100 Years of BCG Immunization: Past, Present, and Future
- Inactivated whole cell vaccines, in general using related mycobacteria [11];
Funding
Conflicts of Interest
References
- Flores-Valdez, M.A. After 100 years of BCG immunization against tuberculosis, what is new and still outstanding for this vaccine? Vaccines 2022, 10, 57. [Google Scholar] [CrossRef]
- Lange, C.; Aaby, P.; Behr, M.A.; Donald, P.; Kaufmann, S.H.E.; Netea, M.G.; Madalakas, A.M. 100 years of Mycobacterium bovis bacille Calmette Guérin: Similia similibus curentur. Lancet Infect. Dis. 2022, 22, e2–e12. [Google Scholar] [CrossRef]
- Kaufmann, S.H.E.; Winau, F. From bacteriology to immunology—The dualism of specificity. Nat. Immunol. 2005, 6, 1063–1066. [Google Scholar] [CrossRef] [PubMed]
- Kaufmann, S.H.E. Vaccine development against tuberculosis over the last 140 years: Failure as part of success. Front. Microbiol. 2021, 12, 750124. [Google Scholar] [CrossRef] [PubMed]
- Donald, P.; Kaufmann, S.H.E.; Thee, S.; Mandalakas, A.M.; Lange, C. Pathogenesis of tuberculosis: The 1930 Lübeck disaster revisited. Eur. Respir. Rev. 2022, 31, 220046. [Google Scholar] [CrossRef]
- Guallar-Garrido, S.; Almiñana-Rapún, F.; Campo-Pérez, V.; Torrents, E.; Luquin, M.; Julián, E. BCG substrains change their outermost surface as a function of growth media. Vaccines 2022, 10, 40. [Google Scholar] [CrossRef] [PubMed]
- Tait, D.R.; Hatherill, M.; Van Der Meeren, O.; Ginsberg, A.M.; Van Brakel, E.; Salaun, B.; Scriba, T.J.; Akite, E.J.; Ayles, H.M.; Bollaerts, A.; et al. Final analysis of a trial of M72/AS01E vaccine to prevent tuberculosis. N. Engl. J. Med. 2019, 381, 2429–2439. [Google Scholar] [CrossRef] [PubMed]
- Junqueira-Kipnis, A.P.; de Castro Souza, C.; de Oliveira Carvalho, A.C.; Muniz de Oliveira, F.; Pereira Almeida, V.; Rodrigues de Paula, A.; Rubia Celes, M.; Kipnis, A. Protease-based subunit vaccine in mice boosts BCG protection against. Mycobacterium Tuberc. Vaccines 2022, 10, 306. [Google Scholar] [CrossRef]
- Ndiaye, B.P.; Thienemann, F.; Ota, M.; Landry, B.S.; Camara, M.; Dièye, S.; Dieye, T.N.; Esmail, H.; Goliath, R.; Huygen, K.; et al. MVA85A 030 trial investigators. Safety, immunogenicity, and efficacy of the candidate tuberculosis vaccine MVA85A in healthy adults infected with HIV-1: A randomised, placebo-controlled, phase 2 trial. Lancet Respir. Med. 2015, 3, 190–200. [Google Scholar] [CrossRef] [Green Version]
- Jeyanathan, M.; Damjanovic, D.; Yao, Y.; Bramson, J.; Smaill, F.; Xing, Z. Induction of an immune-protective T-Cell repertoire with diverse genetic coverage by a novel viral-vectored tuberculosis vaccine in humans. J. Infect. Dis. 2016, 214, 1996–2005. [Google Scholar] [CrossRef] [PubMed]
- Vilaplana, C.; Montane, E.; Pinto, S.; Barriocanal, A.M.; Domenech, G.; Torres, F. Double-blind, randomized, placebo-controlled phase I clinical trial of the therapeutical antituberculous vaccine RUTI. Vaccine 2010, 28, 1106–1116. [Google Scholar] [CrossRef] [PubMed]
- Nisa, A.; Counoupas, C.; Pinto, R.; Britton, W.J.; Triccas, J.A. Characterization of the protective immune responses conferred by recombinant BCG overexpressing components of Mycobacterium tuberculosis Sec protein export system. Vaccines 2022, 10, 945. [Google Scholar] [CrossRef] [PubMed]
- Tameris, M.; Mearns, H.; Penn-Nicholson, A.; Gregg, Y.; Bilek, N.; Mabwe, S. Live-attenuated Mycobacterium tuberculosis vaccine MTBVAC versus BCG in adults and neonates: A randomised controlled, double-blind dose-escalation trial. Lancet Respir. Med. 2019, 7, 757–770. [Google Scholar] [CrossRef]
- Dos Santos, C.C.; Walburg, K.V.; van Veen, S.; Wilson, L.G.; Trufen, C.E.M.; Nascimento, I.P.; Ottenhoff, T.H.M.; Leite, L.C.C.; Haks, M.C. Recombinant BCG-LTAK63 vaccine candidate for tuberculosis induces an inflammatory profile in human macrophages. Vaccines 2022, 10, 831. [Google Scholar] [CrossRef]
- Loxton, A.G.; Knaul, J.K.; Grode, L.; Gutschmidt, A.; Meller, C.; Eisele, B. Safety and immunogenicity of the recombinant Mycobacterium bovis BCG vaccine VPM1002 in HIV-Unexposed newborn infants in South Africa. Clin. Vaccine Immunol. 2017, 24, e00439-16. [Google Scholar] [CrossRef] [Green Version]
- Cotton, M.F.; Madhi, S.A.; Luabeya, A.K.; Tameris, M.; Hesseling, A.C.; Shenje, J.; Schoeman, E.; Hatherill, M.; Desai, S.; Kapse, D.; et al. Safety and immunogenicity of VPM1002 versus BCG in South African newborn babies: A randomised, phase 2 non-inferiority double-blind controlled trial. Lancet Infect. Dis. 2022, in press. [Google Scholar] [CrossRef]
- Darrah, P.A.; Zeppa, J.J.; Maiello, P.; Hackney, J.A.; Wadsworth, M.H., 2nd; Hughes, T.K.; Pokkali, S.; Swanson, P.A., 2nd; Grant, N.L.; Rodgers, M.A.; et al. Prevention of tuberculosis in macaques after intravenous BCG immunization. Nature 2020, 577, 95–102. [Google Scholar] [CrossRef] [Green Version]
- Nemes, E.; Geldenhuys, H.; Rozot, V.; Rutkowski, K.T.; Ratangee, F.; Bilek, N. Prevention of M. tuberculosis infection with H4:IC31 vaccine or BCG revaccination. N. Engl. J. Med. 2018, 379, 138–149. [Google Scholar] [CrossRef]
- Geckin, B.; Konstantin Föhse, F.; Domínguez-Andrés, J.; Netea, M.G. Trained immunity: Implications for vaccination. Curr. Opin. Immunol. 2022, 77, 102190. [Google Scholar] [CrossRef]
- Arts, R.J.W.; Morlag, S.J.C.F.M.; Novakovic, B.; Li, Y.; Wang, S.-Y.; Oosting, M.; Kumar, V.; Xavier, R.J.; Wijmenga, C.; Joosten, L.A.B.; et al. BCG vaccination protects against experimental viral infection in humans through the induction of cytokines associated with trained immunity. Cell Host Microbe 2018, 23, 89–100.e5. [Google Scholar] [CrossRef]
- Covian, C.; Fernandez-Fierro, A.; Retamal-Diaz, A.; Diaz, F.E.; Vasquez, A.E.; Lay, M.K.; Riedel, C.A.; Gonzalez, P.A.; Bueno, S.M.; Kalergis, A.M. BCG-induced cross-protection and development of trained immunity: Implication for vaccine design. Front. Immunol. 2018, 10, 2806. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kanno, A.I.; Boraschi, D.; Leite, L.C.C.; Rodriguez, D. Recombinant BCG expressing the subunit 1 of pertussis toxin induces innate immune memory and confers protection against non-related pathogens. Vaccines 2022, 10, 234. [Google Scholar] [CrossRef] [PubMed]
- Pettenati, C.; Ingersoll, M.A. Mechanisms of BCG immunotherapy and its outlook for bladder cancer. Nat. Rev. Urol. 2018, 15, 615–625. [Google Scholar] [CrossRef] [PubMed]
- Rentsch, C.A.; Thalmann, G.N.; Lucca, I.; Kwiatkowski, M.; Wirth, G.J.; Strebel, R.T.; Engeler, D.; Pedrazzini, A.; Huettenbrink, C.; Schultze-Seemann, W.; et al. A phase 1/2 single-arm clinical trial of recombinant Bacillus Calmette-Guérin (BCG) VPM1002BC immunotherapy in non–muscle-invasive bladder cancer recurrence after conventional BCG therapy: SAKK 06/14. Eur. Urol. Oncol. 2022, 5, 195–202. [Google Scholar] [CrossRef] [PubMed]
- Soto, J.A.; Díaz, F.E.; Retamal-Díaz, A.; Gálvez, N.M.S.; Melo-González, F.; Piña-Iturbe, A.; Ramírez, M.A.; Bohmwald, K.; González, P.A.; Bueno, S.M.; et al. BCG-based vaccines elicit antigen-specific adaptive and trained immunity against SARS-CoV-2 and Andes orthohantavirus. Vaccines 2022, 10, 721. [Google Scholar] [CrossRef]
- Dellagostin, O.A.; Borsuk, S.; Oliveira, T.L.; Seixas, F.K. Auxotrophic Mycobacterium bovis BCG: Updates and perspectives. Vaccines 2022, 10, 802. [Google Scholar] [CrossRef]
- Kowalewicz-Kulbat, M.; Locht, C. Recombinant BCG to enhance its immunomodulatory activities. Vaccines 2022, 10, 827. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tagliabue, A.; Boraschi, D.; Leite, L.C.C.; Kaufmann, S.H.E. 100 Years of BCG Immunization: Past, Present, and Future. Vaccines 2022, 10, 1743. https://doi.org/10.3390/vaccines10101743
Tagliabue A, Boraschi D, Leite LCC, Kaufmann SHE. 100 Years of BCG Immunization: Past, Present, and Future. Vaccines. 2022; 10(10):1743. https://doi.org/10.3390/vaccines10101743
Chicago/Turabian StyleTagliabue, Aldo, Diana Boraschi, Luciana C. C. Leite, and Stefan H. E. Kaufmann. 2022. "100 Years of BCG Immunization: Past, Present, and Future" Vaccines 10, no. 10: 1743. https://doi.org/10.3390/vaccines10101743
APA StyleTagliabue, A., Boraschi, D., Leite, L. C. C., & Kaufmann, S. H. E. (2022). 100 Years of BCG Immunization: Past, Present, and Future. Vaccines, 10(10), 1743. https://doi.org/10.3390/vaccines10101743