Selection of an Optimal Recombinant Egyptian H9N2 Avian Influenza Vaccine Strain for Poultry with High Antigenicity and Safety
Abstract
:1. Introduction
2. Materials and Methods
2.1. Viruses, Plasmids, Cells, and Eggs
2.2. Sequence Analysis
2.3. Synthesis and Cloning of HA and NA Genes
2.4. Generation of Viruses by Reverse Genetics
2.5. Determining Viral Infection Titer in ECEs
2.6. Receptor Binding Assays
2.7. Neuraminidase Activity Test
2.8. Heat and Low pH Stability Tests
2.9. Minigenome Assay
2.10. Virus Titration in Mammalian Cell Lines
2.11. Preparation of Oil Emulsion Vaccines and Inoculation of Chickens
2.12. Hemagglutination Inhibition (HI) Test
2.13. Virus Purification, SDS-PAGE and Western Blotting
2.14. Statistical Analyses
3. Results
3.1. E. coli Toxic ORF Is Present in the In-Frame of the HA2 Coding Region of an Egyptian H9N2 Strain
3.2. Egyptian H9 and N2 Are Compatible with Mammalian (PR8) Internal Genes, but Incompatible Avian (01310) Internal Genes Induce the L226Q Reverse Mutation in HA
3.3. SBS Mutations in NA Appear Earlier than the L226Q Mutation in HA among H9N2 AIVs
3.4. Reverse Mutations in Only 2SBS of NA Decrease the Viral Fitness of Recombinant Strains
3.5. Mutations Reducing Avian Receptor Affinity Have No Effect on the Ratio of Avian to Mammalian Receptor Affinities
3.6. Egyptian H9 Is Relatively Heat-Stable and Has Evolved to Become Susceptible to Low pH
3.7. The E627V Mutation Is a Key MPM including the I292T, K526R, G590C, and S714G Mutations
3.8. The 01310 PB2 Gene Is Compatible with Egyptian H9 and N2 Genes
3.9. The Six Internal Genes of PR8 Facilitate While the 01310 PB2 Gene Completely Attenuates Replications of Recombinant Egyptian H9N2 Strains in Mammalian Cells
3.10. The Recombinant Egyptian H9N2 Strain Possessing Parent HA and NA and 01310 PB2 Genes Is Best in Immunogenicity and Antigenicity
3.11. Recombinant Egyptian H9N2 Strains Possessing Mutations Increasing Avian Receptor Affinity Bind More Sialoproteins in the Allantoic Fluid
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
References
- Guan, Y.; Shortridge, K.F.; Krauss, S.; Webster, R.G. Molecular characterization of H9N2 influenza viruses: Were they the donors of the “internal” genes of H5N1 viruses in Hong Kong? Proc. Natl. Acad. Sci. USA 1999, 96, 9363–9367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tosh, C.; Nagarajan, S.; Kumar, M.; Murugkar, H.V.; Venkatesh, G.; Shukla, S.; Mishra, A.; Mishra, P.; Agarwal, S.; Singh, B.; et al. Multiple introductions of a reassortant H5N1 avian influenza virus of clade 2.3. 2.1 c with PB2 gene of H9N2 subtype into Indian poultry. Infect. Genet. Evol. 2016, 43, 173–178. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.; Ozaki, H.; Webby, R.; Webster, R.; Peiris, J.; Poon, L.; Butt, C.; Leung, Y.; Guan, Y. Continuing evolution of H9N2 influenza viruses in Southeastern China. J. Virol. 2004, 78, 8609–8614. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chrzastek, K.; Lee, D.-H.; Gharaibeh, S.; Zsak, A.; Kapczynski, D.R. Characterization of H9N2 avian influenza viruses from the Middle East demonstrates heterogeneity at amino acid position 226 in the hemagglutinin and potential for transmission to mammals. Virology 2018, 518, 195–201. [Google Scholar] [CrossRef]
- Pusch, E.A.; Suarez, D.L. The Multifaceted Zoonotic Risk of H9N2 Avian Influenza. Vet. Sci. 2018, 5, 82. [Google Scholar] [CrossRef] [Green Version]
- Song, W.; Qin, K. Human-infecting influenza A (H9N2) virus: A forgotten potential pandemic strain? Zoonoses Public Health 2020, 67, 203–212. [Google Scholar] [CrossRef]
- Davidson, I.; Shkoda, I.; Golender, N.; Perk, S.; Lapin, K.; Khinich, Y.; Panshin, A. Genetic characterization of HA gene of low pathogenic H9N2 influenza viruses isolated in Israel during 2006–2012 periods. Virus Genes 2013, 46, 255–263. [Google Scholar] [CrossRef]
- Fusaro, A.; Monne, I.; Salviato, A.; Valastro, V.; Schivo, A.; Amarin, N.M.; Gonzalez, C.; Ismail, M.M.; Al-Ankari, A.-R.; Al-Blowi, M.H.; et al. Phylogeography and evolutionary history of reassortant H9N2 viruses with potential human health implications. J. Virol. 2011, 85, 8413–8421. [Google Scholar] [CrossRef] [Green Version]
- Kandeil, A.; El-Shesheny, R.; Maatouq, A.; Moatasim, Y.; Cai, Z.; McKenzie, P.; Webby, R.; Kayali, G.; Ali, M.A. Novel reassortant H9N2 viruses in pigeons and evidence for antigenic diversity of H9N2 viruses isolated from quails in Egypt. J. Gen. Virol. 2017, 98, 548–562. [Google Scholar] [CrossRef]
- Li, C.; Wang, S.; Bing, G.; Carter, R.A.; Wang, Z.; Wang, J.; Wang, C.; Wang, L.; Wu, G.; Webster, R.G.; et al. Genetic evolution of influenza H9N2 viruses isolated from various hosts in China from 1994 to 2013. Emerg. Microbes Infect. 2017, 6, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Nagy, A.; Mettenleiter, T.; Abdelwhab, E.M. A brief summary of the epidemiology and genetic relatedness of avian influenza H9N2 virus in birds and mammals in the Middle East and North Africa. Epidemiol. Infect. 2017, 145, 3320–3333. [Google Scholar] [CrossRef] [Green Version]
- Gomaa, M.R.; Kayed, A.S.; Elabd, M.A.; Zeid, D.A.; Zaki, S.A.; El Rifay, A.S.; Sherif, L.S.; McKenzie, P.P.; Webster, R.G.; Webby, R.J.; et al. Avian influenza A(H5N1) and A(H9N2) seroprevalence and risk factors for infection among Egyptians: A prospective, controlled seroepidemiological study. J. Infect. Dis. 2015, 211, 1399–1407. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.H. Challenge for One Health: Co-Circulation of Zoonotic H5N1 and H9N2 Avian Influenza Viruses in Egypt. Viruses 2018, 10, 121. [Google Scholar] [CrossRef] [Green Version]
- Gomaa, M.R.; Kandeil, A.; El-Shesheny, R.; Shehata, M.M.; McKenzie, P.P.; Webby, R.J.; Ali, M.A.; Kayali, G. Evidence of infection with avian, human, and swine influenza viruses in pigs in Cairo, Egypt. Arch. Virol. 2018, 163, 359–364. [Google Scholar] [CrossRef]
- Kosik, I.; Yewdell, J.W. Influenza Hemagglutinin and Neuraminidase: Yin(-)Yang Proteins Coevolving to Thwart Immunity. Viruses 2019, 11, 346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Connor, R.J.; Kawaoka, Y.; Webster, R.G.; Paulson, J.C. Receptor specificity in human, avian, and equine H2 and H3 influenza virus isolates. Virology 1994, 205, 17–23. [Google Scholar] [CrossRef]
- Stevens, J.; Blixt, O.; Glaser, L.; Taubenberger, J.K.; Palese, P.; Paulson, J.C.; Wilson, I.A. Glycan microarray analysis of the hemagglutinins from modern and pandemic influenza viruses reveals different receptor specificities. J. Mol. Biol. 2006, 355, 1143–1155. [Google Scholar] [CrossRef] [PubMed]
- Glaser, L.; Stevens, J.; Zamarin, D.; Wilson, I.A.; García-Sastre, A.; Tumpey, T.M.; Basler, C.F.; Taubenberger, J.K.; Palese, P. A single amino acid substitution in 1918 influenza virus hemagglutinin changes receptor binding specificity. J. Virol. 2005, 79, 11533–11536. [Google Scholar] [CrossRef] [Green Version]
- Air, G.M.; Laver, W.G. The neuraminidase of influenza virus. Proteins Struct. Funct. Bioinform. 1989, 6, 341–356. [Google Scholar] [CrossRef] [PubMed]
- Shtyrya, Y.; Mochalova, L.; Bovin, N. Influenza virus neuraminidase: Structure and function. Acta Nat. 2009, 1, 26–32. [Google Scholar] [CrossRef] [Green Version]
- Varghese, J.N.; Colman, P.M.; Van Donkelaar, A.; Blick, T.J.; Sahasrabudhe, A.; McKimm-Breschkin, J.L. Structural evidence for a second sialic acid binding site in avian influenza virus neuraminidases. Proc. Natl. Acad. Sci. USA 1997, 94, 11808–11812. [Google Scholar] [CrossRef] [Green Version]
- Uhlendorff, J.; Matrosovich, T.; Klenk, H.-D.; Matrosovich, M. Functional significance of the hemadsorption activity of influenza virus neuraminidase and its alteration in pandemic viruses. Arch. Virol. 2009, 154, 945–957. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Du, W.; Guo, H.; Nijman, V.S.; Doedt, J.; van der Vries, E.; van der Lee, J.; Li, Z.; Boons, G.J.; van Kuppeveld, F.J.M.; de Vries, E.; et al. The 2nd sialic acid-binding site of influenza A virus neuraminidase is an important determinant of the hemagglutinin-neuraminidase-receptor balance. PLoS Pathog. 2019, 15, e1007860. [Google Scholar] [CrossRef] [Green Version]
- Gao, J.; Wan, H.; Li, X.; Rakic Martinez, M.; Klenow, L.; Gao, Y.; Ye, Z.; Daniels, R. Balancing the influenza neuraminidase and hemagglutinin responses by exchanging the vaccine virus backbone. PLoS Pathog. 2021, 17, e1009171. [Google Scholar] [CrossRef] [PubMed]
- Cobbin, J.C.; Verity, E.E.; Gilbertson, B.P.; Rockman, S.P.; Brown, L.E. The source of the PB1 gene in influenza vaccine reassortants selectively alters the hemagglutinin content of the resulting seed virus. J. Virol. 2013, 87, 5577–5585. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abt, M.; de Jonge, J.; Laue, M.; Wolff, T. Improvement of H5N1 influenza vaccine viruses: Influence of internal gene segments of avian and human origin on production and hemagglutinin content. Vaccine 2011, 29, 5153–5162. [Google Scholar] [CrossRef] [Green Version]
- Moules, V.; Terrier, O.; Yver, M.; Riteau, B.; Moriscot, C.; Ferraris, O.; Julien, T.; Giudice, E.; Rolland, J.P.; Erny, A.; et al. Importance of viral genomic composition in modulating glycoprotein content on the surface of influenza virus particles. Virology 2011, 414, 51–62. [Google Scholar] [CrossRef]
- Hatta, M.; Gao, P.; Halfmann, P.; Kawaoka, Y. Molecular basis for high virulence of Hong Kong H5N1 influenza A viruses. Science 2001, 293, 1840–1842. [Google Scholar] [CrossRef] [Green Version]
- Subbarao, E.K.; London, W.; Murphy, B.R. A single amino acid in the PB2 gene of influenza A virus is a determinant of host range. J. Virol. 1993, 67, 1761. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.Y.; An, S.H.; Kim, I.; Choi, J.G.; Lee, Y.J.; Kim, J.H.; Kwon, H.J. Novel mutations in avian PA in combination with an adaptive mutation in PR8 NP exacerbate the virulence of PR8-derived recombinant influenza A viruses in mice. Vet. Microbiol. 2018, 221, 114–121. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.Y.; An, S.H.; Kim, I.; Go, D.M.; Kim, D.Y.; Choi, J.G.; Lee, Y.J.; Kim, J.H.; Kwon, H.J. Prerequisites for the acquisition of mammalian pathogenicity by influenza A virus with a prototypic avian PB2 gene. Sci. Rep. 2017, 7, 10205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arai, Y.; Kawashita, N.; Ibrahim, M.S.; Elgendy, E.M.; Daidoji, T.; Ono, T.; Takagi, T.; Nakaya, T.; Matsumoto, K.; Watanabe, Y. PB2 mutations arising during H9N2 influenza evolution in the Middle East confer enhanced replication and growth in mammals. PLoS Pathog. 2019, 15, e1007919. [Google Scholar] [CrossRef]
- Kandeil, A.; El-Shesheny, R.; Maatouq, A.M.; Moatasim, Y.; Shehata, M.M.; Bagato, O.; Rubrum, A.; Shanmuganatham, K.; Webby, R.J.; Ali, M.A.; et al. Genetic and antigenic evolution of H9N2 avian influenza viruses circulating in Egypt between 2011 and 2013. Arch. Virol. 2014, 159, 2861–2876. [Google Scholar] [CrossRef]
- Adel, A.; Mady, W.; Mosaad, Z.; Amer, F.; Shaaban, A.; Said, D.; Ali, M.; Arafa, A.-S.; Morsi, M.K.; Hassan, M.K.; et al. Molecular and epidemiological overview on low pathogenic avian influenza H9N2 in Egypt between 2015 and 2016. Hosts Viruses 2019, 6, 50–62. [Google Scholar] [CrossRef]
- Adel, A.; Arafa, A.; Hussein, H.A.; El-Sanousi, A.A. Molecular and antigenic traits on hemagglutinin gene of avian influenza H9N2 viruses: Evidence of a new escape mutant in Egypt adapted in quails. Res. Vet. Sci. 2017, 112, 132–140. [Google Scholar] [CrossRef] [PubMed]
- An, S.H.; Lee, C.Y.; Hong, S.M.; Choi, J.G.; Lee, Y.J.; Jeong, J.H.; Kim, J.B.; Song, C.S.; Kim, J.H.; Kwon, H.J. Bioengineering a highly productive vaccine strain in embryonated chicken eggs and mammals from a non-pathogenic clade 2.3.4.4 H5N8 strain. Vaccine 2019, 37, 6154–6161. [Google Scholar] [CrossRef]
- Jang, J.W.; Lee, C.Y.; Kim, I.H.; Choi, J.G.; Lee, Y.J.; Yuk, S.S.; Lee, J.H.; Song, C.S.; Kim, J.H.; Kwon, H.J. Optimized clade 2.3.2.1c H5N1 recombinant-vaccine strains against highly pathogenic avian influenza. J. Vet. Sci. 2017, 18, 299–306. [Google Scholar] [CrossRef] [Green Version]
- Hoffmann, E.; Neumann, G.; Kawaoka, Y.; Hobom, G.; Webster, R.G. A DNA transfection system for generation of influenza A virus from eight plasmids. Proc. Natl. Acad. Sci. USA 2000, 97, 6108–6113. [Google Scholar] [CrossRef] [Green Version]
- An, S.-H.; Lee, C.-Y.; Choi, J.-G.; Lee, Y.-J.; Kim, J.-H.; Kwon, H.-J. Generation of highly productive and mammalian nonpathogenic recombinant H9N2 avian influenza viruses by optimization of 3’end promoter and NS genome. Vet. Microbiol. 2019, 228, 213–218. [Google Scholar] [CrossRef] [PubMed]
- An, S.-H.; Hong, S.-M.; Son, S.-E.; Song, J.-H.; Lee, C.-Y.; Choi, J.-G.; Lee, Y.-J.; Jeong, J.-H.; Kim, J.-B.; Song, C.-S.; et al. Improvement of PR8-Derived Recombinant Clade 2.3. 4.4 c H5N6 Vaccine Strains by Optimization of Internal Genes and H103Y Mutation of Hemagglutinin. Vaccines 2020, 8, 781. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, M.A.; Russo, R.C.; Thurston, R.V. Trimmed Spearman-Karber method for estimating median lethal concentrations in toxicity bioassays. Environ. Sci. Technol. 1977, 11, 714–719. [Google Scholar] [CrossRef]
- An, S.H.; Lee, C.Y.; Hong, S.M.; Song, C.S.; Kim, J.H.; Kwon, H.J. Novel Mutations Evading Avian Immunity around the Receptor Binding Site of the Clade 2.3.2.1c Hemagglutinin Gene Reduce Viral Thermostability and Mammalian Pathogenicity. Viruses 2019, 11, 923. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.Y.; An, S.H.; Choi, J.G.; Lee, Y.J.; Kim, J.H.; Kwon, H.J. Rank orders of mammalian pathogenicity-related PB2 mutations of avian influenza A viruses. Sci. Rep. 2020, 10, 5359. [Google Scholar] [CrossRef]
- Gaymard, A.; Le Briand, N.; Frobert, E.; Lina, B.; Escuret, V. Functional balance between neuraminidase and haemagglutinin in influenza viruses. Clin. Microbiol. Infect. 2016, 22, 975–983. [Google Scholar] [CrossRef]
- Li, Y.; Cao, H.; Dao, N.; Luo, Z.; Yu, H.; Chen, Y.; Xing, Z.; Baumgarth, N.; Cardona, C.; Chen, X. High-throughput neuraminidase substrate specificity study of human and avian influenza A viruses. Virology 2011, 415, 12–19. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Zu Dohna, H.; Cardona, C.J.; Miller, J.; Carpenter, T.E. Emergence and genetic variation of neuraminidase stalk deletions in avian influenza viruses. PLoS ONE 2011, 6, e14722. [Google Scholar] [CrossRef]
- Stech, O.; Veits, J.; Abdelwhab, E.S.M.; Wessels, U.; Mettenleiter, T.C.; Stech, J. The Neuraminidase Stalk Deletion Serves as Major Virulence Determinant of H5N1 Highly Pathogenic Avian Influenza Viruses in Chicken. Sci. Rep. 2015, 5, 13493. [Google Scholar] [CrossRef] [Green Version]
- Munier, S.; Larcher, T.; Cormier-Aline, F.; Soubieux, D.; Su, B.; Guigand, L.; Labrosse, B.; Cherel, Y.; Quere, P.; Marc, D.; et al. A genetically engineered waterfowl influenza virus with a deletion in the stalk of the neuraminidase has increased virulence for chickens. J. Virol. 2010, 84, 940–952. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DuBois, R.M.; Zaraket, H.; Reddivari, M.; Heath, R.J.; White, S.W.; Russell, C.J. Acid stability of the hemagglutinin protein regulates H5N1 influenza virus pathogenicity. PLoS Pathog. 2011, 7, e1002398. [Google Scholar] [CrossRef] [Green Version]
- Hanson, A.; Imai, M.; Hatta, M.; McBride, R.; Imai, H.; Taft, A.; Zhong, G.; Watanabe, T.; Suzuki, Y.; Neumann, G.; et al. Identification of Stabilizing Mutations in an H5 Hemagglutinin Influenza Virus Protein. J. Virol. 2015, 90, 2981–2992. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reed, M.L.; Bridges, O.A.; Seiler, P.; Kim, J.K.; Yen, H.L.; Salomon, R.; Govorkova, E.A.; Webster, R.G.; Russell, C.J. The pH of activation of the hemagglutinin protein regulates H5N1 influenza virus pathogenicity and transmissibility in ducks. J. Virol. 2010, 84, 1527–1535. [Google Scholar] [CrossRef] [Green Version]
- Linster, M.; van Boheemen, S.; de Graaf, M.; Schrauwen, E.J.A.; Lexmond, P.; Manz, B.; Bestebroer, T.M.; Baumann, J.; van Riel, D.; Rimmelzwaan, G.F.; et al. Identification, characterization, and natural selection of mutations driving airborne transmission of A/H5N1 virus. Cell 2014, 157, 329–339. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Russell, C.J.; Hu, M.; Okda, F.A. Influenza Hemagglutinin Protein Stability, Activation, and Pandemic Risk. Trends Microbiol. 2018, 26, 841–853. [Google Scholar] [CrossRef] [PubMed]
- Shu, Y.L.; Fang, L.Q.; de Vlas, S.J.; Gao, Y.; Richardus, J.H.; Cao, W.C. Dual seasonal patterns for influenza, China. Emerg. Infect. Dis. 2010, 16, 725–726. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Lee, H.H.; Yang, Z.F.; Mok, C.K.; Zhang, Z. PB2-Q591K Mutation Determines the Pathogenicity of Avian H9N2 Influenza Viruses for Mammalian Species. PLoS ONE 2016, 11, e0162163. [Google Scholar] [CrossRef]
- Casadevall, A.; Imperiale, M.J. Risks and benefits of gain-of-function experiments with pathogens of pandemic potential, such as influenza virus: A call for a science-based discussion. mBio 2014, 5, e01730-14. [Google Scholar] [CrossRef] [Green Version]
- Heyman, B. Antibody mediated regulation of humoral immunity. In Molecular and Cellular Mechanisms of Antibody Activity; Springer: New York, NY, USA, 2013; pp. 221–249. [Google Scholar]
Recombinant Virus | PB2 | PB1 | PA/NP/ M/NS | HA Titer | EID50/mL | Acquired HA Mutation | |||
---|---|---|---|---|---|---|---|---|---|
CE2 | CE3 | CE4 | CE3 | CE4 a | |||||
rEgH9N2(P) b | PR8 | PR8 | PR8 | 512 | 512 | 512 | 9.42 ± 0.38 | 9.42 ± 0.29 | None |
rEgH9N2(310) | 01310 | 01310 | 01310 | 64 | 64 * | 256 * | 7.58 ± 0.14 | 8.53 ± 0.40 | L226Q |
rEgH9N2(310)-PB2U4 | 01310-U4 c | 01310 | 01310 | 64 | 64 * | 128 * | 8.55 ± 0.33 | 9.63 ± 0.12 | L226Q |
rEgH9N2(310)-PB1U4 | 01310 | 01310-U4 c | 01310 | 64 | 128 * | 512 * | 8.90 ± 0.17 | 8.90 ± 0.20 | L226Q |
rEgH9N2(310)-PB21U4 | 01310-U4 | 01310-U4 | 01310 | 64 | 256 * | 512 *,† | 8.60 ± 0.26 | 9.03 ± 0.31 | P221S L226Q |
Isolation Period | Number of Sequences | Frequency of HA Mutation (%) | Frequency of NA Mutation b (%) | |||
---|---|---|---|---|---|---|
P221S a | Q226L | 370-Loop | 400-Loop | 430-Loop | ||
1960–1970 | 2 | 0.0 | 0.0 | 50.0 | 50.0 | 0.0 |
1971–1980 | 10 | 0.0 | 0.0 | 10.0 | 20.0 | 0.0 |
1981–1990 | 13 | 0.0 | 0.0 | 23.1 | 0.0 | 0.0 |
1991–2000 | 57 | 0.0 | 21.1 | 82.8 | 77.6 | 8.6 |
2001–2010 | 194 | 0.0 | 49.9 | 80.4 | 81.4 | 20.6 |
2011–2020 | 274 | 0.0 | 86.5 | 82.9 | 83.3 | 14.5 |
total | 550 | 0.0 | 62.9 | 79.2 | 78.8 | 15.4 |
Recombinant Virus | HA | NA | Internal Genes | EID50/mL | |
---|---|---|---|---|---|
CE2 | CE3 a | ||||
rEgH9N2(P)-P221S | H9-P221S | N2 | PR8 | 8.67 ± 0.00 | 9.25 ± 0.43 |
rEgH9N2(P)-L226Q | H9-L226Q | N2 | PR8 | 8.67 ± 0.00 | 9.25 ± 0.25 |
rEgH9N2(P)-P221S-L226Q | H9-P221S-L226Q | N2 | PR8 | 8.92 ± 0.35 | 9.17 ± 0.58 |
rEgH9N2(P)-av370L | H9 | N2-av370L | PR8 | 8.42 ± 0.29 | 9.00 ± 0.00 |
rEgH9N2(P)- av400L | H9 | N2-av400L | PR8 | 8.25 ± 0.25 | 8.82 ± 0.39 * |
rEgH9N2(P)-av2SBS | H9 | N2-av370L-av400L | PR8 | nd b | nd |
rEgH9N2(P)-P221S-av2SBS | H9-P221S | N2-av370L-av400L | PR8 | 8.25 ± 0.25 | 8.07 ± 0.06 † |
rEgH9N2(P)-L226Q-av2SBS | H9-L226Q | N2-av370L-av400L | PR8 | 8.83 ± 0.14 | 10.03 ± 0.06 |
rEgH9N2(P)-P221S-L226Q-av2SBS | H9-P221S-L226Q | N2-av370L-av400L | PR8 | 8.92 ± 0.14 | 9.37 ± 0.12 |
Recombinant Virus | HA | NA | PB2 | Internal Genes | EID50/mL | |
---|---|---|---|---|---|---|
CE2 | CE3 a | |||||
rEgH9N2(P)-310PB2 | H9 | N2 | 01310 | PR8 | 9.00 ± 0.25 | 10.08 ± 0.14 |
rEgH9N2(P)-310PB2- av2SBS | H9 | N2-av370L-av400L | 01310 | PR8 | nd b | nd |
rEgH9N2(P)-310PB2- P221S-av2SBS | H9-P221S | N2-av370L-av400L | 01310 | PR8 | nd | Np c |
rEgH9N2(P)-310PB2- L226Q-av2SBS | H9-L226Q | N2-av370L-av400L | 01310 | PR8 | 8.67 ± 0.14 | 9.30 ± 0.35 |
rEgH9N2(P)-310PB2- P221S-L226Q-av2SBS | H9-P221S-L226Q | N2-av370L-av400L | 01310 | PR8 | 8.50 ± 0.25 | 9.92 ± 0.38 |
Recombinant Virus | Inactivated Vaccine Name | GMT of HI Titer a | |||
---|---|---|---|---|---|
Antigen | |||||
K161ME | K162ME | K163ME | K164ME | ||
rEgH9N2(P) | K161ME | 1522 (1080–2144) | 1131 (887.3–1441) | 861.1 (571.6–1297) | 1579 (1170–2132) |
rEgH9N2(P)-310PB2 | K162ME | 2756 * (1957–3883) | 2233 * (1258–3967) | 939.0 (578.9–1523) | 2233 * (1377–3623) |
rEgH9N2(P)-P221S, L226Q/av2SBS | K163ME | 624.1 (384.4–1013) | 608.9 (364.3–1018) | 558.3 (344.2–905.6) | 789.6 (585.0–1066) |
rEgH9N2(P)-P221S, L226Q/av2SBS-310PB2 | K164ME | 760.8 (459.4–1260) | 724.1 (531.2–987.0) | 558.3 (344.2–905.6) | 939.0 (765.0–1153) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
An, S.-H.; Son, S.-E.; Song, J.-H.; Hong, S.-M.; Lee, C.-Y.; Lee, N.-H.; Jeong, Y.-J.; Choi, J.-G.; Lee, Y.-J.; Kang, H.-M.; et al. Selection of an Optimal Recombinant Egyptian H9N2 Avian Influenza Vaccine Strain for Poultry with High Antigenicity and Safety. Vaccines 2022, 10, 162. https://doi.org/10.3390/vaccines10020162
An S-H, Son S-E, Song J-H, Hong S-M, Lee C-Y, Lee N-H, Jeong Y-J, Choi J-G, Lee Y-J, Kang H-M, et al. Selection of an Optimal Recombinant Egyptian H9N2 Avian Influenza Vaccine Strain for Poultry with High Antigenicity and Safety. Vaccines. 2022; 10(2):162. https://doi.org/10.3390/vaccines10020162
Chicago/Turabian StyleAn, Se-Hee, Seung-Eun Son, Jin-Ha Song, Seung-Min Hong, Chung-Young Lee, Nak-Hyung Lee, Young-Ju Jeong, Jun-Gu Choi, Youn-Jeong Lee, Hyun-Mi Kang, and et al. 2022. "Selection of an Optimal Recombinant Egyptian H9N2 Avian Influenza Vaccine Strain for Poultry with High Antigenicity and Safety" Vaccines 10, no. 2: 162. https://doi.org/10.3390/vaccines10020162
APA StyleAn, S.-H., Son, S.-E., Song, J.-H., Hong, S.-M., Lee, C.-Y., Lee, N.-H., Jeong, Y.-J., Choi, J.-G., Lee, Y.-J., Kang, H.-M., Choi, K.-S., & Kwon, H.-J. (2022). Selection of an Optimal Recombinant Egyptian H9N2 Avian Influenza Vaccine Strain for Poultry with High Antigenicity and Safety. Vaccines, 10(2), 162. https://doi.org/10.3390/vaccines10020162