Benefits of Switching Mycophenolic Acid to Sirolimus on Serological Response after a SARS-CoV-2 Booster Dose among Kidney Transplant Recipients: A Pilot Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Immunosuppressive Regimens and Vaccination
2.3. Outcome Measurements
2.4. Statistical Analysis
3. Results
3.1. Baseline Characteristics of the Participants
3.2. Post-Vaccination Anti-SARS-CoV-2 S Antibody Level and Seroconversion Rate
3.3. Adverse Events
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Okumura, K.; Nishida, S.; Dhand, A. Trends in COVID-19 mortality among solid organ transplant recipients: Implications for prevention. Transplantation 2022, 106, e380–e381. [Google Scholar] [CrossRef] [PubMed]
- Boyarsky, B.J.; Werbel, W.A.; Avery, R.K.; Tobian, A.A.R.; Massie, A.B.; Segev, D.L.; Garonzik-Wang, J.M. Antibody response to 2-Dose SARS-CoV-2 mRNA vaccine series in solid organ transplant recipients. JAMA 2021, 325, 2204–2206. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. Interim Clinical Considerations for Use of COVID-19 Vaccines Currently Approved or Authorized in the United States. Available online: https://www.cdc.gov/vaccines/covid-19/clinical-considerations/interim-considerations-us.html (accessed on 15 September 2022).
- Ekberg, H.; Tedesco-Silva, H.; Demirbas, A.; Vitko, S.; Nashan, B.; Gurkan, A.; Margreiter, R.; Hugo, C.; Grinyo, J.M.; Frei, U.; et al. Reduced exposure to calcineurin inhibitors in renal transplantation. N. Engl. J. Med. 2007, 357, 2562–2575. [Google Scholar] [CrossRef] [PubMed]
- KDIGO clinical practice guideline for the care of kidney transplant recipients. Am. J. Transplant. 2009, 9 (Suppl. 3), S1–S155. [CrossRef] [PubMed]
- Tedesco-Silva, H.; Pascual, J.; Viklicky, O.; Basic-Jukic, N.; Cassuto, E.; Kim, D.Y.; Cruzado, J.M.; Sommerer, C.; Adel Bakr, M.; Garcia, V.D.; et al. Safety of everolimus with reduced calcineurin inhibitor exposure in de novo kidney transplants: An analysis from the randomized TRANSFORM study. Transplantation 2019, 103, 1953–1963. [Google Scholar] [CrossRef]
- Sommerer, C.; Suwelack, B.; Dragun, D.; Schenker, P.; Hauser, I.A.; Witzke, O.; Hugo, C.; Kamar, N.; Merville, P.; Junge, M.; et al. An open-label, randomized trial indicates that everolimus with tacrolimus or cyclosporine is comparable to standard immunosuppression in de novo kidney transplant patients. Kidney Int. 2019, 96, 231–244. [Google Scholar] [CrossRef]
- Pascual, J.; Berger, S.P.; Witzke, O.; Tedesco, H.; Mulgaonkar, S.; Qazi, Y.; Chadban, S.; Oppenheimer, F.; Sommerer, C.; Oberbauer, R.; et al. Everolimus with reduced calcineurin inhibitor exposure in renal transplantation. J. Am. Soc. Nephrol. 2018, 29, 1979–1991. [Google Scholar] [CrossRef]
- Grupper, A.; Rabinowich, L.; Schwartz, D.; Schwartz, I.F.; Ben-Yehoyada, M.; Shashar, M.; Katchman, E.; Halperin, T.; Turner, D.; Goykhman, Y.; et al. Reduced humoral response to mRNA SARS-CoV-2 BNT162b2 vaccine in kidney transplant recipients without prior exposure to the virus. Am. J. Transplant. 2021, 21, 2719–2726. [Google Scholar] [CrossRef] [PubMed]
- Kantauskaite, M.; Muller, L.; Kolb, T.; Fischer, S.; Hillebrandt, J.; Ivens, K.; Andree, M.; Luedde, T.; Orth, H.M.; Adams, O.; et al. Intensity of mycophenolate mofetil treatment is associated with an impaired immune response to SARS-CoV-2 vaccination in kidney transplant recipients. Am. J. Transplant. 2022, 22, 634–639. [Google Scholar] [CrossRef] [PubMed]
- Boyarsky, B.J.; Werbel, W.A.; Avery, R.K.; Tobian, A.A.R.; Massie, A.B.; Segev, D.L.; Garonzik-Wang, J.M. Immunogenicity of a single dose of SARS-CoV-2 messenger RNA vaccine in solid organ transplant recipients. JAMA 2021, 325, 1784–1786. [Google Scholar] [CrossRef] [PubMed]
- Benotmane, I.; Gautier, G.; Perrin, P.; Olagne, J.; Cognard, N.; Fafi-Kremer, S.; Caillard, S. Antibody response after a third dose of the mRNA-1273 SARS-CoV-2 vaccine in kidney transplant recipients with minimal serologic response to 2 doses. JAMA 2021, 326, 1063–1065. [Google Scholar] [CrossRef]
- Rozen-Zvi, B.; Yahav, D.; Agur, T.; Zingerman, B.; Ben-Zvi, H.; Atamna, A.; Tau, N.; Mashraki, T.; Nesher, E.; Rahamimov, R. Antibody response to SARS-CoV-2 mRNA vaccine among kidney transplant recipients: A prospective cohort study. Clin. Microbiol. Infect. 2021, 27, 1173.e1171–1173.e1174. [Google Scholar] [CrossRef]
- Bruminhent, J.; Setthaudom, C.; Chaumdee, P.; Boongird, S.; Kiertiburanakul, S.; Malathum, K.; Nongnuch, A.; Phuphuakrat, A.; Jirasiritham, S.; Janphram, C.; et al. SARS-CoV-2-specific humoral and cell-mediated immune responses after immunization with inactivated COVID-19 vaccine in kidney transplant recipients (CVIM 1 study). Am. J. Transplant. 2022, 22, 813–822. [Google Scholar] [CrossRef]
- Egli, A.; Humar, A.; Widmer, L.A.; Lisboa, L.F.; Santer, D.M.; Mueller, T.; Stelling, J.; Baluch, A.; O’Shea, D.; Houghton, M.; et al. Effect of Immunosuppression on T-Helper 2 and B-Cell Responses to Influenza Vaccination. J. Infect. Dis. 2015, 212, 137–146. [Google Scholar] [CrossRef]
- Osmanodja, B.; Ronicke, S.; Budde, K.; Jens, A.; Hammett, C.; Koch, N.; Seelow, E.; Waiser, J.; Zukunft, B.; Bachmann, F.; et al. Serological response to three, four and five doses of SARS-CoV-2 vaccine in kidney transplant recipients. J. Clin. Med. 2022, 11, 2565. [Google Scholar] [CrossRef]
- Netti, G.S.; Infante, B.; Troise, D.; Mercuri, S.; Panico, M.; Spadaccino, F.; Catalano, V.; Gigante, M.; Simone, S.; Pontrelli, P.; et al. mTOR inhibitors improve both humoral and cellular response to SARS-CoV-2 messenger RNA BNT16b2 vaccine in kidney transplant recipients. Am. J. Transplant. 2022, 22, 1475–1482. [Google Scholar] [CrossRef]
- De Boer, S.E.; Berger, S.P.; van Leer–Buter, C.C.; Kroesen, B.-J.; van Baarle, D.; Sanders, J.-S.F. Enhanced humoral immune response after COVID-19 vaccination in elderly kidney transplant recipients on everolimus versus mycophenolate mofetil–containing immunosuppressive regimens. Transplantation 2022, 106, 1615–1621. [Google Scholar] [CrossRef]
- Qin, C.X.; Moore, L.W.; Anjan, S.; Rahamimov, R.; Sifri, C.D.; Ali, N.M.; Morales, M.K.; Tsapepas, D.S.; Basic-Jukic, N.; Miller, R.A.; et al. Risk of Breakthrough SARS-CoV-2 Infections in Adult Transplant Recipients. Transplantation 2021, 105, e265–e266. [Google Scholar] [CrossRef]
- Lee, A.; Wong, S.Y.; Chai, L.Y.A.; Lee, S.C.; Lee, M.X.; Muthiah, M.D.; Tay, S.H.; Teo, C.B.; Tan, B.K.J.; Chan, Y.H.; et al. Efficacy of covid-19 vaccines in immunocompromised patients: Systematic review and meta-analysis. BMJ 2022, 376, e068632. [Google Scholar] [CrossRef]
- Cucchiari, D.; Egri, N.; Bodro, M.; Herrera, S.; Del Risco-Zevallos, J.; Casals-Urquiza, J.; Cofan, F.; Moreno, A.; Rovira, J.; Banon-Maneus, E.; et al. Cellular and humoral response after MRNA-1273 SARS-CoV-2 vaccine in kidney transplant recipients. Am. J. Transplant. 2021, 21, 2727–2739. [Google Scholar] [CrossRef]
- Sood, A.; Tran, M.; Murthy, V.; Gonzalez, E. Immunogenicity and Safety of SARS-CoV-2 Vaccination in Patients With Rheumatic Diseases: A Systematic Review and Meta-analysis. J. Clin. Rheumatol. 2022. Epub ahead of print: 3 June 2022. [Google Scholar] [CrossRef]
- Keshtkar-Jahromi, M.; Argani, H.; Rahnavardi, M.; Mirchi, E.; Atabak, S.; Tara, S.A.; Gachkar, L.; Noori-Froothghe, A.; Mokhtari-Azad, T. Antibody response to influenza immunization in kidney transplant recipients receiving either azathioprine or mycophenolate: A controlled trial. Am. J. Nephrol. 2008, 28, 654–660. [Google Scholar] [CrossRef]
- Prasoppokakorn, T.; Vanichanan, J.; Chaiteerakij, R.; Jutivorakool, K.; Udomkarnjananun, S.; Pongpirul, K.; Taesombat, W.; Wattanatorn, S.; Avihingsanon, Y.; Tungsanga, K.; et al. A randomized controlled trial of comparative effectiveness between the 2 dose and 3 dose regimens of hepatitis a vaccine in kidney transplant recipients. Sci. Rep. 2021, 11, 50. [Google Scholar] [CrossRef]
- Girerd, S.; Schikowski, J.; Girerd, N.; Duarte, K.; Busby, H.; Gambier, N.; Ladrière, M.; Kessler, M.; Frimat, L.; Aarnink, A. Impact of reduced exposure to calcineurin inhibitors on the development of de novo DSA: A cohort of non-immunized first kidney graft recipients between 2007 and 2014. BMC Nephrol. 2018, 19, 232. [Google Scholar] [CrossRef]
- Choi, B.S.; Shin, M.J.; Shin, S.J.; Kim, Y.S.; Choi, Y.J.; Kim, Y.S.; Moon, I.S.; Kim, S.Y.; Koh, Y.B.; Bang, B.K.; et al. Clinical significance of an early protocol biopsy in living-donor renal transplantation: Ten-year experience at a single center. Am. J. Transplant. 2005, 5, 1354–1360. [Google Scholar] [CrossRef]
- Karnell, J.L.; Karnell, F.G., 3rd; Stephens, G.L.; Rajan, B.; Morehouse, C.; Li, Y.; Swerdlow, B.; Wilson, M.; Goldbach-Mansky, R.; Groves, C.; et al. Mycophenolic acid differentially impacts B cell function depending on the stage of differentiation. J. Immunol. 2011, 187, 3603–3612. [Google Scholar] [CrossRef]
- Araki, K.; Turner, A.P.; Shaffer, V.O.; Gangappa, S.; Keller, S.A.; Bachmann, M.F.; Larsen, C.P.; Ahmed, R. mTOR regulates memory CD8 T-cell differentiation. Nature 2009, 460, 108–112. [Google Scholar] [CrossRef] [PubMed]
- Ye, L.; Lee, J.; Xu, L.; Mohammed, A.U.; Li, W.; Hale, J.S.; Tan, W.G.; Wu, T.; Davis, C.W.; Ahmed, R.; et al. mTOR promotes antiviral humoral immunity by differentially regulating CD4 Helper T cell and B cell responses. J. Virol. 2017, 91, e01653-16. [Google Scholar] [CrossRef]
- He, L.; Zang, A.; Du, M.; Ma, D.; Yuan, C.; Zhou, C.; Mu, J.; Shi, H.; Li, D.; Huang, X.; et al. mTOR regulates TLR-induced c-fos and Th1 responses to HBV and HCV vaccines. Virol. Sin. 2015, 30, 174–189. [Google Scholar] [CrossRef]
- Regele, F.; Heinzel, A.; Hu, K.; Raab, L.; Eskandary, F.; Faé, I.; Zelzer, S.; Böhmig, G.A.; Bond, G.; Fischer, G.; et al. Stopping of mycophenolic acid in kidney transplant recipients for 2 weeks peri-vaccination does not increase response to SARS-CoV-2 vaccination-A non-randomized, controlled pilot study. Front. Med. 2022, 9, 914424. [Google Scholar] [CrossRef]
- Llinas-Mallol, L.; Redondo-Pachon, D.; Perez-Saez, M.J.; Raich-Regue, D.; Mir, M.; Yelamos, J.; Lopez-Botet, M.; Pascual, J.; Crespo, M. Peripheral blood lymphocyte subsets change after steroid withdrawal in renal allograft recipients: A prospective study. Sci. Rep. 2019, 9, 7453. [Google Scholar] [CrossRef]
- Feng, S.; Phillips, D.J.; White, T.; Sayal, H.; Aley, P.K.; Bibi, S.; Dold, C.; Fuskova, M.; Gilbert, S.C.; Hirsch, I.; et al. Correlates of protection against symptomatic and asymptomatic SARS-CoV-2 infection. Nat. Med. 2021, 27, 2032–2040. [Google Scholar] [CrossRef]
- Dolscheid-Pommerich, R.; Bartok, E.; Renn, M.; Kümmerer, B.M.; Schulte, B.; Schmithausen, R.M.; Stoffel-Wagner, B.; Streeck, H.; Saschenbrecker, S.; Steinhagen, K.; et al. Correlation between a quantitative anti-SARS-CoV-2 IgG ELISA and neutralization activity. J. Med. Virol. 2022, 94, 388–392. [Google Scholar] [CrossRef] [PubMed]


| Variable | Total (n = 28) | Control Group (n = 14) | Switching Group (n = 14) | p |
|---|---|---|---|---|
| Age, years; mean ± SD | 51.5 ± 8.7 | 50.4 ± 9.2 | 52.6 ± 8.4 | 0.51 |
| Male, n (%) | 15 (53.6%) | 9 (64.3%) | 6 (42.9%) | 0.45 |
| DKT, n (%) | 17 (60.7%) | 6 (42.9%) | 11 (78.6%) | 0.12 |
| Transplant vintage, years; median (IQR) | 3.3 (1.6–7.5) | 3.2 (1.5–14.4) | 3.3 (1.8–7.3) | 0.85 |
| Baseline serum creatinine, mg/dL; mean ± SD | 1.34 ± 0.48 | 1.40 ± 0.59 | 1.27 ± 0.37 | 0.51 |
| White blood cells, cells/μL; median (IQR) | 5725 (5110–7110) | 5710 (5280–6930) | 5985 (4680–7290) | 0.95 |
| Neutrophil, cells/μL; median (IQR) | 3720 (3145–4800) | 3525 (3180–4270) | 4055 (3120–5100) | 0.73 |
| Lymphocyte, cells/μL; median (IQR) | 1645 (1290–2085) | 1755 (1540–2100) | 1455 (1180–2070) | 0.43 |
| Dosage of MMF, mg/day; mean ± SD | 1179 ± 69 | 1250 ± 126 | 1107 ± 57 | 0.31 |
| Tacrolimus trough level, ng/mL; mean ± SD | 4.8 ± 1.0 | 4.7 ± 1.2 | 5.0 ± 0.8 | 0.59 |
| Duration between first and second vaccinations, months; median (IQR) | 2.8 (2.8–2.8) | 2.8 (2.8–2.8) | 2.8 (2.8–2.8) | 0.14 |
| Duration between second and third vaccinations, months; median (IQR) | 1.3 (1.1–1.5) | 1.3 (1.1–1.5) | 1.3 (1.2–1.4) | 0.72 |
| Time since the last BNT162b2, months; median (IQR) | 4.9 (4.6–5.3) | 4.9 (4.6–5.3) | 5.0 (4.8–5.2) | 0.66 |
| Baseline anti-SARS-CoV-2 S antibody, BAU/mL; median (IQR) | 170.2 (36.0–510.3) | 204.9 (44.7–541.2) | 164.5 (19.5–429.5) | 0.61 |
| Adverse Events | Control Group (n = 14) | Switching Group (n = 14) |
|---|---|---|
| Immunosuppressant-related | ||
| Oral ulcers, n (%) | 0 (0%) | 2 (1.4%) |
| Edema, n (%) | 0 (0%) | 0(0%) |
| Diarrhea, n (%) | 0 (0%) | 0 (0%) |
| Pneumonitis, n (%) | 0 (0%) | 0 (0%) |
| Rejection, n (%) | 0 (0%) | 0 (0%) |
| Vaccine-related | ||
| Myalgia, n (%) | 11 (78.6%) | 13 (92.9%) |
| Fever, n (%) | 3 (2.1%) | 2 (1.4%) |
| Bleeding, n (%) | 0 (0%) | 0 (0%) |
| Chest discomfort, n (%) | 0 (0%) | 0 (0%) |
| Severe headache, n (%) | 0 (0%) | 0 (0%) |
| Vomiting, n (%) | 0 (0%) | 0 (0%) |
| Seizure, n (%) | 0 (0%) | 0 (0%) |
| Stroke-like symptoms, n (%) | 0 (0%) | 0 (0%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Banjongjit, A.; Phirom, S.; Phannajit, J.; Jantarabenjakul, W.; Paitoonpong, L.; Kittanamongkolchai, W.; Wattanatorn, S.; Prasithsirikul, W.; Eiam-Ong, S.; Avihingsanon, Y.; et al. Benefits of Switching Mycophenolic Acid to Sirolimus on Serological Response after a SARS-CoV-2 Booster Dose among Kidney Transplant Recipients: A Pilot Study. Vaccines 2022, 10, 1685. https://doi.org/10.3390/vaccines10101685
Banjongjit A, Phirom S, Phannajit J, Jantarabenjakul W, Paitoonpong L, Kittanamongkolchai W, Wattanatorn S, Prasithsirikul W, Eiam-Ong S, Avihingsanon Y, et al. Benefits of Switching Mycophenolic Acid to Sirolimus on Serological Response after a SARS-CoV-2 Booster Dose among Kidney Transplant Recipients: A Pilot Study. Vaccines. 2022; 10(10):1685. https://doi.org/10.3390/vaccines10101685
Chicago/Turabian StyleBanjongjit, Athiphat, Supitchaya Phirom, Jeerath Phannajit, Watsamon Jantarabenjakul, Leilani Paitoonpong, Wonngarm Kittanamongkolchai, Salin Wattanatorn, Wisit Prasithsirikul, Somchai Eiam-Ong, Yingyos Avihingsanon, and et al. 2022. "Benefits of Switching Mycophenolic Acid to Sirolimus on Serological Response after a SARS-CoV-2 Booster Dose among Kidney Transplant Recipients: A Pilot Study" Vaccines 10, no. 10: 1685. https://doi.org/10.3390/vaccines10101685
APA StyleBanjongjit, A., Phirom, S., Phannajit, J., Jantarabenjakul, W., Paitoonpong, L., Kittanamongkolchai, W., Wattanatorn, S., Prasithsirikul, W., Eiam-Ong, S., Avihingsanon, Y., Hansasuta, P., Vanichanan, J., & Townamchai, N. (2022). Benefits of Switching Mycophenolic Acid to Sirolimus on Serological Response after a SARS-CoV-2 Booster Dose among Kidney Transplant Recipients: A Pilot Study. Vaccines, 10(10), 1685. https://doi.org/10.3390/vaccines10101685

