Development of a Well-Characterized Cynomolgus Macaque Model of Sudan Virus Disease for Support of Product Development
Abstract
:1. Introduction
2. Results
2.1. Mortality
2.2. Clinical Progression of SUDV Disease
2.2.1. Clinical Scores
Summary of Clinical Signs Prior to Moribund Euthanasia
2.2.2. Body Temperature
2.2.3. Body Weight
2.2.4. Clinical Pathology
2.3. Virological Progression of SUDV
2.3.1. Viremia and Tissue Viral Burden
2.3.2. Soluble Glycoprotein
2.4. Immunological Response to SUDV Exposure
Cytokine and Chemokine Expression
2.5. Pathologic Progression of SUDV Disease
2.5.1. Gross Observations
2.5.2. Microscopic Observations
2.5.3. Onset of Abnormality
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Ethics Statement
5.2. Critical Biological Materials
5.3. Test System Experimental History
5.4. Animal Care
5.5. Exposure Agent Preparation, Administration, and Verification
5.6. Blinding and Randomization
5.7. Blood Collection and Analysis
5.8. Virus Quantification via Plaque Assay
5.9. Virus Quantification via Quantitative Reverse Transcription Polymerase Chain Reaction
5.10. Cytokine Analysis
5.11. Soluble Glycoprotein (sGP) Analysis
5.12. Body Temperature, Body Weight, and Activity Data Collection
5.13. Necropsy and Pathology Analysis
5.14. Data Analysis and Statistics
5.15. Quality System
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Geisbert, T.W. Marburg and Ebola Hemorrhagic Fevers (Filoviruses). Mandell Douglas Bennett’s Princ. Pract. Infect. Dis. 2015, 2, 1995–1999.e1991. [Google Scholar] [CrossRef]
- Feldmann, H.; Klenk, H.-D. Marburg and Ebola Viruses. In Advances in Virus Research; Maramorosch, K., Murphy, F.A., Shatkin, A.J., Eds.; Academic Press: Cambridge, MA, USA, 1996; Volume 47, pp. 1–52. [Google Scholar]
- Yang, X.-L.; Tan, C.W.; Anderson, D.E.; Jiang, R.-D.; Li, B.; Zhang, W.; Zhu, Y.; Lim, X.F.; Zhou, P.; Liu, X.-L.; et al. Characterization of a filovirus (Měnglà virus) from Rousettus bats in China. Nat. Microbiol. 2019, 4, 390–395. [Google Scholar] [CrossRef] [PubMed]
- Languon, S.; Quaye, O. Filovirus Disease Outbreaks: A Chronological Overview. Virol. Res. Treat. 2019, 10, 1178122X19849927. [Google Scholar] [CrossRef] [PubMed]
- Kuhn, J.H.; Adachi, T.; Adhikari, N.K.J.; Arribas, J.R.; Bah, I.E.; Bausch, D.G.; Bhadelia, N.; Borchert, M.; Brantsæter, A.B.; Brett-Major, D.M.; et al. New filovirus disease classification and nomenclature. Nat. Rev. Microbiol. 2019, 17, 261–263. [Google Scholar] [CrossRef]
- Baize, S.; Pannetier, D.; Oestereich, L.; Rieger, T.; Koivogui, L.; Magassouba, N.F.; Soropogui, B.; Sow, M.S.; Keïta, S.; De Clerck, H.; et al. Emergence of Zaire Ebola Virus Disease in Guinea. N. Engl. J. Med. 2014, 371, 1418–1425. [Google Scholar] [CrossRef] [Green Version]
- Choi, M.J.; Cossaboom, C.M.; Whitesell, A.N.; Dyal, J.W.; Joyce, A.; Morgan, R.L.; Campos-Outcalt, D.; Person, M.; Ervin, E.; Yu, Y.C.; et al. Use of Ebola Vaccine: Recommendations of the Advisory Committee on Immunization Practices, United States, 2020. Mmwr. Recomm. Rep. Morb. Mortal. Wkly. Rep. Recomm. Rep. 2021, 70, 1–12. [Google Scholar] [CrossRef]
- Markham, A. REGN-EB3: First Approval. Drugs 2021, 81, 175–178. [Google Scholar] [CrossRef]
- Pascal, K.E.; Dudgeon, D.; Trefry, J.C.; Anantpadma, M.; Sakurai, Y.; Murin, C.D.; Turner, H.L.; Fairhurst, J.; Torres, M.; Rafique, A.; et al. Development of Clinical-Stage Human Monoclonal Antibodies That Treat Advanced Ebola Virus Disease in Nonhuman Primates. J. Infect. Dis. 2018, 218, S612–S626. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Disease Outbreak News; Ebola Disease Caused by Sudan Virus—Uganda. Available online: https://www.who.int/emergencies/disease-outbreak-news/item/2022-DON410 (accessed on 30 July 2022).
- Kawuki, J.; Musa, T.H.; Yu, X. Impact of recurrent outbreaks of Ebola virus disease in Africa: A meta-analysis of case fatality rates. Public Health 2021, 195, 89–97. [Google Scholar] [CrossRef]
- Malvy, D.; McElroy, A.K.; de Clerck, H.; Günther, S.; van Griensven, J. Ebola virus disease. Lancet 2019, 393, 936–948. [Google Scholar] [CrossRef]
- Alfson, K.J.; Avena, L.E.; Beadles, M.W.; Worwa, G.; Amen, M.; Patterson, J.L.; Carrion, R., Jr.; Griffiths, A. Intramuscular Exposure of Macaca fascicularis to Low Doses of Low Passage- or Cell Culture-Adapted Sudan Virus or Ebola Virus. Viruses 2018, 10, 642. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herbert, A.S.; Froude, J.W.; Ortiz, R.A.; Kuehne, A.I.; Dorosky, D.E.; Bakken, R.R.; Zak, S.E.; Josleyn, N.M.; Musiychuk, K.; Jones, R.M.; et al. Development of an antibody cocktail for treatment of Sudan virus infection. Proc. Natl. Acad. Sci. USA 2020, 117, 3768. [Google Scholar] [CrossRef] [PubMed]
- Snoy, P.J. Establishing efficacy of human products using animals: The US food and drug administration’s “animal rule”. Vet. Pathol. 2010, 47, 774–778. [Google Scholar] [CrossRef] [PubMed]
- Allio, T. The FDA Animal Rule and its role in protecting human safety. Expert Opin. Drug Saf. 2018, 17, 971–973. [Google Scholar] [CrossRef] [Green Version]
- Beasley, D.W.C.; Brasel, T.L.; Comer, J.E. First vaccine approval under the FDA Animal Rule. npj Vaccines 2016, 1, 16013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Warren, T.; Zumbrun, E.; Weidner, J.M.; Gomba, L.; Rossi, F.; Bannister, R.; Tarrant, J.; Reed, M.; Lee, E.; Raymond, J.L.; et al. Characterization of Ebola Virus Disease (EVD) in Rhesus Monkeys for Development of EVD Therapeutics. Viruses 2020, 12, 92. [Google Scholar] [CrossRef] [Green Version]
- Alfson, K.J.; Goez-Gazi, Y.; Gazi, M.; Staples, H.; Mattix, M.; Ticer, A.; Klaffke, B.; Stanfield, K.; Escareno, P.; Keiser, P.; et al. Development of a Well-Characterized Rhesus Macaque Model of Ebola Virus Disease for Support of Product Development. Microorganisms 2021, 9, 489. [Google Scholar] [CrossRef]
- Kroeker, A.; He, S.; De La Vega, M.-A.; Wong, G.; Embury-Hyatt, C.; Qiu, X. Characterization of Sudan Ebolavirus infection in ferrets. Oncotarget 2017, 8, 46262–46272. [Google Scholar] [CrossRef]
- Cross, R.W.; Mire, C.E.; Borisevich, V.; Geisbert, J.B.; Fenton, K.A.; Geisbert, T.W. The Domestic Ferret (Mustela putorius furo) as a Lethal Infection Model for 3 Species of Ebolavirus. J. Infect. Dis. 2016, 214, 565–569. [Google Scholar] [CrossRef] [Green Version]
- Wong, G.; He, S.; Wei, H.; Kroeker, A.; Audet, J.; Leung, A.; Cutts, T.; Graham, J.; Kobasa, D.; Embury-Hyatt, C.; et al. Development and Characterization of a Guinea Pig-Adapted Sudan Virus. J. Virol. 2016, 90, 392–399. [Google Scholar] [CrossRef]
- Zumbrun, E.E.; Bloomfield, H.A.; Dye, J.M.; Hunter, T.C.; Dabisch, P.A.; Garza, N.L.; Bramel, N.R.; Baker, R.J.; Williams, R.D.; Nichols, D.K.; et al. A Characterization of Aerosolized Sudan Virus Infection in African Green Monkeys, Cynomolgus Macaques, and Rhesus Macaques. Viruses 2012, 4, 2115–2136. [Google Scholar] [CrossRef] [PubMed]
- Bennett, R.S.; Huzella, L.M.; Jahrling, P.B.; Bollinger, L.; Olinger, G.G.; Hensley, L.E. Nonhuman Primate Models of Ebola Virus Disease. In Marburg-and Ebolaviruses: From Ecosystems to Molecules; Mühlberger, E., Hensley, L.L., Towner, J.S., Eds.; Springer: Cham, Switzerland, 2017; pp. 171–193. [Google Scholar]
- Carbonnelle, C.; Moroso, M.; Pannetier, D.; Godard, S.; Mély, S.; Thomas, D.; Duthey, A.; Jourjon, O.; Lacroix, O.; Labrosse, B.; et al. Natural History of Sudan ebolavirus to Support Medical Countermeasure Development. Vaccines 2022, 10, 963. [Google Scholar] [CrossRef]
- Wolfe, D.N.; Sabourin, C.L.; Merchlinsky, M.J.; Florence, W.C.; Wolfraim, L.A.; Taylor, K.L.; Ward, L.A. Selection of Filovirus Isolates for Vaccine Development Programs. Vaccines 2021, 9, 1045. [Google Scholar] [CrossRef] [PubMed]
- Alfson, K.J.; Avena, L.E.; Beadles, M.W.; Menzie, H.; Patterson, J.L.; Carrion, R.; Griffiths, A. Genetic Changes at the Glycoprotein Editing Site Associated With Serial Passage of Sudan Virus. J. Infect. Dis. 2015, 212, S295–S304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bixler, S.L.; Goff, A.J. The Role of Cytokines and Chemokines in Filovirus Infection. Viruses 2015, 7, 5489–5507. [Google Scholar] [CrossRef] [PubMed]
- Hutchinson, K.L.; Rollin, P.E. Cytokine and Chemokine Expression in Humans Infected with Sudan Ebola Virus. J. Infect. Dis. 2007, 196, S357–S363. [Google Scholar] [CrossRef] [PubMed]
- McElroy, A.K.; Erickson, B.R.; Flietstra, T.D.; Rollin, P.E.; Nichol, S.T.; Towner, J.S.; Spiropoulou, C.F. Ebola hemorrhagic Fever: Novel biomarker correlates of clinical outcome. J. Infect. Dis. 2014, 210, 558–566. [Google Scholar] [CrossRef] [Green Version]
- Hill-Batorski, L.; Halfmann, P.; Marzi, A.; Lopes, T.J.S.; Neumann, G.; Feldmann, H.; Kawaoka, Y. Loss of Interleukin 1 Receptor Antagonist Enhances Susceptibility to Ebola Virus Infection. J. Infect. Dis. 2015, 212, S329–S335. [Google Scholar] [CrossRef] [Green Version]
- Twenhafel, N.A.; Mattix, M.E.; Johnson, J.C.; Robinson, C.G.; Pratt, W.D.; Cashman, K.A.; Wahl-Jensen, V.; Terry, C.; Olinger, G.G.; Hensley, L.E.; et al. Pathology of experimental aerosol Zaire ebolavirus infection in rhesus macaques. Vet. Pathol. 2013, 50, 514–529. [Google Scholar] [CrossRef] [Green Version]
- Woolsey, C.; Fears, A.C.; Borisevich, V.; Agans, K.N.; Dobias, N.S.; Prasad, A.N.; Deer, D.J.; Geisbert, J.B.; Fenton, K.A.; Geisbert, T.W.; et al. Natural history of Sudan ebolavirus infection in rhesus and cynomolgus macaques. Emerg. Microbes Infect. 2022, 11, 1635–1646. [Google Scholar] [CrossRef]
- Mehedi, M.; Falzarano, D.; Seebach, J.; Hu, X.; Carpenter, M.S.; Schnittler, H.J.; Feldmann, H. A new Ebola virus nonstructural glycoprotein expressed through RNA editing. J. Virol. 2011, 85, 5406–5414. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schieffelin, J.S.; Shaffer, J.G.; Goba, A.; Gbakie, M.; Gire, S.K.; Colubri, A.; Sealfon, R.S.G.; Kanneh, L.; Moigboi, A.; Momoh, M.; et al. Clinical Illness and Outcomes in Patients with Ebola in Sierra Leone. N. Engl. J. Med. 2014, 371, 2092–2100. [Google Scholar] [CrossRef] [PubMed]
- Alfson, K.J.; Avena, L.E.; Worwa, G.; Carrion, R.; Griffiths, A. Development of a Lethal Intranasal Exposure Model of Ebola Virus in the Cynomolgus Macaque. Viruses 2017, 9, 319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shurtleff, A.C.; Biggins, J.E.; Keeney, A.E.; Zumbrun, E.E.; Bloomfield, H.A.; Kuehne, A.; Audet, J.L.; Alfson, K.J.; Griffiths, A.; Olinger, G.G.; et al. Standardization of the filovirus plaque assay for use in preclinical studies. Viruses 2012, 4, 3511–3530. [Google Scholar] [CrossRef] [PubMed]
Animal ID | Sex | Group Description | Day of Death | Final Clinical Score |
---|---|---|---|---|
478 | F | SP-TK, Mock-Exposed | Day 21 (EOP) | 0 |
495 | M | SP-TK, Mock-Exposed | Day 21 (EOP) | 0 |
483 | F | SE | Day 2 | 0 |
491 | M | SE | Day 2 | 0 |
481 | F | SE | Day 3 | 1 |
490 | M | SE | Day 3 | 0 |
484 | F | SE | Day 5 | 3 |
493 | M | SE | Day 5 | 1 |
477 | F | SE | Day 7 | 11 |
485 | M | SE | Day 7 | 3 |
476 | F | SE | Day 9 | 5 |
486 | M | SE | Day 9 | 6 |
479 | F | SP-TK | Day 7 | 21 |
482 | F | SP-TK | Day 8 | 46 |
492 | M | SP-TK | Day 8 | 24 |
474 | F | SP-TK | Day 9 | 18 |
488 | M | SP-TK | Day 9 | 28 |
480 | F | SP-TK | Day 11 | 25 |
494 | M | SP-TK | Day 13 | 20 |
487 | M | SP-TK | Day 21 (EOP) | 0 |
Animal ID | Group Description | Day of Death | Stomach | Duodenum | Jejunum | Ileum | Rectum | Colon |
---|---|---|---|---|---|---|---|---|
478 | SP-TK, Mock-exposed | S, Day 21 | BDL | BDL | BDL | BDL | BDL | BDL |
495 | SP-TK, Mock-exposed | S, Day 21 | BDL | BDL | BDL | BDL | BDL | BDL |
487 | SP-TK | S, Day 21 | BDL | BDL | BDL | BDL | BDL | BDL |
483 | SE | S, Day 2 | BDL | BDL | 4.12 × 101 | 1.16 × 104 | BDL | BDL |
491 | SE | S, Day 2 | BDL | BDL | BDL | BDL | BDL | BDL |
481 | SE | S, Day 3 | BDL | BDL | 5.78 × 101 | BDL | BDL | BDL |
490 | SE | S, Day 3 | BDL | BDL | BDL | BDL | BDL | BDL |
484 | SE | S, Day 5 | 8.26 × 101 | 4.19 × 102 | 1.46 × 105 | 1.56 × 105 | 3.82 × 104 | 7.69 × 104 |
493 | SE | S, Day 5 | 1.51 × 106 | 3.71 × 106 | 2.16 × 103 | 7.95 × 106 | 1.28 × 106 | 1.99 × 106 |
477 | SE | S, Day 7 | 5.06 × 106 | 1.09 × 107 | 1.51 × 107 | 7.63 × 106 | 2.63 × 107 | 1.52 × 107 |
485 | SE | S, Day 7 | 1.79 × 105 | 8.89 × 105 | 4.03 × 106 | 5.36 × 106 | 4.64 × 105 | 1.68 × 106 |
476 | SE | S, Day 9 | 4.63 × 107 | 4.00 × 106 | 3.40 × 107 | 3.71 × 107 | 2.84 × 106 | 5.87 × 106 |
486 | SE | S, Day 9 | 6.22 × 106 | 5.29 × 107 | 6.93 × 106 | 1.05 × 107 | 5.40 × 106 | 6.38 × 106 |
479 | SP-TK | US, 7 | 1.48 × 106 | 8.58 × 106 | 1.80 × 107 | 1.08 × 107 | 1.13 × 107 | 6.86 × 106 |
482 | SP-TK | US, 8 | 6.39 × 106 | 8.85 × 106 | 2.65 × 107 | 8.26 × 106 | 3.38 × 107 | 3.26 × 107 |
492 | SP-TK | US, 8 | 1.70 × 105 | 2.56 × 106 | 1.78 × 107 | 1.69 × 106 | 5.95 × 106 | 9.26 × 106 |
474 | SP-TK | US, 9 | 1.61 × 107 | 3.03 × 106 | 2.42 × 107 | 3.45 × 107 | 2.73 × 107 | 5.16 × 107 |
488 | SP-TK | US, 9 | 1.01 × 106 | 1.13 × 105 | 1.06 × 106 | 5.31 × 106 | 2.88 × 106 | 7.16 × 106 |
480 | SP-TK | US, 11 | 5.41 × 107 | 6.14 × 106 | 4.14 × 107 | 3.59 × 107 | 3.58 × 107 | 3.48 × 107 |
494 | SP-TK | US, 13 | 1.47 × 105 | 9.64 × 105 | 8.86 × 106 | 6.82 × 106 | 7.68 × 106 | 1.07 × 107 |
Animal ID | Group Description | Day of Death | Anterior Spleen | Posterior Medial Spleen | Left Lateral Liver | Right Medial Liver |
---|---|---|---|---|---|---|
478 | SP-TK, Mock-exposed | S, Day 21 | BDL | BDL | BDL | BDL |
495 | SP-TK, Mock-exposed | S, Day 21 | BDL | BDL | BDL | BDL |
487 | SP-TK | S, Day 21 | BDL | BDL | BDL | BDL |
483 | SE | S, Day 2 | BDL | BDL | BDL | BDL |
491 | SE | S, Day 2 | BDL | BDL | BDL | BDL |
481 | SE | S, Day 3 | 2.73 × 103 | 2.16 × 103 | 3.88 × 103 | 7.75 × 103 |
490 | SE | S, Day 3 | 8.76 × 102 | 1.23 × 102 | 9.43 × 101 | BDL |
484 | SE | S, Day 5 | 2.04 × 108 | 1.86 × 108 | 7.44 × 107 | 4.22 × 107 |
493 | SE | S, Day 5 | 8.30 × 104 | 2.62 × 108 | 4.35 × 105 | 6.34 × 106 |
477 | SE | S, Day 7 | 6.59 × 106 | 8.18 × 106 | 4.03 × 106 | 4.02 × 106 |
485 | SE | S, Day 7 | 3.28 × 107 | 4.61 × 107 | 1.74 × 107 | 7.73 × 106 |
476 | SE | S, Day 9 | 4.33 × 105 | 2.96 × 105 | 7.43 × 105 | 6.77 × 105 |
486 | SE | S, Day 9 | 3.15 × 106 | 2.98 × 106 | 2.63 × 105 | 4.08 × 105 |
479 | SP-TK | US, 7 | 9.33 × 106 | 2.48 × 107 | 1.51 × 106 | 1.48 × 106 |
482 | SP-TK | US, 8 | 4.42 × 106 | 5.24 × 106 | 4.39 × 105 | 6.03 × 105 |
492 | SP-TK | US, 8 | 4.14 × 106 | 2.64 × 106 | 3.87 × 105 | 4.33 × 105 |
474 | SP-TK | US, 9 | 4.49 × 105 | 4.12 × 105 | 7.21 × 105 | 4.22 × 105 |
488 | SP-TK | US, 9 | 6.21 × 104 | 6.48 × 104 | 3.23 × 105 | 2.73 × 105 |
480 | SP-TK | US, 11 | 9.86 × 104 | 4.70 × 105 | 7.19 × 105 | 6.50 × 105 |
494 | SP-TK | US, 13 | 2.04 × 104 | 1.38 × 104 | 8.02 × 104 | 1.01 × 105 |
Animal ID | Group Description | Day of Death | Lung | Axillary LN | Adrenal Gland | Heart | Exposure Site | Right Inguinal LN | Hilar LN |
---|---|---|---|---|---|---|---|---|---|
478 | SP-TK, Mock-exposed | S, Day 21 | BDL | BDL | BDL | BDL | BDL | BDL | BDL |
495 | SP-TK, Mock-exposed | S, Day 21 | BDL | BDL | BDL | BDL | BDL | BDL | BDL |
487 | SP-TK | S, Day 21 | BDL | BDL | BDL | BDL | BDL | BDL | BDL |
483 | SE | S, Day 2 | BDL | BDL | BDL | BDL | BDL | BDL | BDL |
491 | SE | S, Day 2 | BDL | BDL | BDL | BDL | BDL | BDL | BDL |
481 | SE | S, Day 3 | BDL | BDL | BDL | BDL | 7.79 × 101 | UD | BDL |
490 | SE | S, Day 3 | BDL | BDL | BDL | BDL | 1.28 × 101 | BDL | BDL |
484 | SE | S, Day 5 | BDL | 3.29 × 107 | 2.13 × 107 | 7.02 × 104 | 1.05 × 107 | 2.69 × 105 | 1.31 × 105 |
493 | SE | S, Day 5 | 4.17 × 104 | 4.92 × 105 | 1.71 × 105 | 1.61 × 107 | 1.77 × 105 | 8.49 × 106 | 4.15 × 107 |
477 | SE | S, Day 7 | 6.00 × 105 | 7.70 × 106 | 8.81 × 106 | 3.33 × 105 | 4.86 × 106 | 2.81 × 107 | 3.29 × 106 |
485 | SE | S, Day 7 | 4.22 × 106 | 2.03 × 107 | 4.92 × 106 | 4.40 × 105 | 6.58 × 106 | 8.18 × 106 | 3.00 × 107 |
476 | SE | S, Day 9 | 1.27 × 106 | 2.40 × 106 | 3.06 × 106 | 2.20 × 106 | 1.01 × 107 | 7.53 × 106 | 9.89 × 106 |
486 | SE | S, Day 9 | 1.51 × 106 | 8.40 × 105 | 2.40 × 106 | 1.10 × 106 | 2.39 × 107 | 1.79 × 106 | 1.95 × 106 |
479 | SP-TK | US, 7 | 4.50 × 106 | 1.41 × 105 | 5.52 × 106 | 1.71 × 106 | 1.01 × 107 | 1.40 × 106 | 1.17 × 107 |
482 | SP-TK | US, 8 | 2.38 × 105 | 3.98 × 106 | 8.24 × 105 | 4.57 × 104 | 4.90 × 107 | 3.94 × 106 | 3.76 × 105 |
492 | SP-TK | US, 8 | 1.06 × 106 | 2.37 × 106 | 2.19 × 107 | 7.31 × 105 | 6.79 × 105 | 1.47 × 105 | 2.37 × 106 |
474 | SP-TK | US, 9 | 3.52 × 106 | 5.32 × 106 | 7.02 × 106 | 1.47 × 106 | 7.34 × 106 | 2.21 × 106 | 9.16 × 106 |
488 | SP-TK | US, 9 | 5.33 × 105 | 7.40 × 104 | 1.64 × 105 | 6.10 × 104 | 4.97 × 106 | 5.81 × 106 | 1.38 × 105 |
480 | SP-TK | US, 11 | 2.33 × 106 | 6.60 × 106 | 7.82 × 106 | 6.96 × 105 | 1.92 × 107 | 1.33 × 107 | 2.67 × 106 |
494 | SP-TK | US, 13 | 1.29 × 106 | 7.20 × 105 | 1.11 × 105 | BDL | 5.89 × 106 | 1.70 × 105 | 1.19 × 105 |
Animal ID | Group Description | Day of Death | Stomach | Duodenum | Jejunum | Ileum | Rectum | Colon |
---|---|---|---|---|---|---|---|---|
478 | SP-TK, Mock-exposed | S, Day 21 | BDL | BDL | BDL | BDL | BDL | BDL |
495 | SP-TK, Mock-exposed | S, Day 21 | BDL | BDL | BDL | BDL | BDL | BDL |
487 | SP-TK | S, Day 21 | BDL | BDL | BDL | 1.24 × 101 | BDL | 1.16 × 101 |
483 | SE | S, Day 2 | BDL | BDL | BDL | BDL | BDL | BDL |
491 | SE | S, Day 2 | BDL | BDL | BDL | BDL | BDL | BDL |
481 | SE | S, Day 3 | BDL | BDL | BDL | BDL | BDL | BDL |
490 | SE | S, Day 3 | BDL | BDL | BDL | BDL | BDL | BDL |
484 | SE | S, Day 5 | BDL | 8.47 × 103 | 1.86 × 103 | 5.85 × 103 | 1.33 × 104 | BDL |
493 | SE | S, Day 5 | BDL | BDL | 8.47 × 103 | 2.55 × 104 | 4.76 × 101 | 2.42 × 103 |
477 | SE | S, Day 7 | BDL | BDL | 4.30 × 101 | 3.98 × 105 | 4.62 × 103 | 4.43 × 103 |
485 | SE | S, Day 7 | BDL | BDL | BDL | 2.08 × 103 | 6.48 × 100① | 1.06 × 101 |
476 | SE | S, Day 9 | 6.23 × 104 | BDL | BDL | 1.52 × 106 | 1.03 × 104 | 7.70 × 103 |
486 | SE | S, Day 9 | 1.21 × 104 | 7.56 × 102 | 7.54 × 103 | 1.43 × 105 | 5.58 × 104 | 2.20 × 105 |
479 | SP-TK | US, 7 | BDL | BDL | BDL | 6.81 × 104 | BDL | 3.03 × 103 |
482 | SP-TK | US, 8 | BDL | 9.01 × 105 | BDL | 2.08 × 104 | BDL | 4.15 × 102 |
492 | SP-TK | US, 8 | BDL | 7.36 × 103 | 3.30 × 105 | 5.42 × 105 | 6.51 × 105 | 4.89 × 105 |
474 | SP-TK | US, 9 | BDL | 3.96 × 103 | 1.14 × 101 | 1.37 × 106 | 4.42 × 105 | 3.70 × 105 |
488 | SP-TK | US, 9 | BDL | 3.16 × 104 | 2.59 × 104 | 2.88 × 105 | 1.37 × 105 | 6.83 × 104 |
480 | SP-TK | US, 11 | 1.47 × 106 | BDL | 1.38 × 106 | 1.63 × 106 | 1.91 × 106 | 9.54 × 105 |
494 | SP-TK | US, 13 | BDL | 1.17 × 106 | BDL | 1.70 × 104 | 2.41 × 104 | 2.90 × 104 |
Animal ID | Group Description | Day of Death | Exposure Site | Lung | Heart | Adrenal Gland | Spleen | Liver | Axillary LN | Right Inguinal LN | Hilar LN |
---|---|---|---|---|---|---|---|---|---|---|---|
478 | SP-TK, Mock-exposed | S, Day 21 | BDL | BDL | BDL | BDL | BDL | BDL | BDL | BDL | BDL |
495 | SP-TK, Mock-exposed | S, Day 21 | BDL | BDL | BDL | BDL | BDL | BDL | BDL | BDL | BDL |
487 | SP-TK | S, Day 21 | 1.99 × 103 | BDL | 2.40 × 102 | BDL | 2.95 × 103 | 1.25 × 102 | 1.54 × 102 | 1.27 × 104 | 5.13 × 103 |
483 | SE | S, Day 2 | BDL | BDL | 6.73 × 102 | BDL | BDL | BDL | BDL | BDL | BDL |
491 | SE | S, Day 2 | BDL | BDL | BDL | BDL | BDL | BDL | BDL | BDL | BDL |
481 | SE | S, Day 3 | 1.66 × 103 | BDL | 5.65 × 103 | 9.32 × 102 | 1.52 × 105 | 9.16 × 104 | 1.55 × 101 | BDL | BDL |
490 | SE | S, Day 3 | BDL | BDL | 3.83 × 102 | BDL | 3.62 × 103 | 1.93 × 103 | 1.94 × 105 | BDL | BDL |
484 | SE | S, Day 5 | 3.74 × 104 | BDL | 3.02 × 104 | 5.60 × 106 | 5.94 × 106 | 2.56 × 106 | 2.91 × 105 | 1.69 × 104 | 1.62 × 105 |
493 | SE | S, Day 5 | 1.28 × 105 | BDL | 1.25 × 106 | 3.75 × 106 | 1.15 × 108 | 8.04 × 107 | 1.00 × 103 | 2.16 × 106 | 3.20 × 106 |
477 | SE | S, Day 7 | 1.11 × 108 | BDL | 1.44 × 106 | 5.52 × 107 | 4.33 × 107 | 3.93 × 106 | 5.40 × 105 | 1.70 × 105 | 2.12 × 106 |
485 | SE | S, Day 7 | 1.19 × 106 | BDL | 1.28 × 105 | 1.05 × 106 | 2.30 × 106 | 9.76 × 105 | 3.97 × 106 | 1.26 × 106 | 3.03 × 106 |
476 | SE | S, Day 9 | 4.45 × 107 | 4.78 × 105 | 2.81 × 106 | 7.32 × 107 | 1.49 × 106 | 1.76 × 106 | 2.51 × 106 | 2.71 × 106 | 3.06 × 106 |
486 | SE | S, Day 9 | 5.61 × 107 | BDL | 3.01 × 106 | 7.93 × 106 | 1.98 × 106 | 8.86 × 105 | 1.26 × 106 | 1.72 × 106 | 2.98 × 106 |
479 | SP-TK | US, 7 | 1.06 × 108 | 4.13 × 105 | 3.25 × 106 | 1.04 × 107 | 7.14 × 107 | 4.09 × 106 | 2.57 × 106 | 3.45 × 106 | 3.93 × 106 |
482 | SP-TK | US, 8 | 3.62 × 106 | 1.17 × 105 | 2.75 × 106 | 3.54 × 106 | 5.21 × 106 | 2.03 × 106 | 2.51 × 106 | 5.48 × 105 | 4.22 × 106 |
492 | SP-TK | US, 8 | 5.12 × 106 | 2.04 × 105 | 1.98 × 106 | 1.19 × 108 | 7.72 × 107 | 1.12 × 106 | 1.51 × 106 | 1.11 × 106 | 9.29 × 105 |
474 | SP-TK | US, 9 | 2.75 × 105 | 3.26 × 105 | 2.12 × 106 | 3.49 × 107 | 4.36 × 106 | 1.14 × 106 | 1.36 × 106 | 5.60 × 105 | 2.50 × 106 |
488 | SP-TK | US, 9 | 7.51 × 107 | 4.54 × 104 | 5.59 × 105 | 1.85 × 106 | 3.92 × 105 | 7.96 × 105 | 7.72 × 105 | 1.12 × 106 | 9.74 × 105 |
480 | SP-TK | US, 11 | 5.95 × 107 | 3.34 × 106 | 4.24 × 106 | 6.19 × 106 | 1.73 × 106 | 1.35 × 106 | 8.61 × 106 | 2.40 × 106 | 2.19 × 106 |
494 | SP-TK | US, 13 | 3.57 × 106 | BDL | 8.50 × 104 | 2.35 × 106 | 3.17 × 105 | 3.68 × 105 | 8.58 × 106 | 3.75 × 105 | 1.02 × 105 |
Group | Animal ID | Sex | Days PE 1 | Skin, Rash | Lymph Nodes | Spleen | Liver | Exposure Site | Adrenal Glands | Testes | Urinary Bladder | GI Tract |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Mock Exposed | 478 | F | 21 | 0 | 0 | 0 | 0 | 0 | 0 | NA | 0 | 0 |
495 | M | 21 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
SP-TK | 479 | F | 7 | 0 | 0 | + | 0 | + | 0 | NA | 0 | + |
482 | F | 8 | + | 0 | 0 | + | 0 | 0 | NA | 0 | 0 | |
492 | M | 8 | + | + | + | 0 | 0 | 0 | + | 0 | + | |
474 | F | 9 | + | 0 | 0 | 0 | 0 | 0 | NA | 0 | 0 | |
488 | M | 9 | + | 0 | 0 | + | 0 | 0 | + | 0 | 0 | |
480 | F | 11 | 0 | + | 0 | 0 | 0 | 0 | NA | + | + | |
494 | M | 13 | + | + | 0 | + | + | 0 | 0 | + | + | |
487 | M | 21 | 0 | + | 0 | 0 | + | 0 | 0 | 0 | 0 | |
SE | 483 | F | 2 | 0 | + | 0 | 0 | 0 | 0 | NA | 0 | 0 |
491 | M | 2 | 0 | + | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
481 | F | 3 | 0 | + | 0 | 0 | 0 | 0 | NA | 0 | 0 | |
490 | M | 3 | 0 | + | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
484 | F | 5 | 0 | + | + | 0 | 0 | 0 | NA | 0 | 0 | |
493 | M | 5 | 0 | + | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
477 | F | 7 | 0 | 0 | 0 | 0 | 0 | 0 | NA | 0 | 0 | |
485 | M | 7 | + | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
476 | F | 9 | 0 | 0 | 0 | 0 | 0 | 0 | NA | 0 | + | |
486 | M | 9 | + | 0 | 0 | 0 | 0 | 0 | 0 | 0 | + |
Virus and Species: | EBOV (Kikwit), Rhesus [19] | SUDV (Gulu), Cynomolgus |
---|---|---|
Mortality | 100% | 88% (1 survivor) |
Time to Death [Days] | 7 to 10 (avg/med = 8) | 7 to 13 (avg/med = 9) |
Peak Temperature (telemetry) | Days 3 to 5 | Days 4 to 8 |
Serum Viremia | Appear Day 3; universal Day 5 | Appear Day 3; universal Day 5 |
Increased ALT, ALP, GGT | Day 5 | Day 7 |
Coagulopathy | Day 6 | Day 7 |
sGP | Universal Day 4 | 86% on Day 5; universal Day 7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alfson, K.J.; Goez-Gazi, Y.; Gazi, M.; Chou, Y.-L.; Niemuth, N.A.; Mattix, M.E.; Staples, H.; Klaffke, B.; Rodriguez, G.F.; Escareno, P.; et al. Development of a Well-Characterized Cynomolgus Macaque Model of Sudan Virus Disease for Support of Product Development. Vaccines 2022, 10, 1723. https://doi.org/10.3390/vaccines10101723
Alfson KJ, Goez-Gazi Y, Gazi M, Chou Y-L, Niemuth NA, Mattix ME, Staples H, Klaffke B, Rodriguez GF, Escareno P, et al. Development of a Well-Characterized Cynomolgus Macaque Model of Sudan Virus Disease for Support of Product Development. Vaccines. 2022; 10(10):1723. https://doi.org/10.3390/vaccines10101723
Chicago/Turabian StyleAlfson, Kendra J., Yenny Goez-Gazi, Michal Gazi, Ying-Liang Chou, Nancy A. Niemuth, Marc E. Mattix, Hilary Staples, Benjamin Klaffke, Gloria F. Rodriguez, Priscilla Escareno, and et al. 2022. "Development of a Well-Characterized Cynomolgus Macaque Model of Sudan Virus Disease for Support of Product Development" Vaccines 10, no. 10: 1723. https://doi.org/10.3390/vaccines10101723
APA StyleAlfson, K. J., Goez-Gazi, Y., Gazi, M., Chou, Y.-L., Niemuth, N. A., Mattix, M. E., Staples, H., Klaffke, B., Rodriguez, G. F., Escareno, P., Bartley, C., Ticer, A., Clemmons, E. A., Dutton III, J. W., Griffiths, A., Meister, G. T., Sanford, D. C., Cirimotich, C. M., & Carrion, R., Jr. (2022). Development of a Well-Characterized Cynomolgus Macaque Model of Sudan Virus Disease for Support of Product Development. Vaccines, 10(10), 1723. https://doi.org/10.3390/vaccines10101723