Dysautonomia in Children with Post-Acute Sequelae of Coronavirus 2019 Disease and/or Vaccination
Abstract
:1. Introduction
2. Methods
2.1. Active Standing Test
2.2. HRV
- A short-time HRV analysis was performed using the HRV Scanner™ (BioSign GmbH, Ottenhofen, Germany) at two time periods: (1) in a supine position; and (2) 5 min of active standing. The HRV measurements were based on the RR intervals of normal QRS complexes (NN intervals) of the two 5 min intervals.
2.2.1. Time Domain HRV
- Average heart rates in beats per minute = mean heart rates of each 5 min interval.
- SDNN in milliseconds = standard deviation of NN; this reflected the general variability of the heart rate influenced by the autonomic nervous system and also the endocrine and thermoregulatory mechanisms.
- pNN50 and pNN20 in percent = percent of NN intervals that differed more than 50/20 ms from the prior interval; this mainly reflected the parasympathetic influence.
- RMSSD in milliseconds = root mean square of the differences between successive NN intervals; this mainly reflected the parasympathetic influence.
2.2.2. Stress Index
2.2.3. Frequency Domain HRV
- Very low frequency power (VLF = 0.00–0.04 Hz) in ms2: an uncertain physiological meaning.
- Low frequency power (LF = 0.04–0.15 Hz) in ms2: this is mediated by a sympathetic tone; however, the interpretation is controversial and may represent both sympathetic and parasympathetic activity.
- High frequency power (HF = 0.15–0.4 Hz) in ms2: “sinus arrhythmia” mediated by alternating levels of a parasympathetic tone.
- LF/HF ratio: often referred to as the balance between the sympathetic and parasympathetic tones.
- Total power (TP) in ms2: this measures the total variance in HRV.
2.3. Statistics
3. Results
4. Discussion
5. Limitations
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Hope, A.A.; Evering, T.H. Postacute Sequelae of Severe Acute Respiratory Syndrome Coronavirus 2 Infection. Infect. Dis. Clin. North Am. 2022, 36, 379–395. [Google Scholar] [CrossRef] [PubMed]
- Funk, A.L.; Kuppermann, N.; Florin, T.A.; Tancredi, D.J.; Xie, J.; Kim, K.; Finkelstein, Y.; Neuman, M.I.; Salvadori, M.I.; Yock-Corrales, A.; et al. Post-COVID-19 Conditions among Children 90 Days after SARS-CoV-2 Infection. JAMA Netw. Open 2022, 5, e2223253. [Google Scholar] [CrossRef]
- Zisis, S.N.; Durieux, J.C.; Mouchati, C.; Perez, J.A.; McComsey, G.A. The Protective Effect of Coronavirus Disease 2019 (COVID-19) Vaccination on Postacute Sequelae of COVID-19: A Multicenter Study from a Large National Health Research Network. Open Forum Infect. Dis. 2022, 9, ofac228. [Google Scholar] [CrossRef] [PubMed]
- Mumtaz, A.; Sheikh, A.A.E.; Khan, A.M.; Khalid, S.N.; Khan, J.; Nasrullah, A.; Sagheer, S.; Sheikh, A.B. COVID-19 Vaccine and Long COVID: A Scoping Review. Life 2022, 12, 1066. [Google Scholar] [CrossRef]
- Said, K.B.; Al-Otaibi, A.; Aljaloud, L.; Al-Anazi, B.; Alsolami, A.; Alreshidi, F.S.; Ha’il COM Research Unit Group. The Frequency and Patterns of Post-COVID-19 Vaccination Syndrome Reveal Initially Mild and Potentially Immunocytopenic Signs in Primarily Young Saudi Women. Vaccines 2022, 10, 1015. [Google Scholar] [CrossRef]
- Eldokla, A.M.; Mohamed-Hussein, A.A.; Fouad, A.M.; Abdelnaser, M.G.; Ali, S.T.; Makhlouf, N.A.; Sayed, I.G.; Makhlouf, H.A.; Shah, J.; Aiash, H. Prevalence and patterns of symptoms of dysautonomia in patients with long-COVID syndrome: A cross-sectional study. Ann. Clin. Transl. Neurol. 2022, 9, 778–785. [Google Scholar] [CrossRef] [PubMed]
- Finsterer, J. Small fiber neuropathy underlying dysautonomia in COVID-19 and in post-SARS-CoV-2 vaccination and long-COVID syndromes. Muscle Nerve 2022, 65, E31–E32. [Google Scholar] [CrossRef] [PubMed]
- Sheldon, R.S.; Grubb, B.P., 2nd; Olshansky, B.; Shen, W.K.; Calkins, H.; Brignole, M.; Raj, S.R.; Krahn, A.D.; Morillo, C.A.; Stewart, J.M.; et al. 2015 heart rhythm society expert consensus statement on the diagnosis and treatment of postural tachycardia syndrome, inappropriate sinus tachycardia, and vasovagal syncope. Heart Rhythm 2015, 12, e41–e63. [Google Scholar] [CrossRef] [Green Version]
- Tomes, C.; Schram, B.; Orr, R. Relationships Between Heart Rate Variability, Occupational Performance, and Fitness for Tactical Personnel: A Systematic Review. Front. Public Health 2020, 8, 583336. [Google Scholar] [CrossRef] [PubMed]
- Mahmoud, Z.; East, L.; Gleva, M.; Woodard, P.K.; Lavine, K.; Verma, A.K. Cardiovascular symptom phenotypes of post-acute sequelae of SARS-CoV-2. Int. J. Cardiol. 2022, 366, 35–41. [Google Scholar] [CrossRef] [PubMed]
- Kaya, H.; Asoglu, R.; Afsin, A.; Tibilli, H.; Kurt, E.; Kafadar, S.; Gulacti, U.; Kafadar, H. Evaluation of myocardial performance index in patients with COVID-19: An echocardiographic follow-up study. Rev. Port. Cardiol. 2022, 41, 455–461. [Google Scholar] [CrossRef] [PubMed]
- Shah, B.; Kunal, S.; Bansal, A.; Jain, J.; Poundrik, S.; Shetty, M.K.; Batra, V.; Chaturvedi, V.; Yusuf, J.; Mukhopadhyay, S.; et al. Heart rate variability as a marker of cardiovascular dysautonomia in post-COVID-19 syndrome using artificial intelligence. Indian Pacing Electrophysiol. J. 2022, 22, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Acanfora, D.; Nolano, M.; Acanfora, C.; Colella, C.; Provitera, V.; Caporaso, G.; Rodolico, G.R.; Bortone, A.S.; Galasso, G.; Casucci, G. Impaired Vagal Activity in Long-COVID-19 Patients. Viruses 2022, 14, 1035. [Google Scholar] [CrossRef] [PubMed]
- Wallukat, G.; Hohberger, B.; Wenzel, K.; Fürst, J.; Schulze-Rothe, S.; Wallukat, A.; Hönicke, A.S.; Müller, J. Functional autoantibodies against G-protein coupled receptors in patients with persistent Long-COVID-19 symptoms. J. Transl. Autoimmun. 2021, 4, 100100. [Google Scholar] [CrossRef] [PubMed]
- Hottenrott, L.; Gronwald, T.; Hottenrott, K.; Wiewelhove, T.; Ferrauti, A. Utilizing Heart Rate Variability for Coaching Athletes During and After Viral Infection: A Case Report in an Elite Endurance Athlete. Front. Sports Act. Living 2021, 3, 612782. [Google Scholar] [CrossRef]
- Aune, D.; Sen, A.; ó’Hartaigh, B.; Janszky, I.; Romundstad, P.R.; Tonstad, S.; Vatten, L.J. Resting heart rate and the risk of cardiovascular disease, total cancer, and all-cause mortality—A systematic review and dose-response meta-analysis of prospective studies. Nutr. Metab. Cardiovasc. Dis. NMCD 2017, 27, 504–517. [Google Scholar] [CrossRef]
- Lindgren, M.; Robertson, J.; Adiels, M.; Schaufelberger, M.; Åberg, M.; Torén, K.; Waern, M.; Åberg, N.D.; Rosengren, A. Resting heart rate in late adolescence and long term risk of cardiovascular disease in Swedish men. Int. J. Cardiol. 2018, 259, 109–115. [Google Scholar] [CrossRef]
- Reimers, A.K.; Knapp, G.; Reimers, C.D. Effects of Exercise on the Resting Heart Rate: A Systematic Review and Meta-Analysis of Interventional Studies. J. Clin. Med. 2018, 7, 503. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W. Chronotropic effects and mechanisms of long-chain omega-3 polyunsaturated fatty acids on heartbeat: The latest insights. Nutr. Rev. 2021, 80, 128–135. [Google Scholar] [CrossRef]
- Khan, S.U.; Lone, A.N.; Khan, M.S.; Virani, S.S.; Blumenthal, R.S.; Nasir, K.; Miller, M.; Michos, E.D.; Ballantyne, C.M.; Boden, W.E.; et al. Effect of omega-3 fatty acids on cardiovascular outcomes: A systematic review and meta-analysis. EClinicalMedicine 2021, 38, 100997. [Google Scholar] [CrossRef]
- Karczmarzyk, K.; Kęsik-Brodacka, M. Attacking the Intruder at the Gate: Prospects of Mucosal Anti SARS-CoV-2 Vaccines. Pathogens 2022, 11, 117. [Google Scholar] [CrossRef] [PubMed]
- Bourdillon, N.; Yazdani, S.; Schmitt, L.; Millet, G.P. Effects of COVID-19 lockdown on heart rate variability. PLoS ONE 2020, 15, e0242303. [Google Scholar] [CrossRef] [PubMed]
Healthy Control | Post-COVID-19 | Post-COVID-19 + VAC | Post-VAC | |
---|---|---|---|---|
Patients | 47 | 19 | 12 | 7 |
Gender (female/male) | 30/17 | 13/6 | 8/4 | 4/3 |
Age (years) | 14.2 ± 3.8 | 13.3 ± 2.9 | 17.1 ± 3.7 | 14.9 ± 1.5 |
Height (cm) | 160.1 ± 14.2 | 154.8 ± 10.9 | 166.4 ± 10.3 | 161.9 ± 5.5 |
Weight (kg) | 52.6 ± 14.3 | 47.9 ± 13.1 | 60.1 ± 11.3 | 49.7 ± 7.2 |
Systolic BP (mmHg) | 114.5 ± 9.2 | 115.4 ± 13.7 | 119.1 ± 9.7 | 120.7 ± 9.7 |
Diastolic BP (mmHg) | 61.7 ± 11.2 | 67.2 ± 9.1 * | 75.4 ± 8.6 *** | 71.0 ± 6.3 * |
Fractional shortening (%) | >30 | 37.4 ± 4.1 | 40.6 ± 3.7 | 35.40 ± 1.80 |
Myocardial Performance Index | <0.4 | 0.14 ± 0.06 | 0.13 ± 0.10 | 0.18 ± 0.13 |
Heart Rate Increase (bpm) | 16.2 ± 7.1 | 25.3 ± 11.7 ** | 26.2 ± 14.2 ** | 29.6 ± 12.8 ** |
Lying | ||||
Mean Heart Rate (bpm) | 71.9 ± 8.1 | 80.7 ± 15.9 * | 76.7 ± 16.5 | 85.4 ± 15.4 ** |
Stress Index (pt) | 97.8 ± 85.1 | 150.7 ± 202.7 * | 183.6 ± 140.4 *** | 201.7 ± 213.6 ** |
SDNN (ms) | 89.1 ± 38.4 | 68.7 ± 26.4 * | 71.8 ± 64.7 | 75.3 ± 50.4 |
pNN20 (%) | 78.6 ± 10.8 | 68.8 ± 26.6 | 56.0 ± 28.5 *** | 53.3 ± 32.9 *** |
RMSSD (ms) | 85.1 ± 56.2 | 68.7 ± 38.5 | 77.2 ± 94.6 | 64.7 ± 66.8 |
Power HF Band (ms2) | 2920 ± 2229 | 2097 ± 2442 | 2376 ± 5298 | 3301 ± 6482 |
Power LF Band (ms2) | 1518 ± 2795 | 794 ± 774 | 1132 ± 1800 | 788 ± 674 |
Power VLF Band (ms2) | 1553 ± 2182 | 1099 ± 764 | 2612 ± 4472 | 1907 ± 2385 |
Power Total (ms2) | 5819 ± 6203 | 3990 ± 3260 | 6119 ± 11,289 | 5997 ± 7248 |
LF/HF Ratio | 0.97 ± 1.1 | 0.98 ± 1.23 | 1.48 ± 1.52 | 1.61 ± 1.69 |
Standing | ||||
Mean Heart Rate (bpm) | 89.8 ± 13.2 | 106.0 ± 13.1 *** | 102.9 ± 10.8 *** | 115.1 ± 12.8 *** |
SDNN (ms) | 58.0 ± 22.7 | 43.9 ± 19.4 ** | 62.9 ± 48.8 | 38.8 ± 16.1 |
pNN20 (%) | 45.8 ± 18.6 | 27.5 ± 17.4 *** | 20.6 ± 13.5 *** | 15.6 ± 13.6 *** |
RMSSD (ms) | 40.4 ± 22.7 | 26.7 ± 22.2 * | 30.9 ± 48.9 | 22.4 ± 22.3 |
Stress Index (pt) | 168 ± 116 | 343 ± 292 *** | 319 ± 219 ** | 494 ± 340 *** |
Power HF Band (ms2) | 949 ± 1222 | 939 ± 2334 | 642 ± 1905 | 1184 ± 2640 |
Power LF Band (ms2) | 1331 ± 1115 | 1623 ± 5006 | 785 ± 762 | 1276 ± 1725 |
Power VLF Band (ms2) | 1299 ± 1506 | 1058 ± 2197 | 1309 ± 1926 | 948 ± 848 |
Power Total (ms2) | 3579 ± 3012 | 3611 ± 9437 | 2737 ± 4144 | 3409 ± 4895 |
LF/HF Ratio | 2.54 ± 1.95 | 3.13 ± 2.96 | 9.41 ± 9.63 | 4.20 ± 3.50 * |
Respiratory Rate (1/min) | 16.3 ± 3.3 | 18.8 ± 2.1 ** | 19.1 ± 4.0 * | 17.7 ± 1.8 |
Number of Beats | 792 ± 111 | 902 ± 139 ** | 883 ± 168 * | 895 ± 192 * |
Quality (%) | 82.7 ± 18.5 | 82.5 ± 15.3 | 80.8 ± 24.7 | 79.1 ± 17.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Buchhorn, R. Dysautonomia in Children with Post-Acute Sequelae of Coronavirus 2019 Disease and/or Vaccination. Vaccines 2022, 10, 1686. https://doi.org/10.3390/vaccines10101686
Buchhorn R. Dysautonomia in Children with Post-Acute Sequelae of Coronavirus 2019 Disease and/or Vaccination. Vaccines. 2022; 10(10):1686. https://doi.org/10.3390/vaccines10101686
Chicago/Turabian StyleBuchhorn, Reiner. 2022. "Dysautonomia in Children with Post-Acute Sequelae of Coronavirus 2019 Disease and/or Vaccination" Vaccines 10, no. 10: 1686. https://doi.org/10.3390/vaccines10101686
APA StyleBuchhorn, R. (2022). Dysautonomia in Children with Post-Acute Sequelae of Coronavirus 2019 Disease and/or Vaccination. Vaccines, 10(10), 1686. https://doi.org/10.3390/vaccines10101686