization of the United Nations and John Wiley & Sons Limited: Hoboken, NJ, USA, 2021; pp. 63–76. [Google Scholar]
- Verma, R.; Jaiswal, T.N. Protection, humoral and cell-mediated immune responses in calves immunized with multiple emulsion haemorrhagic septicaemia vaccine. Vaccine 1997, 15, 1254–1260. [Google Scholar] [CrossRef]
- Ahmad, T.A.; Rammah, S.S.; Sheweita, S.A.; Haroun, M.; El-Sayed, L.H. Development of immunization trials against Pasteurella multocida. Vaccine 2014, 32, 909–917. [Google Scholar] [CrossRef] [PubMed]
- Qureshi, S.; Saxena, H.M. Estimation of titers of antibody against Pasteurella multocida in cattle vaccinated with haemorrhagic septicemia alum precipitated vaccine. Vet. World 2014, 7, 224–228. [Google Scholar] [CrossRef]
- Audarya, S.; Kakker, N.; Sharda, R.; Chhabra, D. Immune response to an alum precipitated haemorrhagic septicaemia vaccine in buffaloes at a semiorganized farm of Madhya Pradesh in India. Turkish J. Vet. Anim. Sci. 2020, 44, 433–448. [Google Scholar] [CrossRef]
- Joseph, B.; Chaturvedi, V.; Gupta, P.; Sridevi, R.; Sumithra, T. Comparative studies on the immunogenicity of new aluminium hydroxide gel saponin vaccine with the aluminium hydroxide gel and oil adjuvant vaccine for haemorrhagic septicaemia. Indian J. Comp. Microbiol. Immunol. Infect. Dis. 2011, 32, 61–63. [Google Scholar]
- Bain, R.V.S.; Jones, R.F. Studies on Hæmorrhagic Septicæmia of Cattle. Br. Vet. J. 1955, 111, 30–34. [Google Scholar] [CrossRef]
- Tanwar, H.; Yadav, A.P.; Singh, S.; Ganju, L. Immunity against Pasteurella multocida in Animals Vaccinated with Inactivated Pasteurella multocida and Herbal Adjuvant “DIP-HIP”. J. Vaccines Immunol. 2016, 2, 010–014. [Google Scholar] [CrossRef] [Green Version]
- Shah, N.H.; Shah, N.H.; Jacobs, A.A.C.; de Graaf, E.K. Safety and efficacy of an oil-adjuvant vaccine against haemorrhagic septicaemia in buffalo calves: Cross-protection between the serotypes B:2, 5 and E:2, 5. Vet. Rec. 2001, 149, 583–587. [Google Scholar] [CrossRef]
- Sotoodehnia, A.; Moazeni, G.; Ataei, S.; Omidi, B. Study on Immunity of an Experimental Oil Adjuvant Haemorrhagic Septicaemia Vaccine in Cattle. Arch. Razi Inst. 2005, 59, 95–101. [Google Scholar]
- Kumar, S.; Chaturvedi, V.K.; Kumar, B.; Kumar, P.; Somarajan, S.R.; Kumar, A.; Yadav, A.S.; Sharma, B. Improved humoral immune response of oil adjuvant vaccine by saponin coadjuvantation against haemorrhagic septicaemia in mice and buffalo calves. Indian J. Anim. Sci. 2012, 82, 953–957. [Google Scholar]
- Dunham, S.P. The application of nucleic acid vaccines in veterinary medicine. Res. Vet. Sci. 2002, 73, 9–16. [Google Scholar] [CrossRef]
- Jorge, S.; Dellagostin, O.A. The development of veterinary vaccines: A review of traditional methods and modern biotechnology approaches. Biotechnol. Res. Innov. 2017, 1, 6–13. [Google Scholar] [CrossRef]
- Yassein, A.A.M.; Teleb, A.A.; Hassan, G.M.; El Fiky, Z.A. The immune response and protective efficacy of a potential DNA vaccine against virulent Pasteurella multocida. J. Genet. Eng. Biotechnol. 2021, 19. [Google Scholar] [CrossRef] [PubMed]
- Brun, A.; Bárcena, J.; Blanco, E.; Borrego, B.; Dory, D.; Escribano, J.M.; Le Gall-Reculé, G.; Ortego, J.; Dixon, L.K. Current strategies for subunit and genetic viral veterinary vaccine development. Virus Res. 2011, 157, 1–12. [Google Scholar] [CrossRef]
- Singh, S.; Singh, V.P.; Cheema, P.S.; Sandey, M.; Ranjan, R.; Kumargupta, S.; Sharma, B. Immune response to dna vaccine expressing transferrin binding protein a gene of Pasteurella multocida. Brazilian J. Microbiol. 2011, 42, 750–760. [Google Scholar] [CrossRef]
- Chelliah, S.; Velappan, R.D.; Lim, K.T.; Swee, C.W.K.; Nor Rashid, N.; Rothan, H.A.; Kabir, N.; Ismail, S. Potential DNA Vaccine for Haemorrhagic Septiceamia Disease. Mol. Biotechnol. 2020, 62, 289–296. [Google Scholar] [CrossRef] [PubMed]
- Kallerup, R.S.; Foged, C. Classification of vaccines. In Subunit Vaccine Delivery; Springer: Berlin/Heidelberg, Germany, 2015; pp. 15–29. [Google Scholar]
- Highton, A.J.; Kemp, R.A. Immunological Background. In Subunit Vaccine Delivery; Springer: Berlin/Heidelberg, Germany, 2015; pp. 3–14. [Google Scholar]
- Lee, N.-H.; Lee, J.-A.; Park, S.-Y.; Song, C.-S.; Choi, I.-S.; Lee, J.-B. A review of vaccine development and research for industry animals in Korea. Clin. Exp. Vaccine Res. 2012, 1, 18–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hansson, M.; Nygren, P.-Å.; Ståhl, S. Design and production of recombinant subunit vaccines. Biotechnol. Appl. Biochem. 2000, 32, 95–107. [Google Scholar] [CrossRef]
- Bashiri, S.; Koirala, P.; Toth, I.; Skwarczynski, M. Carbohydrate immune adjuvants in subunit vaccines. Pharmaceutics 2020, 12, 965. [Google Scholar] [CrossRef]
- Kumar, A.; Yogisharadhya, R.; Ramakrishnan, M.A.; Viswas, K.N.; Shivachandra, S.B. Structural analysis and cross-protective efficacy of recombinant 87kDa outer membrane protein (Omp87) of Pasteurella multocida serogroup B:2. Microb. Pathog. 2013, 65, 48–56. [Google Scholar] [CrossRef]
- Shivachandra, S.B.; Kumar, A.; Yogisharadhya, R.; Viswas, K.N. Immunogenicity of highly conserved recombinant vacj outer membrane lipoprotein of Pasteurella multocida. Vaccine 2014, 32, 290–296. [Google Scholar] [CrossRef] [PubMed]
- Shivachandra, S.B.; Yogisharadhya, R.; Kumar, A.; Mohanty, N.N.; Nagaleekar, V.K. Recombinant transferrin binding protein A (rTbpA) fragments of Pasteurella multocida serogroup B:2 provide variable protection following homologous challenge in mouse model. Res. Vet. Sci. 2015, 98, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Shivachandra, S.B.; Kumar, A.; Mohanty, N.N.; Yogisharadhya, R. Immunogenicity of recombinant Omp16 protein of Pasteurella multocida B:2 in mouse model. Indian J. Anim. Sci. 2017, 87, 29–34. [Google Scholar]
- Ahmad, A.M. Efforts Towards the Development of Recombinant Vaccines Against Pasteurella multocida. Sci. World J. 2014, 9, 1–7. [Google Scholar]
- Hatfaludi, T.; Al-Hasani, K.; Boyce, J.D.; Adler, B. Outer membrane proteins of Pasteurella multocida. Vet. Microbiol. 2010, 144, 1–17. [Google Scholar] [CrossRef]
- Bosch, M.; Garrido, M.E.; Pérez De Rozas, A.M.; Badiola, I.; Barbé, J.; Llagostera, M. Pasteurella multocida contains multiple immunogenic haemin- and haemoglobin-binding proteins. Vet. Microbiol. 2004, 99, 103–112. [Google Scholar] [CrossRef]
- Dabo, S.M.; Confer, A.; Montelongo, M.; York, P.; Wyckoff, J.H. Vaccination with Pasteurella multocida recombinant OmpA induces strong but non-protective and deleterious Th2-type immune response in mice. Vaccine 2008, 26, 4345–4351. [Google Scholar] [CrossRef]
- Shivachandra, S.B.; Kumar, A.A.; Amaranath, J.; Joseph, S.; Srivastava, S.K.; Chaudhuri, P. Cloning and characterization of tbpA gene encoding transferrin-binding protein (TbpA) from Pasteurella multocida serogroup B:2 (strain P52). Vet. Res. Commun. 2005, 29, 537–542. [Google Scholar] [CrossRef]
- Muhammad Azam, F.; Zamri-Saad, M.; Abdul Rahim, R.; Chumnanpoen, P.; E-kobon, T.; Othman, S. Antigenic outer membrane proteins prediction of Pasteurella multocida serotype B:2. Asia Pacific J. Mol. Biol. Biotechnol. 2020, 28, 102–116. [Google Scholar] [CrossRef]
- Kharb, S.; Charan, S. Assessment of Animal Trials Conducted on Protectivity of Potential Sub-unit and Recombinant Vaccines against Pasteurella multocida B:2. Res. Rev. A J. Immunol. 2016, 6, 1–12. [Google Scholar]
- Kumar, B.; Chaturvedi, V.K.; Somrajan, S.R.; Kumar, P.; Sreedevi, R.; Kumar, S.; Kaushik, P. Comparative immune response of purified native OmpH protein derived from Pasteurella multocida P52 and oil adjuvant vaccine against hemorrhagic septicemia in mice. Indian J. Anim. Sci. 2011, 81, 1193–1196. [Google Scholar]
- Tomer, P.; Chaturvedi, G.C.; Minakshi, A.; Malik, P.; Monga, D.P. Comparative analysis of the outer membrane protein profiles of isolates of the Pasteurella multocida (B:2) associated with haemorrhagic septicaemia. Vet. Res. Commun. 2002, 26, 513–522. [Google Scholar] [CrossRef] [PubMed]
- Yasin, I.S.M.; Yusoff, S.M.; Mohd, Z.S.; Wahid Mohd, E.A. Efficacy of an inactivated recombinant vaccine encoding a fimbrial protein of Pasteurella multocida B:2 against hemorrhagic septicemia in goats. Trop. Anim. Health Prod. 2011, 43, 179–187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shivachandra, S.B.; Yogisharadhya, R.; Ahuja, A.; Bhanuprakash, V. Expression and purification of recombinant type IV fimbrial subunit protein of Pasteurella multocida serogroup B:2 in Escherichia coli. Res. Vet. Sci. 2012, 93, 1128–1131. [Google Scholar] [CrossRef] [PubMed]
- Sujatha, N.; Kavitha, K.L.; Subramanyam, K.V.; Rao, T.S.; Pushpa, R.N.R. Virulence gene pattern of Pasteurella multocida isolates of buffalo in association to capsule biosynthesis genes. Indian J. Anim. Res. 2021, 55, 469–473. [Google Scholar] [CrossRef]
- Hussaini, J.; Nazmul, M.H.M.; Mahmood, A.A.; Salmah, I. Recombinant Clone ABA392 protects laboratory animals from Pasteurella multocida Serotype B. African J. Microbiol. Res. 2011, 5, 2596–2599. [Google Scholar] [CrossRef] [Green Version]
- Hussaini, J.; Abdullah, M.A.; Ismail, S. Expression and immunogenicity determination of recombinant clone of Pasteurella multocida serotype b against Haemorrhagic septicaemia: Towards a vaccine development. J. Anim. Vet. Adv. 2012, 11, 351–356. [Google Scholar] [CrossRef]
- Rita, D.V.; Swee, K.C.W.; Shamini, C.; Kang, T.L.; Nurshamimi, N.R.; Hussin, A.R.; Nurul, K.; Salmah, I. A recombinant subunit HS aba392 as a potential vaccine for haemorrhagic septicaemia disease in livestock. Trop. Biomed. 2018, 35, 1075–1086. [Google Scholar]
- Singh, R.; Tewari, K.; Packiriswamy, N.; Marla, S.; Rao, V.D. Molecular characterization and computational analysis of the major outer membrane protein (ompH) gene of Pasteurella multocida P52. Vet. Arh. 2011, 81, 211–222. [Google Scholar]
- Joshi, S.; Tewari, K.; Singh, R. Comparative immunogenicity and protective efficacy of different preparations of outer membrane proteins of Pasteurella multocida (B:2) in a mouse model. Vet. Arh. 2013, 83, 665–676. [Google Scholar]
- Saxena, A.; Archana, Y.; Saxena, M.K.; Shantanu, T.; Ruby, S.; Rajesh, K.; Anita, S.; Velagapuddi, R.; Bhaskar, S. Cloning, in silico analysis, expression and testing of immune-potential of outer membrane protein (Omp 87) of Pasteurella multocida serotype B: 2. Ann. Biol. Res. 2014, 5, 54–61. [Google Scholar]
- Muangthai, K.; Tankaew, P.; Varinrak, T.; Uthi, R.; Rojanasthien, S.; Sawada, T.; Sthitmatee, N. Intranasal immunization with a recombinant outer membrane protein H based haemorrhagic septicemia vaccine in dairy calves. J. Vet. Med. Sci. 2017, 80, 68–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohanty, N.N.; Yogisharadhya, R.; Shivachandra, S.B. Immunogenicity of recombinant outer membrane protein (OmpW) of Pasteurella multocida serogroup B:2 in mouse model. Indian J. Anim. Sci. 2019, 89, 1073–1077. [Google Scholar]
- Jennings, G.T.; Bachmann, M.F. The coming of age of virus-like particle vaccines. Biol. Chem. 2008, 389, 521–536. [Google Scholar] [CrossRef] [PubMed]
- Caldeira, J.C.; Perrine, M.; Pericle, F.; Cavallo, F. Virus-like particles as an immunogenic platform for cancer vaccines. Viruses 2020, 12, 488. [Google Scholar] [CrossRef]
- Noad, R.; Roy, P. Virus-like particles as immunogens. Trends Microbiol. 2003, 11, 438–444. [Google Scholar] [CrossRef]
- Buonaguro, L.; Tornesello, M.L.; Buonaguro, F.M. Virus-like particles as particulate vaccines. Curr. HIV Res. 2010, 8, 299–309. [Google Scholar] [CrossRef]
- Le, D.T.; Müller, K.M. In Vitro assembly of virus-like particles and their applications. Life 2021, 11, 334. [Google Scholar] [CrossRef]
- Mohsen, M.O.; Zha, L.; Cabral-Miranda, G.; Bachmann, M.F. Major findings and recent advances in virus-like particle (VLP)-based vaccines. Semin. Immunol. 2017, 34, 123–132. [Google Scholar] [CrossRef]
- Wang, J.W.; Roden, R.B.S.; Tornesello, M.L.; Buonaguro, F.M. Virus-like particle vaccines for the prevention of human papillomavirus infection. In Virus-like Particles in Vaccine Development; Future Medicine: London, UK, 2014; pp. 22–34. [Google Scholar]
- Bárcena, J.; Blanco, E. Design of novel vaccines based on virus-like particles or chimeric virions. Struct. Phys. Viruses 2013, 631–665. [Google Scholar]
- Roldão, A.; Mellado, M.C.M.; Castilho, L.R.; Carrondo, M.J.; Alves, P.M. Virus-like particles in vaccine development. Expert Rev. Vaccines 2010, 9, 1149–1176. [Google Scholar] [CrossRef]
- Zeltins, A. Construction and characterization of virus-like particles: A review. Mol. Biotechnol. 2013, 53, 92–107. [Google Scholar] [CrossRef]
- Bachmann, M.F.; Jennings, G.T. Vaccine delivery: A matter of size, geometry, kinetics and molecular patterns. Nat. Rev. Immunol. 2010, 10, 787–796. [Google Scholar] [CrossRef] [PubMed]
- Donaldson, B.; Lateef, Z.; Walker, G.F.; Young, S.L.; Ward, V.K. Virus-like particle vaccines: Immunology and formulation for clinical translation. Expert Rev. Vaccines 2018, 17, 833–849. [Google Scholar] [CrossRef] [PubMed]
- Nooraei, S.; Bahrulolum, H.; Hoseini, Z.S.; Katalani, C.; Hajizade, A.; Easton, A.J.; Ahmadian, G. Virus-like particles: Preparation, immunogenicity and their roles as nanovaccines and drug nanocarriers. J. Nanobiotechnol. 2021, 19, 59. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.J.; Kim, J.Y.; Kye, S.J.; Seul, H.J.; Jung, S.C.; Choi, K.S. Efficient self-assembly and protective efficacy of infectious bursal disease virus-like particles by a recombinant baculovirus co-expressing precursor polyprotein and VP4. Virol. J. 2015, 12, 177. [Google Scholar] [CrossRef] [Green Version]
- Crisci, E.; Bárcena, J.; Montoya, M. Virus-like particles: The new frontier of vaccines for animal viral infections. Vet. Immunol. Immunopathol. 2012, 148, 211–225. [Google Scholar] [CrossRef]
- Qian, C.; Liu, X.; Xu, Q.; Wang, Z.; Chen, J.; Li, T.; Zheng, Q.; Yu, H.; Gu, Y.; Li, S.; et al. Recent progress on the versatility of virus-like particles. Vaccines 2020, 8, 139. [Google Scholar] [CrossRef] [Green Version]
- Shirbaghaee, Z.; Bolhassani, A. Different applications of virus-like particles in biology and medicine: Vaccination and delivery systems. Biopolymers 2016, 105, 113–132. [Google Scholar] [CrossRef]
- Zaki, S.S.M.; Ruslan, N.D.; Zakaria, H.A.; Abd Wahid, M.E.; Addis, S.N.K. Expression of murine polyomavirus-like particles with fimbrial protein of Pasteurella multocida. Malays. Appl. Biol. 2017, 46, 179–185. [Google Scholar]
Recombinant Clone | Gene Size (bp) | Expressed Protein Size (kDa) | Animal Model Study for Immunogenicity | References |
---|---|---|---|---|
ptfA | 435 | 18 | rabbits | [34] |
rOmpH | 980 | 37 | mice | [38] |
pET32/LICfimbrial | 450 | 33 | goat | [93] |
rOmpH | 1002 | 33.7 | mice | [99] |
CSI57J (ABA392) | 921 | 26 | mice | [97] |
pPtfA | 414 | 31 | pigs, sheep and goats | [94] |
rOmpH | 942 | 34 | mice | [100] |
rOmp87 | 2304 | 102 | mice | [80] |
pQE 30-omp87 | 2300 | 80 | N/A | [101] |
rVacJ | 699 | 44 | mice | [81] |
rTbpA | 2244 | 103 | mice | [82] |
rOmp16 | 411 | 32 | mice | [83] |
rOmpH | 960 | 37 | calves | [102] |
ABA392-pET30a | 804 | 32 | rat | [98] |
rOmpW | 519 | 37 | mice | [103] |
rOmpH | 960 | 37 | buffaloes | [27] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almoheer, R.; Abd Wahid, M.E.; Zakaria, H.A.; Jonet, M.A.B.; Al-shaibani, M.M.; Al-Gheethi, A.; Addis, S.N.K. Spatial, Temporal, and Demographic Patterns in the Prevalence of Hemorrhagic Septicemia in 41 Countries in 2005–2019: A Systematic Analysis with Special Focus on the Potential Development of a New-Generation Vaccine. Vaccines 2022, 10, 315. https://doi.org/10.3390/vaccines10020315
Almoheer R, Abd Wahid ME, Zakaria HA, Jonet MAB, Al-shaibani MM, Al-Gheethi A, Addis SNK. Spatial, Temporal, and Demographic Patterns in the Prevalence of Hemorrhagic Septicemia in 41 Countries in 2005–2019: A Systematic Analysis with Special Focus on the Potential Development of a New-Generation Vaccine. Vaccines. 2022; 10(2):315. https://doi.org/10.3390/vaccines10020315
Chicago/Turabian StyleAlmoheer, Reyad, Mohd Effendy Abd Wahid, Hidayatul Aini Zakaria, Mohd Anuar Bin Jonet, Muhanna Mohammed Al-shaibani, Adel Al-Gheethi, and Siti Nor Khadijah Addis. 2022. "Spatial, Temporal, and Demographic Patterns in the Prevalence of Hemorrhagic Septicemia in 41 Countries in 2005–2019: A Systematic Analysis with Special Focus on the Potential Development of a New-Generation Vaccine" Vaccines 10, no. 2: 315. https://doi.org/10.3390/vaccines10020315
APA StyleAlmoheer, R., Abd Wahid, M. E., Zakaria, H. A., Jonet, M. A. B., Al-shaibani, M. M., Al-Gheethi, A., & Addis, S. N. K. (2022). Spatial, Temporal, and Demographic Patterns in the Prevalence of Hemorrhagic Septicemia in 41 Countries in 2005–2019: A Systematic Analysis with Special Focus on the Potential Development of a New-Generation Vaccine. Vaccines, 10(2), 315. https://doi.org/10.3390/vaccines10020315