Multiple Sclerosis Patients and Disease Modifying Therapies: Impact on Immune Responses against COVID-19 and SARS-CoV-2 Vaccination
Abstract
:1. Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2)
1.1. Ethiology of COVID-19 Disease
1.2. Pathogenesis of SARS-CoV-2
1.3. Vaccine Platforms against COVID-19
2. Multiple Sclerosis
2.1. Cause and Risk Factors
2.2. Multiple Sclerosis and Infections
2.3. COVID-19 Disease in MS Patients
2.4. DMTs and COVID-19 Disease: Benefits-to-Risk Ratio
2.5. Effects of DNTs on Antibody Responses in COVID-19-Infected Patients
2.6. Effect of DMTs on Immunity against SARS-CoV-2 Vaccination
2.7. SARS-CoV-2 Vaccines’ Safety in MS Patients
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alam, T.; Qamar, S. Coronavirus Disease (COVID-19): Reviews, Applications, and Current Status. J. Inform. Univ. Pamulang 2020, 5, 213–219. [Google Scholar] [CrossRef]
- Garosi, V.H.; Tanhaie, S.; Chaboksavar, F.; Kamari, T.; Gheshlaghi, P.A.; Toghroli, R.; Soltaninezhad, S.; Azizi, S.A.; Yazdani, V.; Mahmoodi, F. An overview of 2019 novel coronavirus COVID-19 pandemic: A review study. J. Educ Health Promot. 2021, 10, 280. [Google Scholar] [PubMed]
- Shi, Y.; Wang, G.; Cai, X.P.; Deng, J.W.; Zheng, L.; Zhu, H.H.; Zheng, M.; Yang, B.; Chen, Z. An overview of COVID-19. J. Zhejiang Univ. Sci. B 2020, 21, 343–360. [Google Scholar] [CrossRef] [PubMed]
- Singhal, T. A Review of Coronavirus Disease-2019 (COVID-19). Indian J. Pediatr. 2020, 87, 281–286. [Google Scholar] [CrossRef] [Green Version]
- Coronavirus Worldometers [Internet]. 2022. Available online: https://www.worldometers.info/coronavirus/ (accessed on 1 February 2022).
- WHO. WHO Coronavirus (COVID-19) Dashboard 2022. Available online: https://covid19.who.int/ (accessed on 1 February 2022).
- WHO. Estimating Mortality from COVID-19 2020. Available online: https://www.who.int/news-room/commentaries/detail/estimating-mortality-from-covid-19 (accessed on 1 February 2022).
- Ioannidis, J.P.A. Infection fatality rate of COVID-19 inferred from seroprevalence data. Bull. World Health Organ. 2021, 99, 19F–33F. [Google Scholar] [CrossRef]
- Dos Santos, W.G. Impact of virus genetic variability and host immunity for the success of COVID-19 vaccines. Biomed. Pharmacother. 2021, 136, 111272. [Google Scholar] [CrossRef]
- Shanmugaraj, B.; Siriwattananon, K.; Wangkanont, K.; Phoolcharoen, W. Perspectives on monoclonal antibody therapy as potential therapeutic intervention for Coronavirus disease-19 (COVID-19). Asian Pac. J. Allergy Immunol. 2020, 38, 10–18. [Google Scholar] [CrossRef]
- Anand, U.; Jakhmola, S.; Indari, O.; Jha, H.C.; Chen, Z.S.; Tripathi, V.; de la Lastra, J.M.P. Potential Therapeutic Targets and Vaccine Development for SARS-CoV-2/COVID-19 Pandemic Management: A Review on the Recent Update. Front. Immunol. 2021, 12, 658519. [Google Scholar] [CrossRef]
- Xiao, K.; Zhai, J.; Feng, Y.; Zhou, N.; Zhang, X.; Zou, J.J.; Li, N.; Guo, Y.; Li, X.; Shen, X.; et al. Isolation of SARS-CoV-2-related coronavirus from Malayan pangolins. Nature 2020, 583, 286–289. [Google Scholar] [CrossRef]
- Li, L.; Wang, X.; Hua, Y.; Liu, P.; Zhou, J.; Chen, J.; An, F.; Hou, F.; Huang, W.; Chen, J. Epidemiological Study of Betacoronaviruses in Captive Malayan Pangolins. Front. Microbiol. 2021, 12, 657439. [Google Scholar] [CrossRef]
- Hatmi, Z.N. A Systematic Review of Systematic Reviews on the COVID-19 Pandemic. SN Compr. Clin. Med. 2021, 3, 419–436. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, S.; Hafeez, A.; Siddqui, S.A.; Ahmad, M.; Mishra, S. A Review of COVID-19 (Coronavirus Disease-2019) Diagnosis, Treatments and Prevention. Eur. J. Med. Oncol. 2020, 4, 116–125. [Google Scholar] [CrossRef]
- Pascarella, G.; Strumia, A.; Piliego, C.; Bruno, F.; Del Buono, R.; Costa, F.; Scarlata, S.; Agrò, F.E. COVID-19 diagnosis and management: A comprehensive review. J. Intern. Med. 2020, 288, 192–206. [Google Scholar] [CrossRef] [PubMed]
- Ortiz-Prado, E.; Simbana-Rivera, K.; Gomez-Barreno, L.; Rubio-Neira, M.; Guaman, L.P.; Kyriakidis, N.C.; Muslin, C.; Jaramillo, A.M.G.; Barba-Ostria, C.; Cevallos-Robalino, D.; et al. Clinical, molecular, and epidemiological characterization of the SARS-CoV-2 virus and the Coronavirus Disease 2019 (COVID-19), a comprehensive literature review. Diagn Microbiol Infect. Dis. 2020, 98, 115094. [Google Scholar] [CrossRef]
- Sellner, J.; Rommer, P.S. Multiple Sclerosis and SARS-CoV-2 Vaccination: Considerations for Immune-Depleting Therapies. Vaccines 2021, 9, 99. [Google Scholar] [CrossRef]
- Su, J.; Lu, H. Opportunities and challenges to the use of neutralizing monoclonal antibody therapies for COVID-19. Biosci. Trends 2021, 15, 205–210. [Google Scholar] [CrossRef]
- Harvey, W.T.; Carabelli, A.; Jackson, B.; Gupta, R.; Thomson, E.C.; Harrison, E.M.; Ludden, C.; Reeve, R.; Rambaut, A.; Peacock, S.; et al. SARS-CoV-2 variants, spike mutations and immune escape. Nat. Rev. Microbiol. 2021, 19, 409–424. [Google Scholar] [CrossRef]
- Baker, D.; Roberts, C.A.; Pryce, G.; Kang, A.S.; Marta, M.; Reyes, S.; Schmierer, K.; Giovannoni, G.; Amor, S. COVID-19 vaccine-readiness for anti-CD20-depleting therapy in autoimmune diseases. Clin. Exp. Immunol. 2020, 202, 149–161. [Google Scholar] [CrossRef]
- Sette, A.; Crotty, S. Adaptive immunity to SARS-CoV-2 and COVID-19. Cell 2021, 184, 861–880. [Google Scholar] [CrossRef]
- Bellucci, G.; Rinaldi, V.; Buscarinu, M.C.; Renie, R.; Bigi, R.; Pellicciari, G.; Morena, E.; Romano, C.; Marrone, A.; Mechelli, R.; et al. Multiple Sclerosis and SARS-CoV-2: Has the Interplay Started? Front. Immunol. 2021, 12, 755333. [Google Scholar] [CrossRef]
- Kuri-Cervantes, L.; Pampena, M.B.; Meng, W.; Rosenfeld, A.M.; Ittner, C.A.G.; Weisman, A.R.; Agyekum, R.S.; Mathew, D.; Baxter, A.E.; Vella, L.A.; et al. Comprehensive mapping of immune perturbations associated with severe COVID-19. Sci. Immunol. 2020, 5, eabd7114. [Google Scholar] [CrossRef] [PubMed]
- Wolf, A.; Alvarez, E. COVID-19 Vaccination in Patients with Multiple Sclerosis on Disease-Modifying Therapy. Neurol. Clin. Pr. 2021, 11, 358–361. [Google Scholar] [CrossRef] [PubMed]
- Preziosa, P.; Rocca, M.A.; Filippi, M. COVID-19 will change MS care forever—No. Mult. Scler. J. 2020, 26, 1149–1151. [Google Scholar] [CrossRef] [PubMed]
- Centonze, D.; Rocca, M.A.; Gasperini, C.; Kappos, L.; Hartung, H.P.; Magyari, M.; Oreja-Guevara, C.; Trojano, M.; Wiendl, H.; Filippi, M. Disease-modifying therapies and SARS-CoV-2 vaccination in multiple sclerosis: An expert consensus. J. Neurol. 2021, 268, 3961–3968. [Google Scholar] [CrossRef]
- Hughes, R.; Whitley, L.; Fitovski, K.; Schneble, H.-M.; Muros, E.; Sauter, A.; Craveiro, L.; Dillon, P.; Bonati, U.; Jessop, N.; et al. COVID-19 in ocrelizumab-treated people with multiple sclerosis. Mult. Scler. Relat. Disord. 2021, 49, 102725. [Google Scholar] [CrossRef]
- Hollenbach, J.A.; Oksenberg, J.R. The immunogenetics of multiple sclerosis: A comprehensive review. J. Autoimmun. 2015, 64, 13–25. [Google Scholar] [CrossRef] [Green Version]
- Dobson, R.; Giovannoni, G. Multiple sclerosis—A review. Eur. J. Neurol. 2019, 26, 27–40. [Google Scholar] [CrossRef] [Green Version]
- Hauser, S.L.; Cree, B.A. Treatment of Multiple Sclerosis: A Review. Am. J. Med. 2020, 133, 1380–1390.e2. [Google Scholar] [CrossRef]
- Walton, C.; King, R.; Rechtman, L.; Kaye, W.; Leray, E.; Marrie, R.A.; Robertson, N.; La Rocca, N.; Uitdehaag, B.; Van Der Mei, I.; et al. Rising prevalence of multiple sclerosis worldwide: Insights from the Atlas of MS, third edition. Mult. Scler. J. 2020, 26, 1816–1821. [Google Scholar] [CrossRef]
- Rachel King, P.B.; Rijke, N.; Napier, C.A.; Walton, C.; Helme, A.; Gilbert, V.; Burr, Z.; Dobson, S. PART 1: Mapping multiple sclerosis around the world key epidemiology findings. In Atlas of MS, 3rd ed.; The Multiple Sclerosis International Federation (MSIF): London, UK, 2020. [Google Scholar]
- Coyle, P.K.; Gocke, A.; Vignos, M.; Newsome, S.D. Vaccine Considerations for Multiple Sclerosis in the COVID-19 Era. Adv. Ther. 2021, 38, 3550–3588. [Google Scholar] [CrossRef]
- Otero-Romero, S.; Ascherio, A.; Lebrun-Frénay, C. Vaccinations in multiple sclerosis patients receiving disease-modifying drugs. Curr. Opin. Neurol. 2021, 34, 322–328. [Google Scholar] [CrossRef] [PubMed]
- Moiola, L.; Barcella, V.; Benatti, S.; Capobianco, M.; Capra, R.; Cinque, P.; Comi, G.; Fasolo, M.M.; Franzetti, F.; Galli, M.; et al. The risk of infection in patients with multiple sclerosis treated with disease-modifying therapies: A Delphi consensus statement. Mult. Scler. J. 2021, 27, 331–346. [Google Scholar] [CrossRef] [PubMed]
- Winkelmann, A.; Loebermann, M.; Reisinger, M.L.E.C.; Hartung, H.-P.; Zettl, A.W.U.K. Disease-modifying therapies and infectious risks in multiple sclerosis. Nat. Rev. Neurol. 2016, 12, 217–233. [Google Scholar] [CrossRef] [PubMed]
- Maghzi, A.H.; Houtchens, M.K.; Preziosa, P.; Ionete, C.; Beretich, B.D.; Stankiewicz, J.M.; Tauhid, S.; Cabot, A.; Berriosmorales, I.; Schwartz, T.H.W.; et al. COVID-19 in teriflunomide-treated patients with multiple sclerosis. J. Neurol. 2020, 267, 2790–2796. [Google Scholar] [CrossRef]
- Bollo, L.; Guerra, T.; Bavaro, D.F.; Monno, L.; Saracino, A.; Angarano, G.; Paolicelli, D.; Trojano, M.; Iaffaldano, P. Seroconversion and indolent course of COVID-19 in patients with multiple sclerosis treated with fingolimod and teriflunomide. J. Neurol. Sci. 2020, 416, 117011. [Google Scholar] [CrossRef]
- Ciardi, M.R.; Zingaropoli, M.A.; Pasculli, P.; Perri, V.; Tartaglia, M.; Valeri, S.; Russo, G.; Conte, A.; Mastroianni, C.M. The peripheral blood immune cell profile in a teriflunomide-treated multiple sclerosis patient with COVID-19 pneumonia. J. Neuroimmunol. 2020, 346, 577323. [Google Scholar] [CrossRef]
- Simpson-Yap, S.; De Brouwer, E.; Kalincik, T.; Rijke, N.; Hillert, J.A.; Walton, C.; Edan, G.; Moreau, Y.; Spelman, T.; Geys, L.; et al. Associations of Disease-Modifying Therapies With COVID-19 Severity in Multiple Sclerosis. Neurology 2021, 97, e1870–e1885. [Google Scholar] [CrossRef]
- Dersch, R.; Wehrum, T.; Fähndrich, S.; Engelhardt, M.; Rauer, S.; Berger, B. COVID-19 pneumonia in a multiple sclerosis patient with severe lymphopenia due to recent cladribine treatment. Mult. Scler. J. 2020, 26, 1264–1266. [Google Scholar] [CrossRef]
- Sharifian-Dorche, M.; Sahraian, M.A.; Fadda, G.; Osherov, M.; Sharifian-Dorche, A.; Karaminia, M.; Saveriano, A.W.; La Piana, R.; Antel, J.P.; Giacomini, P.S. COVID-19 and disease-modifying therapies in patients with demyelinating diseases of the central nervous system: A systematic review. Mult. Scler. Relat. Disord. 2021, 50, 102800. [Google Scholar] [CrossRef]
- Sormani, M.P.; Schiavetti, I.; Carmisciano, L.; Cordioli, C.; Filippi, M.; Radaelli, M.; Immovilli, P.; Capobianco, M.; De Rossi, N.; Brichetto, G.; et al. COVID-19 Severity in Multiple Sclerosis: Putting Data Into Context. Neurol. Neuroimmunol. Neuroinflamm. 2022, 9, e1105. [Google Scholar] [CrossRef]
- Kyriakidis, N.C.; Lopez-Cortes, A.; Gonzalez, E.V.; Grimaldos, A.B.; Prado, E.O. SARS-CoV-2 vaccines strategies: A comprehensive review of phase 3 candidates. NPJ Vaccines 2021, 6, 28. [Google Scholar] [CrossRef] [PubMed]
- Hodgson, S.H.; Mansatta, K.; Mallett, G.; Harris, V.; Emary, K.R.W.; Pollard, A.J. What defines an efficacious COVID-19 vaccine? A review of the challenges assessing the clinical efficacy of vaccines against SARS-CoV-2. Lancet Infect. Dis. 2021, 21, e26–e35. [Google Scholar] [CrossRef]
- Pascual-Iglesias, A.; Canton, J.; Ortega-Prieto, A.M.; Jimenez-Guardeno, J.M.; Regla-Nava, J.A. An Overview of Vaccines against SARS-CoV-2 in the COVID-19 Pandemic Era. Pathogens 2021, 10, 1030. [Google Scholar] [CrossRef] [PubMed]
- Zabalza, A.; Cárdenas-Robledo, S.; Tagliani, P.; Arrambide, G.; Otero-Romero, S.; Carbonell-Mirabent, P.; Rodriguez-Barranco, M.; Rodríguez-Acevedo, B.; Vera, J.L.R.; Resina-Salles, M.; et al. COVID-19 in multiple sclerosis patients: Susceptibility, severity risk factors and serological response. Eur. J. Neurol. 2021, 28, 3384–3395. [Google Scholar] [CrossRef]
- Cabreira, V.; Abreu, P.; Soares-Dos-Reis, R.; Guimarães, J.; Sá, M. Multiple Sclerosis, Disease-Modifying Therapies and COVID-19: A Systematic Review on Immune Response and Vaccination Recommendations. Vaccines 2021, 9, 773. [Google Scholar] [CrossRef]
- Giovannoni, G.; Hawkes, C.; Lechner-Scott, J.; Levy, M.; Waubant, E.; Gold, J. The COVID-19 pandemic and the use of MS disease-modifying therapies. Mult. Scler. Relat. Disord. 2020, 39, 102073. [Google Scholar] [CrossRef]
- Tasat, D.R.; Yakisich, J.S. Rationale for the use of sphingosine analogues in COVID-19 patients. Clin. Med. 2021, 21, e84–e87. [Google Scholar] [CrossRef]
- Capone, F.; Motolese, F.; Luce, T.; Rossi, M.; Magliozzi, A.; Di Lazzaro, V. COVID-19 in teriflunomide-treated patients with multiple sclerosis: A case report and literature review. Mult. Scler. Relat. Disord. 2021, 48, 102734. [Google Scholar] [CrossRef]
- Mantero, V.; Abate, L.; Salmaggi, A.; Cordano, C. Multiple sclerosis and COVID-19: How could therapeutic scenarios change during the pandemic? J. Med. Virol. 2021, 93, 1847–1849. [Google Scholar] [CrossRef]
- Mares, J.; Hartung, H.-P. Multiple sclerosis and COVID-19. Biomed. Pap. 2020, 164, 217–225. [Google Scholar] [CrossRef]
- Barzegar, M.; Mirmosayyeb, O.; Gajarzadeh, M.; Afshari-Safavi, A.; Nehzat, N.; Vaheb, S.; Shaygannejad, V.; Maghzi, A.H. COVID-19 Among Patients With Multiple Sclerosis: A Systematic Review. Neurol. Neuroimmunol. Neuroinflamm. 2021, 8, e1001. [Google Scholar] [CrossRef] [PubMed]
- Sormani, M.P.; De Rossi, N.; Schiavetti, I.; Carmisciano, L.; Cordioli, C.; Moiola, L.; Radaelli, M.; Immovilli, P.; Capobianco, M.; Trojano, M.; et al. Disease-Modifying Therapies and Coronavirus Disease 2019 Severity in Multiple Sclerosis. Ann. Neurol. 2021, 89, 780–789. [Google Scholar] [CrossRef] [PubMed]
- Giovannoni, G.; Hawkes, C.H.; Lechner-Scott, J.; Levy, M.; Yeh, E.A.; Baker, D. COVID-19 vaccines and multiple sclerosis disease-modifying therapies. Mult. Scler. Relat. Disord. 2021, 53. [Google Scholar] [CrossRef] [PubMed]
- Mado, H.; Adamczyk-Sowa, M. Multiple sclerosis patients and COVID-19. Egypt. J. Neurol. Psychiatry Neurosurg. 2021, 57, 43. [Google Scholar] [CrossRef] [PubMed]
- Mantero, V.; Baroncini, D.; Balgera, R.; Guaschino, C.; Basilico, P.; Annovazzi, P.; Zaffaroni, M.; Salmaggi, A.; Cordano, C. Mild COVID-19 infection in a group of teriflunomide-treated patients with multiple sclerosis. J. Neurol. 2021, 268, 2029–2030. [Google Scholar] [CrossRef] [PubMed]
- Möhn, N.; Pul, R.; Kleinschnitz, C.; Prüss, H.; Witte, T.; Stangel, M.; Skripuletz, T. Implications of COVID-19 Outbreak on Immune Therapies in Multiple Sclerosis Patients—Lessons Learned From SARS and MERS. Front. Immunol. 2020, 11, 1059. [Google Scholar] [CrossRef] [PubMed]
- Kulikowska, J.; Kulczyńska-Przybik, A.; Mroczko, B.; Kułakowska, A. The Significance of COVID-19 Immunological Status in Severe Neurological Complications and Multiple Sclerosis—A Literature Review. Int. J. Mol. Sci. 2021, 22, 5894. [Google Scholar] [CrossRef]
- Gelibter, S.; Orrico, M.; Filippi, M.; Moiola, L. COVID-19 with no antibody response in a multiple sclerosis patient treated with cladribine: Implication for vaccination program? Mult. Scler. Relat. Disord. 2021, 49, 102775. [Google Scholar] [CrossRef]
- De Angelis, M.; Petracca, M.; Lanzillo, R.; Brescia Morra, V.; Moccia, M. Mild or no COVID-19 symptoms in cladribine-treated multiple sclerosis: Two cases and implications for clinical practice. Mult. Scler. Relat. Disord. 2020, 45, 102452. [Google Scholar] [CrossRef]
- Preziosa, P.; Rocca, M.A.; Nozzolillo, A.; Moiola, L.; Filippi, M. COVID-19 in cladribine-treated relapsing-remitting multiple sclerosis patients: A monocentric experience. J. Neurol. 2021, 268, 2697–2699. [Google Scholar] [CrossRef]
- Jack, D.; Nolting, A.; Galazka, A. Favorable outcomes after COVID-19 infection in multiple sclerosis patients treated with cladribine tablets. Mult. Scler. Relat. Disord. 2020, 46, 102469. [Google Scholar] [CrossRef] [PubMed]
- Celius, E.G. Normal antibody response after COVID-19 during treatment with cladribine. Mult. Scler. Relat. Disord. 2020, 46, 102476. [Google Scholar] [CrossRef] [PubMed]
- Flores-Gonzalez, R.E.; Hernandez, J.; Tornes, L.; Rammohan, K.; Delgado, S. Development of SARS-CoV-2 IgM and IgG antibodies in a relapsing multiple sclerosis patient on ofatumumab. Mult. Scler. Relat. Disord. 2021, 49, 102777. [Google Scholar] [CrossRef] [PubMed]
- MarraMS, A.R.; Kobayashi, T.; Suzuki, H.; Alsuhaibani, M.; Tofaneto, B.M.; Bariani, L.M.; Auler, M.d.A.; Salinas, J.L.; Edmond, M.B.; Doll, M.; et al. Short-term effectiveness of COVID-19 vaccines in immunocompromised patients: A systematic literature review and meta-analysis. J. Infect. 2021; Online ahead of print. [Google Scholar] [CrossRef]
- Galmiche, S.; Nguyen, L.B.L.; Tartour, E.; de Lamballerie, X.; Wittkop, L.; Loubet, P.; Launay, O. Immunological and clinical efficacy of COVID-19 vaccines in immunocompromised populations: A systematic review. Clin. Microbiol. Infect. 2021, 28, 163–177. [Google Scholar] [CrossRef]
- Ciotti, J.R.; Valtcheva, M.V.; Cross, A.H. Effects of MS disease-modifying therapies on responses to vaccinations: A review. Mult. Scler. Relat. Disord. 2020, 45, 102439. [Google Scholar] [CrossRef] [PubMed]
- Tazza, F.; Lapucci, C.; Cellerino, M.; Boffa, G.; Novi, G.; Poire, I.; Mancuso, E.; Bruschi, N.; Sbragia, E.; Laroni, A.; et al. Personalizing ocrelizumab treatment in Multiple Sclerosis: What can we learn from Sars-Cov2 pandemic? J. Neurol. Sci. 2021, 427, 117501. [Google Scholar] [CrossRef]
- Negahdaripour, M.; Shafiekhani, M.; Moezzi, S.M.I.; Amiri, S.; Rasekh, S.; Bagheri, A.; Mosaddeghi, P.; Vazin, A. Administration of COVID-19 Vaccines in ImmunocompromisedPatients. Int. Immunopharmacol. 2021, 99, 108021. [Google Scholar] [CrossRef]
- Disanto, G.; Sacco, R.; Bernasconi, E.; Martinetti, G.; Keller, F.; Gobbi, C.; Zecca, C. Association of Disease-Modifying Treatment and Anti-CD20 Infusion Timing With Humoral Response to 2 SARS-CoV-2 Vaccines in Patients With Multiple Sclerosis. JAMA Neurol. 2021, 78, 1529–1531. [Google Scholar] [CrossRef]
- Herishanu, Y.; Rahav, G.; Levi, S.; Braester, A.; Itchaki, G.; Bairey, O.; Dally, N.; Shvidel, L.; Ziv-Baran, T.; Polliack, A.; et al. Efficacy of a Third BNT162b2 mRNA COVID-19 Vaccine Dose in Patients with CLL who Failed Standard Two-dose Vaccination. Blood 2021, 139, 678–685. [Google Scholar] [CrossRef]
- Konig, M.; Torgauten, H.M.; Tran, T.T.; Holmoy, T.; Vaage, J.T.; Lund-Johansen, F.; Nygaard, G.O. Immunogenicity and Safety of a Third SARS-CoV-2 Vaccine Dose in Patients With Multiple Sclerosis and Weak Immune Response After COVID-19 Vaccination. JAMA Neurol. 2022, 24, 215109. [Google Scholar] [CrossRef] [PubMed]
- Connolly, C.M.; Teles, M.; Frey, S.; Boyarsky, B.J.; Alejo, J.L.; Werbel, W.A.; Albayda, J.; Christopher-Stine, L.; Garonzik-Wang, J.; Segev, D.L.; et al. Booster-dose SARS-CoV-2 vaccination in patients with autoimmune disease: A case series. Ann. Rheum Dis. 2022, 81, 291–293. [Google Scholar] [CrossRef] [PubMed]
- Jespers, V.L.R.; Hulstaert, F.; Wyndham Thomas, C.; Van Montfort, T.; Van Damme, P.; Dogné, J.M.; Soentjens, P.; Ramaekers, D. Rapid Review of the Evidence on a COVID-19 Booster dose after a Primary Vaccination Schedule. 2021. Available online: https://kce.fgov.be/sites/default/files/atoms/files/Third%20Covid-19%20vaccination_Report_DUTCH.pdf (accessed on 27 January 2022).
- Shapiro, L.C.; Thakkar, A.; Campbell, S.T.; Forest, S.K.; Pradhan, K.; Gonzalez-Lugo, J.D.; Quinn, R.; Bhagat, T.D.; Choudhary, G.S.; McCort, M.; et al. Efficacy of booster doses in augmenting waning immune responses to COVID-19 vaccine in patients with cancer. Cancer Cell 2021, 40, 3–5. [Google Scholar] [CrossRef] [PubMed]
- Marlet, J.; Gatault, P.; Maakaroun, Z.; Longuet, H.; Stefic, K.; Handala, L.; Eymieux, S.; Gyan, E.; Dartigeas, C.; Gaudy-Graffin, C. Antibody Responses after a Third Dose of COVID-19 Vaccine in Kidney Transplant Recipients and Patients Treated for Chronic Lymphocytic Leukemia. Vaccines 2021, 9, 1055. [Google Scholar] [CrossRef] [PubMed]
- Ahaley, S. An Investigation of Three SARS-CoV-2 mRNA doses in Multiple Sclerosis Vaccine Non-Responders 2021. Available online: https://www.news-medical.net/news/20211020/An-investigation-of-three-SARS-CoV-2-mRNA-doses-in-multiple-sclerosis-vaccine-non-responders.aspx (accessed on 27 January 2022).
- Werbel, W.A.; Boyarsky, B.J.; Ou, M.T.; Massie, A.B.; Tobian, A.A.R.; Garonzik-Wang, J.M.; Segev, D.L. Safety and Immunogenicity of a Third Dose of SARS-CoV-2 Vaccine in Solid Organ Transplant Recipients: A Case Series. Ann. Intern. Med. 2021, 174, 1330–1332. [Google Scholar] [CrossRef] [PubMed]
- Guerrieri, S.; Lazzarin, S.; Zanetta, C.; Nozzolillo, A.; Filippi, M.; Moiola, L. Serological response to SARS-CoV-2 vaccination in multiple sclerosis patients treated with fingolimod or ocrelizumab: An initial real-life experience. J. Neurol. 2021, 269, 39–43. [Google Scholar]
- Apostolidis, S.A.; Kakara, M.; Painter, M.M.; Goel, R.R.; Mathew, D.; Lenzi, K.; Rezk, A.; Patterson, K.R.; Espinoza, D.A.; Kadri, J.C.; et al. Cellular and humoral immune responses following SARS-CoV-2 mRNA vaccination in patients with multiple sclerosis on anti-CD20 therapy. Nat. Med. 2021, 27, 1990–2001. [Google Scholar] [CrossRef]
- Moor, M.B.; Suter-Riniker, F.; Horn, M.P.; Aeberli, D.; Amsler, J.; Moller, B.; Njue, L.M.; Medri, C.; Angelillo-Scherrer, A.; Borradori, L.; et al. Humoral and cellular responses to mRNA vaccines against SARS-CoV-2 in patients with a history of CD20 B-cell-depleting therapy (RituxiVac): An investigator-initiated, single-centre, open-label study. Lancet Rheumatol. 2021, 3, e789–e797. [Google Scholar] [CrossRef]
- Tallantyre, E.C.V.N.; Anderson, V.; Asardag, A.N.; Baker, D.; Bestwick, J.; Bramhall, K.; Chance, R.; Evangelou, N.; George, K.; Giovannoni, G.; et al. COVID-19 vaccine response in people with multiple sclerosis. medRxiv 2021, 91, 89–100. [Google Scholar] [CrossRef]
- Gallo, A.; Capuano, R.; Donnarumma, G.; Bisecco, A.; Grimaldi, E.; Conte, M.; D’Ambrosio, A.; Galdiero, M.; Tedeschi, G. Preliminary evidence of blunted humoral response to SARS-Cov-2 (MRNA) vaccine in multiple sclerosis patients treated with ocrelizumab. J. Neurol. Sci. 2021, 429, 3523–3526. [Google Scholar] [CrossRef]
- Buttari, F.; Bruno, A.; Dolcetti, E.; Azzolini, F.; Bellantonio, P.; Centonze, D.; Fantozzi, R. COVID-19 vaccines in multiple sclerosis treated with cladribine or ocrelizumab. Mult. Scler. Relat. Disord. 2021, 52, 102983. [Google Scholar] [CrossRef] [PubMed]
- Etemadifar, M.; Sigari, A.A.; Sedaghat, N.; Salari, M.; Nouri, H. Acute relapse and poor immunization following COVID-19 vaccination in a rituximab-treated multiple sclerosis patient. Hum. Vaccines Immunother. 2021, 17, 3481–3483. [Google Scholar] [CrossRef] [PubMed]
- Achiron, A.; Mandel, M.; Dreyer-Alster, S.; Harari, G.; Magalashvili, D.; Sonis, P.; Dolev, M.; Menascu, S.; Flechter, S.; Falb, R.; et al. Humoral immune response to COVID-19 mRNA vaccine in patients with multiple sclerosis treated with high-efficacy disease-modifying therapies. Ther. Adv. Neurol. Disord. 2021, 14, 17562864211012835. [Google Scholar] [CrossRef]
- Capuano, R.; Donnarumma, G.; Bisecco, A.; Grimaldi, E.; Conte, M.; d’Ambrosio, A.; Matrone, F.; Risi, M.; Borgo, R.M.; Altieri, M.; et al. Humoral response to SARS-CoV-2 mRNA vaccine in patients with multiple sclerosis treated with natalizumab. Ther. Adv. Neurol. Disord. 2021, 14, 17562864211038111. [Google Scholar] [CrossRef]
- Bigaut, K.; Kremer, L.; Fleury, M.; Lanotte, L.; Collongues, N.; de Seze, J. Impact of disease-modifying treatments on humoral response after COVID-19 vaccination: A mirror of the response after SARS-CoV-2 infection. Rev. Neurol. 2021, 177, 1237–1240. [Google Scholar] [CrossRef] [PubMed]
- Katz, J.; Bouley, A.; Lathi, E.; Douglas, E.; Jungquist, R.M.; O’Shea, I. Humoral and T-cell responses to SARS-CoV-2 vaccination in multiple sclerosis patients treated with ocrelizumab. Mult. Scler. J. 2021, 27, 786–787. [Google Scholar] [CrossRef]
- Conte, W.L. Attenuation of antibody response to SARS-CoV-2 infection in patients with multiple sclerosis on ocrelizumab: A case-control study. Mult. Scler. Relat. Disord. 2021, 52, 103014. [Google Scholar] [CrossRef]
- Michiels, Y.; Houhou-Fidouh, N.; Collin, G.; Berger, J.; Kohli, E. Humoral Response Induced by Prime-Boost Vaccination with the ChAdOx1 nCoV-19 and mRNA BNT162b2 Vaccines in a Teriflunomide-Treated Multiple Sclerosis Patient. Vaccines 2021, 9, 1140. [Google Scholar] [CrossRef]
- Kelly, H.; Sokola, B.; Abboud, H. Safety and efficacy of COVID-19 vaccines in multiple sclerosis patients. J. Neuroimmunol. 2021, 356, 577599. [Google Scholar] [CrossRef]
- Furlan, A.; Forner, G.; Cipriani, L.; Vian, E.; Rigoli, R.; Gherlinzoni, F.; Scotton, P. COVID-19 in B Cell-Depleted Patients After Rituximab: A Diagnostic and Therapeutic Challenge. Front. Immunol. 2021, 12. [Google Scholar] [CrossRef]
- Baden, L.R.; El Sahly, H.M.; Essink, B.; Kotloff, K.; Frey, S.; Novak, R.; Diemert, D.; Spector, S.A.; Rouphael, N.; Creech, C.B.; et al. Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. N. Engl. J. Med. 2021, 384, 403–416. [Google Scholar] [CrossRef] [PubMed]
- Polack, F.P.; Thomas, S.J.; Kitchin, N.; Absalon, J.; Gurtman, A.; Lockhart, S.; Perez, J.L.; Pérez Marc, G.; Moreira, E.D.; Zerbini, C.; et al. Safety and efficacy of the BNT162b2 mRNA COVID-19 vaccine. N. Engl. J. Med. 2020, 383, 2603–2615. [Google Scholar] [CrossRef] [PubMed]
- Lotan, I.; Wilf-Yarkoni, A.; Friedman, Y.; Stiebel-Kalish, H.; Steiner, I.; Hellmann, M.A. Safety of the BNT162b2 COVID-19 vaccine in multiple sclerosis (MS): Early experience from a tertiary MS center in Israel. Eur. J. Neurol. 2021, 28, 3742–3748. [Google Scholar] [CrossRef] [PubMed]
- Sadoff, J.; Le Gars, M.; Shukarev, G.; Heerwegh, D.; Truyers, C.; de Groot, A.M.; Stoop, J.; Tete, S.; Van Damme, W.; Leroux-Roels, I.; et al. Interim Results of a Phase 1–2a Trial of Ad26.COV2.S Covid-19 Vaccine. N. Engl. J. Med. 2021, 384, 1824–1835. [Google Scholar] [CrossRef]
- Voysey, M.; Clemens, S.A.C.; Madhi, S.A.; Weckx, L.Y.; Folegatti, P.M.; Aley, P.K.; Angus, B.; Baillie, V.L.; Barnabas, S.L.; Bhorat, Q.E.; et al. Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2, an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK. Lancet 2021, 397, 99–111. [Google Scholar] [CrossRef]
- Cattaneo, M. Thrombosis with Thrombocytopenia Syndrome associated with viral vector COVID-19 vaccines. Eur. J. Intern. Med. 2021, 89, 22–24. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, R.; Ghosh, M.; Sahoo, S.; Padhi, S.; Misra, N.; Raina, V.; Suar, M.; Son, Y.-O. Next-Generation Bioinformatics Approaches and Resources for Coronavirus Vaccine Discovery and Development—A Perspective Review. Vaccines 2021, 9, 812. [Google Scholar] [CrossRef]
- Tebas, P.; Yang, S.; Boyer, J.D.; Reuschel, E.L.; Patel, A.; Christensen-Quick, A.; Andrade, V.M.; Morrow, M.P.; Kraynyak, K.; Agnes, J.; et al. Safety and immunogenicity of INO-4800 DNA vaccine against SARS-CoV-2: A preliminary report of an open-label, Phase 1 clinical trial. EClinicalMedicine 2021, 31, 100689. [Google Scholar] [CrossRef]
- Xia, S.; Zhang, Y.; Wang, Y.; Wang, H.; Yang, Y.; Gao, G.F.; Tan, W.; Wu, G.; Xu, M.; Lou, Z.; et al. Safety and immunogenicity of an inactivated SARS-CoV-2 vaccine, BBIBP-CorV: A randomised, double-blind, placebo-controlled, phase 1/2 trial. Lancet Infect. Dis. 2021, 21, 39–51. [Google Scholar] [CrossRef]
Vaccine Type | Production | Advantages | Limitations | Total Number of Vaccines | Leading Vaccines Name (Manufacturer) | Clinical Phase | Route of Immunization * | Efficacy |
---|---|---|---|---|---|---|---|---|
Live-attenuated | (I) serial passage of pathogenic virus in cell culture (II) growing the virus under unfavorable conditions (III) genetically alteration via key genes | Higher immunogenicity, strong and long-lasting immune responses | Risk of genetical instability and retrieving virulence, need for biosafety facilities | 5 | Meissa (Codagenix/Serum Institute of India) | Phase I/II | IN | - |
Inactivated (killed) | Inactivation of the virus by heat, chemicals or radiation | Higher immunogenicity, no risk of infection | Reduced immune response, need for biosafety facilities, lower purity | 21 | Corona Vac (SinoVac) | Phase IV | IM | 50.7% |
BBIBP-CorV (Sinopharm) | Phase III | IM | 79.3% | |||||
BBV152 (Bharat Biotech) | Phase III | IM | - | |||||
Vector vaccines | Non-pathogenic viral vectors delivering gene of viral antigens into the host cells | No risk of infection, no integration to host genome, strong in cellular and humoral Immune responses, fast to produce | Pre-immunity against the vector reducing vaccine efficacy, risk of adverse reactions | 12 (Non-replicating) 6 (Replicating) | AZD1222 (AstraZeneca) | Phase IV | IM | 70.4% |
JNJ78436735 (Johnson & Johnson) | Phase IV | IM | 66% | |||||
Ad5nCoV (CanSino Biologics) | Phase III | IM | 65.3% | |||||
Sputnik V (Gamaleya Research Institute) | Phase III | IM | 91.6% | |||||
flu-based-RBD (Jiangsu Provincial CDC) | Phase II | IN | - | |||||
VSV-S (Israel Institute for Biological Research/ Weizmann Institute of Science) | Phase I/II | IM | - | |||||
Protein subunit | Recombinant synthesis of whole protein or its segment | No risk of infection, no risk of genome integration, targeted immune responses | Need for some booster doses and optimal adjuvant, reduced T-cell immunity | 24 | NVX-CoV2373 (Novavax) | Phase III | IM | 89.7% |
ZF 2001 (Anhui Zhifei Longcom Biopharmaceutical) | Phase III | IM | - | |||||
BP-COVID-19/KBP-201 (Kentucky Bioprocessing) | Phase III | IM | - | |||||
DNA | plasmid vector containing a gene of antigenic protein | Stimulation of humoral and cellular responses, no risk of infection, ease of production, stability at room temperature | Need for delivery vectors, electroporation and/or adjuvants to enhance their immunogenicity | 11 | INO-4800 (Inovio Pharmaceuticals) | Phase II/III | ID | - |
AG0301-COVID19 and AG0302-COVID19 (AnGes/Osaka University) | Phase II/III | IM | - | |||||
ZyCoV-D (Cadila Healthcare Limited) | Phase III | ID | - | |||||
Virus-like particle (VLP) | Empty virus particles presenting several copies of the same antigen on their surface | No risk of infection, no viral genome | Challenging development and assembly process, reduced immunogenicity, Lower purity | 2 | Medicago Inc. | Phase III | IM | - |
SpyBiotech/Serum Institute of India | Phase II | IM | - | |||||
mRNA | mRNA of the antigenic protein encapsulated in lipid nanoparticles | Stimulation of humoral and cellular responses, No risk of infection, ease of production, no risk of genome integration | Need for delivery vectors, unstable, need for strict cold chain for distribution and storage | 8 | BNT16b2 (Pfizer/ BioNTech) | Phase IV | IM | 95% |
mRNA-1273 (Moderna) | Phase IV | IM | 94% | |||||
CVnCOV (CureVac) | Phase III | IM | - |
DMT Class | Mode of Action | Immuo-Suppressive? | Risk Category | Continue in Case of Infection? | Preventive Effects | Depletive Effects | Effect on Immune Responses | Time Window for Vaccination |
---|---|---|---|---|---|---|---|---|
IFN-β | Immunomodulatoy, pleitropic immune effects | No | Very low | Yes | Antiviral and anti-inflammatory by increasing levels of IL-10 and decreasing TNF-α, IFN-γ and IL-17 | - | +IgG titers | Not neccessary |
Glatiramer acetate | Immunomodulatoy, pleitropic immune effects | No | Very low | Yes | Anti-inflammatory, Prevents ARD via blocking TNF-α, IFN-γ and IL-12 and increasing IL-10 and IL-4 | - | +IgG titers | Not neccessary |
Teriflunomide | Dihydro-orotate dehydrogenase inhibitor, anti-proliferative | Possible (no well-defined | Very low | Yes | Antiviral | - | −/+ IgG titers | Not neccessary |
Dimethyl fumarate | Pleotropic, NRF2 activation, downregulation of NFΚβ | Yes, continously | Low | Yes | Anti-oxidative, cytoprotective, antiviral and anti-inflammatory | Patients with a total lymphocyte count of <800/mm3 are at a higher risk of develping COVID-19 complications | +IgG titers | Maybe |
Natalizumab | Anti-VLA4, selective adhesion molecule inhibitor | Yes, continoulys | Low | Yes or miss infusion depending on timing | - | May prolong viral shedding in mocus and gut | +IgG titers | NA |
S1P modulators (Fingolimod, siponimod, ozanimod, ponesimod) | Selective S1P modulator, prevents egress of lymphocytes from lymph nodes | Yes, continously | Low | Yes or temporary suspension of dosing | Fingolimod under trial as anti-inflammmatory therapy for ARD | May prolong viral shedding | Fingolimod: −IgG titers | Not recommended |
Anti-CD20 (Ocrelizumab, ofatumumab, Rituximab, ublituximab) | Anti-CD20 mAb: B-cell depleter | Yes, continously | Intermediate | Temporary suspension of dosing depending on timing | - | Particularly ocrelizumab may prolong viral shedding | Ocrelizumab: −IgG titers ofatumumab: +IgM and +IgG titers | 12 weeks: ocrelizumab and rituximab 4 weeks: ofatumumab |
Cladribine | Deoxyadenosine (purine) analogue, adenosine deaminase inhibitor, blocks T- and B-cell proliferation | Yes, intermittent | Intermediate | Temporary suspension of dosing depending on timing | - | Prolong viral shedding | −IgM and −IgG titers | 4–6 weeks |
Alemtuzumab | Anti-CD52 mAb: B- and T-cell depleter | Yes, intermittent | High * | Suspend dosing | - | Prolong viral shedding | NA | 24 weeks |
Mitoxantrone | Immune depleter, blocks IFN-γ, TNF-α and IL-2 | Yes, intermittent | High * | Suspend dosing | - | Prolong viral shedding | NA | NA |
Corticosteroids | Immune depleter | Yes, continously | High * | Suspend dosing | - | Prolong viral shedding | NA | 4 weeks |
DMTs | Number of Cases | SARS-CoV-2 Vaccine | Sample | Immune Response | Detection Kit/Assay | Results | Reference |
---|---|---|---|---|---|---|---|
Fingolimod or ocrelizumab | 32 | BNT162b2 mRNA or mRNA-1273 | Serum | Humoral | ELISA | Lower anti-Spike IgG (62.5%) | Guerrieri et al. [82] |
Ocrelizumab or rituximab | 20 | SARS-CoV-2 mRNA vaccines | Plasma and PBMC | Humoral and cellular | ELISA, FACS | Lower anti-Spike IgG and anti-RBD IgG titers, robust antigen-specific CD4+ and CD8+ T-cell responses | Apostolidis et al. [83] |
Rituximab or ocrelizumab | 96 | BNT162b2 mRNA or mRNA-1273 | Serum, whole blood | Humoral and cellular | Anti S-protein IgG ELISA test from Euroimmun (Lübeck, Germany) | Lower anti-Spike IgG (49%), IFN-γ raised only in 20% patients | Moor et al. [84] |
Ocrelizumab, rituximab, or fingolimod | 473 | BNT162b2 mRNA, Johnson and Johnson, or ChAdOx1 nCoV-19 | Dried blood spot | Humoral | COVID-SeroKlir two-step ELISA (Kantaro Biosciences, USA) for detection of Anti-RBD IgG | Lower anti-RBD IgG | Tallantyre et al. [85] |
Ocrelizumab | 4 | BNT162b2 mRNA | Serum | Humoral | LIAISON® SARS-CoV-2 TrimericS IgG assay (DiaSorin S.p.A.,Saluggia, Italy), and CLIA) technology for the detection of IgG antibodies to trimeric spike protein (anti-TSPIgG), including neutralizing antibodies | Lower anti-Spike IgG (62.5%) | Gallo et al. [86] |
Cladribine or ocrelizumab | 2 | BNT162b2 mRNA or AstraZeneca | Serum | Humoral | NA | Protective anti-spike IgG | Buttari et al. [87] |
Rituximab | 1 | Gam-COVID-Vac | Serum | Humoral | ELISA | Lower anti-Spike IgG | Etemadifar et al. [88] |
Cladribine, ocrelizumab, or fingolimod | 125 | BNT162b2 mRNA | Serum | Humoral | EUROIMMUN anti-SARS-CoV-2 IgG quantitative ELISA kit (EI, Lubeck, Germany) for detection of S1 subunit | Lower anti-spike IgG (22.7%) in Ocrelizumab group, no response in fingolimod group | Achiron et al. [89] |
Natalizumab | 26 | BNT162b2 mRNA | Serum | Humoral | LIAISON® SARS-CoV-2 TrimericSIgG assay (DiaSorin-S.p.A.) | Efficient short-term humoral response | Capuano et al. [90] |
Cladribine, teriflunomide, ocrelizumab, rituximab, ofatumumab, fingolimod, ozanimod, cladribine, teriflunomide | 120 | BNT162b2 mRNA or mRNA-1273 | Serum | Humoral | Chemiluminescence microparticle immunoassay (Abbott; quantification limits) IgG assay for detection of Anti- RBD Abs | Lower IgG levels in anti-CD20 mAbs and S1P modulators groups | Disanto et al. [73] |
Anti-CD20 mAbs, S1P modulators, IFNβ-1a, teriflunomide, dimethyl fumarate or natalizumab | 28 | BNT162b2 mRNA or mRNA-1273 | Serum | Humoral | Abbott or Roche SARS-CoV- 2 IgG assay for detection of Anti- spike protein Abs | Lower IgG levels in anti-CD20 mAbs and S1P modulators groups | Bigaut et al. [91] |
Ocrelizumab or natalizumab | 48 | BNT162b2 mRNA or mRNA-1273 | Serum, Whole blood | Humoral and cellular | Roche Elecsys Anti-SARS-CoV-2 S immunoassay and Adaptive Biotechnologies T-Detect COVID Test | Natalizumab-treated group produced both humoral and cellular responses, ocrelizumab- treated group were Ab negative but T-cell response positive | Katz et al. [92] |
Anti-CD20 mAbs, S1P modulators, IFNβ-1a, IFNβ-1b, cladribine, teriflunomide, diroximel fumarate, dimethyl fumarate natalizumab, alemtuzumab | 67 | BNT162b2 mRNA, mRNA-1273, ChAdOx1nCoV-19 | Serum | Humoral | Labcorp anti-SARS-CoV-2 semi-quantitative IgG ECLIA assay against the spike protein RBD | Lower Ab levels in anti-CD20 mAbs and S1P modulators groups | Conte et al. [93] |
Glatiramer acetate | 1 | Heterologous strategy:ChAdOx1 nCoV-19/ mRNA BNT162b2 | Serum | Humoral | LIAISON® SARS-CoV-2 Trimeric S IgG assay (DiaSorin, Saluggia, Italy) and the Architect® anti-spike test (Abbott, Rungis, France) against S-protein, iFlash®-2019-nCoV NAb (Orgentec®, Trappes, France) assay to measure neutralization antibodies | Strong anti-S antibody response and good neutralizing antibody response | Michiels et al. [94] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Golshani, M.; Hrdý, J. Multiple Sclerosis Patients and Disease Modifying Therapies: Impact on Immune Responses against COVID-19 and SARS-CoV-2 Vaccination. Vaccines 2022, 10, 279. https://doi.org/10.3390/vaccines10020279
Golshani M, Hrdý J. Multiple Sclerosis Patients and Disease Modifying Therapies: Impact on Immune Responses against COVID-19 and SARS-CoV-2 Vaccination. Vaccines. 2022; 10(2):279. https://doi.org/10.3390/vaccines10020279
Chicago/Turabian StyleGolshani, Maryam, and Jiří Hrdý. 2022. "Multiple Sclerosis Patients and Disease Modifying Therapies: Impact on Immune Responses against COVID-19 and SARS-CoV-2 Vaccination" Vaccines 10, no. 2: 279. https://doi.org/10.3390/vaccines10020279