Quantitative Analysis of SARS-CoV-2 Serological Responses Post Three Doses of Immunization and Prior to Breakthrough COVID-19 Infections
Abstract
:1. Introduction
2. Materials and Methods
2.1. Recruitment, Sample, and Data Collection
2.2. Quantitative Antibody Measurement
2.3. Breakthrough Case Identification and Characterization
2.4. Statistical Analysis
3. Results
3.1. Characteristics of the Study Cohort
3.2. Characteristics of Breakthrough Cases
3.3. Individual Trend of Vaccine Mediated Serological Responese
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Statistics and Research Coronavirus (COVID-19) Vaccinations. Available online: https://ourworldindata.org/covid-vaccinations (accessed on 3 August 2022).
- Health Canada. Approved COVID-19 Vaccines. Available online: https://www.canada.ca/en/health-canada/services/drugs-health-products/covid19-industry/drugs-vaccines-treatments/vaccines.html (accessed on 3 August 2022).
- The U.S. Food and Drug Administration. COVID-19 Vaccines. Available online: https://www.fda.gov/emergency-preparedness-and-response/coronavirus-disease-2019-covid-19/covid-19-vaccines (accessed on 3 August 2022).
- Plotkin, S.A. Correlates of protection induced by vaccination. Clin. Vaccine Immunol. 2010, 17, 1055–1065. [Google Scholar] [CrossRef] [PubMed]
- Mohit, E.; Rostami, Z.; Vahidi, H. A comparative review of immunoassays for COVID-19 detection A comparative review of immunoassays for COVID-19 detection. Expert Rev. Clin. Immunol. 2021, 17, 573–599. [Google Scholar] [CrossRef]
- National Committee of Clinical Laboratory Scientists (NCCLS). Evaluation and Performance Criteria for Multiple Component Test Products Intended for the Detection and Quantification of Rubella IgG Antibody; I/LA6-T; Tentative Guidline; National Committee of Clinical Laboratory Scientists: Wayne, PA, USA, 1985. [Google Scholar]
- National Committee of Clinical Laboratory Scientists (NCCLS). Detection and Quantitation of Rubella IgG Antibody in the Clinical Laboratory; Approved Guideline; National Committee of Clinical Laboratory Scientists: Wayne, PA, USA, 1997. [Google Scholar]
- Wheeler, S.E.; Shurin, G.V.; Yost, M.; Anderson, A.; Pinto, L.; Wells, A.; Shurin, M.R. Differential Antibody Response to mRNA COVID-19 Vaccines in Healthy Subjects. Microbiol. Spectr. 2021, 9, e00341-21. [Google Scholar] [CrossRef]
- Lustig, Y.; Sapir, E.; Regev-Yochay, G.; Cohen, C.; Fluss, R.; Olmer, L.; Indenbaum, V.; Mandelboim, M.; Doolman, R.; Amit, S.; et al. BNT162b2 COVID-19 vaccine and correlates of humoral immune responses and dynamics: A prospective, single-centre, longitudinal cohort study in health-care workers. Lancet Respir. Med. 2021, 9, 999–1009. [Google Scholar] [CrossRef]
- Belik, M.; Jalkanen, P.; Lundberg, R.; Reinholm, A.; Laine, L.; Väisänen, E.; Skön, M.; Tähtinen, P.A.; Ivaska, L.; Pakkanen, S.H.; et al. Comparative analysis of COVID-19 vaccine responses and third booster dose-induced neutralizing antibodies against Delta and Omicron variants. Nat. Commun. 2022, 13, 2476. [Google Scholar] [CrossRef]
- Eliakim-Raz, N.; Leibovici-Weisman, Y.; Stemmer, A.; Ness, A.; Awwad, M.; Ghantous, N.; Stemmer, S.M. Antibody Titers Before and After a Third Dose of the SARS-CoV-2 BNT162b2 Vaccine in Adults Aged ≥60 Years. JAMA 2021, 326, 2203–2204. [Google Scholar] [CrossRef]
- Sano, K.; Bhavsar, D.; Singh, G.; Floda, D.; Srivastava, K.; Gleason, C.; PARIS Study Group; Carreño, J.M.; Simon, V.; Krammer, F. SARS-CoV-2 vaccination induces mucosal antibody responses in previously infected individuals. Nat. Commun. 2022, 13, 5135. [Google Scholar] [CrossRef] [PubMed]
- Mattiuzzo, G.; Bentley, E.M.; Hassall, M.; Routley, S.; Richardson, S.; Bernasconi, V.; Kristiansen, P.; Harvala, H.; Roberts, D.; Semple, M.G.; et al. Establishment of the WHO International Standard and Reference Panel for anti-SARS-CoV-2 Antibody. 2020. Available online: https://www.who.int/publications/m/item/WHO-BS-2020.2403 (accessed on 3 August 2022).
- Naaber, P.; Tserel, L.; Kangro, K.; Sepp, E.; Jürjenson, V.; Adamson, A.; Haljasmägi, L.; Rumm, A.P.; Maruste, R.; Kärner, J.; et al. Dynamics of antibody response to BNT162b2 vaccine after six months: A longitudinal prospective study. Lancet Reg. Health-Eur. 2021, 10, 100208. [Google Scholar] [CrossRef] [PubMed]
- Barin, B.; Kasap, U.; Selçuk, F.; Volkan, E.; Uluçkan, Ö. Comparison of SARS-CoV-2 anti-spike receptor binding domain IgG antibody responses after CoronaVac, BNT162b2, ChAdOx1 COVID-19 vaccines, and a single booster dose: A prospective, longitudinal population-based study. Lancet Microbe 2022, 3, e274–e283. [Google Scholar] [CrossRef]
- COVID-19 Vaccine: Canadian Immunization Guide. Available online: https://www.canada.ca/en/public-health/services/publications/healthy-living/canadian-immunization-guide-part-4-active-vaccines/page-26-covid-19-vaccine.html (accessed on 28 July 2022).
- FDA. Coronavirus (COVID-19) Update: FDA Authorizes Second Booster Dose of Two COVID-19 Vaccines for Older and Immunocompromised Individuals. Available online: https://www.fda.gov/news-events/press-announcements/coronavirus-covid-19-update-fda-authorizes-second-booster-dose-two-covid-19-vaccines-older-and (accessed on 28 July 2022).
- Iacobucci, G. COVID-19: Fourth dose of mRNA vaccines is safe and boosts immunity, study finds. Lancet Infect. Dis. 2022, 22, 1131–1141. [Google Scholar] [CrossRef]
- Sridhar, S.; Begom, S.; Bermingham, A.; Hoschler, K.; Adamson, W.; Carman, W.; Bean, T.; Barclay, W.; Deeks, J.J.; Lalvani, A. Cellular immune correlates of protection against symptomatic pandemic influenza. Nat. Med. 2013, 19, 1305–1312. [Google Scholar] [CrossRef]
- Terada, K.; Itoh, Y.; Wakabayashi, T.; Teranishi, H.; Akaike, H.; Ogita, S.; Ouchi, K. Rubella specific cell-mediated and humoral immunity following vaccination in college students with low antibody titers. Vaccine 2015, 33, 6093–6098. [Google Scholar] [CrossRef]
- Chen, Y.; Li, L. SARS-CoV-2: Virus dynamics and host response. Lancet Infect. Dis. 2020, 20, 515–516. [Google Scholar] [CrossRef]
- Hoffmann, M.; Krüger, N.; Schulz, S.; Cossmann, A.; Rocha, C.; Kempf, A.; Nehlmeier, I.; Graichen, L.; Moldenhauer, A.S.; Winkler, M.S.; et al. The Omicron variant is highly resistant against antibody-mediated neutralization: Implications for control of the COVID-19 pandemic. Cell 2022, 185, 447–456.e11. [Google Scholar] [CrossRef]
- Haas, E.J.; Angulo, F.J.; Mclaughlin, J.M.; Anis, E.; Singer, S.R.; Khan, F.; Brooks, N.; Smaja, M.; Mircus, G.; Pan, K.; et al. Impact and effectiveness of mRNA BNT162b2 vaccine against SARS-CoV-2 infections and COVID-19 cases, hospitalisations, and deaths following a nationwide vaccination campaign in Israel: An observational study using national surveillance data. Lancet 2021, 397, 1819–1829. [Google Scholar] [CrossRef]
- Swift, M.D.; Breeher, L.E.; Tande, A.J.; Tommaso, C.P.; Hainy, C.M.; Chu, H.; Murad, M.H.; Berbari, E.F.; Virk, A. Effectiveness of mRNA COVID-19 vaccines against SARS-CoV-2 infection in a cohort of healthcare personnel. Clin. Infect. Dis. 2021, 73, e1376–e1379. [Google Scholar] [CrossRef]
- Tande, A.J.; Pollock, B.D.; Shah, N.D.; Farrugia, G.; Virk, A.; Swift, M.; Breeher, L.; Binnicker, M.; Berbari, E.F. Impact of the Coronavirus Disease 2019 (COVID-19) Vaccine on Asymptomatic Infection Among Patients Undergoing Preprocedural COVID-19 Molecular Screening. Clin. Infect. Dis. 2021, 74, 59–65. [Google Scholar] [CrossRef]
- Baden, L.R.; El Sahly, H.M.; Essink, B.; Kotloff, K.; Frey, S.; Novak, R.; Diemert, D.; Spector, S.A.; Rouphael, N.; Creech, C.B.; et al. Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. N. Engl. J. Med. 2021, 384, 403–416. [Google Scholar] [CrossRef]
- Rosenberg, E.S.; Dorabawila, V.; Easton, D.; Bauer, U.E.; Kumar, J.; Hoen, R.; Hoefer, D.; Wu, M.; Lutterloh, E.; Conroy, M.B.; et al. COVID-19 Vaccine Effectiveness in New York State. N. Engl. J. Med. 2022, 386, 116–127. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. COVID Data Tracker. Available online: https://covid.cdc.gov/covid-data-tracker/#vaccine-effectiveness (accessed on 3 August 2022).
- Osterholm, M.T.; Kelley, N.S.; Sommer, A.; Belongia, E.A. Efficacy and effectiveness of influenza vaccines: A systematic review and meta-analysis. Lancet Infect. Dis. 2012, 12, 36–44. [Google Scholar] [CrossRef]
- Olson, S.M.; Newhams, M.M.; Halasa, N.B.; Price, A.M.; Boom, J.A.; Sahni, L.C.; Pannaraj, P.S.; Irby, K.; Walker, T.C.; Schwartz, S.P.; et al. Effectiveness of BNT162b2 Vaccine against Critical COVID-19 in Adolescents. N. Engl. J. Med. 2022, 386, 713–723. [Google Scholar] [CrossRef]
- Tenforde, M.W.; Self, W.H.; Adams, K.; Gaglani, M.; Ginde, A.A.; McNeal, T.; Ghamande, S.; Douin, D.J.; Talbot, H.K.; Casey, J.D.; et al. Association Between mRNA Vaccination and COVID-19 Hospitalization and Disease Severity. JAMA 2021, 326, 2043–2054. [Google Scholar] [CrossRef]
- Castro, R.; Luz, P.M.; Wakimoto, M.D.; Veloso, V.G.; Grinsztejn, B.; Perazzo, H. COVID-19: A meta-analysis of diagnostic test accuracy of commercial assays registered in Brazil. Braz. J. Infect. Dis. 2020, 24, 180–187. [Google Scholar] [CrossRef]
- Alter, G.; Yu, J.; Liu, J.; Chandrashekar, A.; Borducchi, E.N.; Tostanoski, L.H.; McMahan, K.; Jacob-Dolan, C.; Martinez, D.R.; Chang, A.; et al. Immunogenicity of Ad26.COV2.S vaccine against SARS-CoV-2 variants in humans. Nature 2021, 596, 268–272. [Google Scholar] [CrossRef]
Characteristic | Antibody Concentration, BAU/mL, Median (IQR) | |
---|---|---|
Age, median (range) | 55 (20–89) | |
Sex (n) | ||
Male (%) | 46 (32.9) | |
Female (%) | 94 (67.1) | |
Vaccine Received (n) | ||
FIRST DOSE | ||
BNT162b2 | 37 | 120.8 (81.9–216.0) |
AZD1222 | 20 | 107.2 (55.1–192.5) |
mRNA-1273 | 6 | 1096.8 (410.8–1877.8) |
Median antibody concentration for all vaccines (n and median) | 63 | 143.6 (79.0–266.6) |
Days between 1st dose and blood collection, mean (SD) | 62.8 (±28.4) | |
Days between 1st and 2nd dose, mean (SD) | 77.1 (±25.9) | |
SECOND DOSE | ||
BNT162b2 | 40 | 1245.2 (475.2–1951.5) |
Mixed | 70 | 1146.6 (634.5–1760.1) |
AZD1222 | 11 | 188.4 (88.6–279.1) |
mRNA-1273 | 4 | 1731.3 (820.6–3541.2) |
Median antibody concentration for all vaccines (n and median) | 126 | 1046.4 (423.9–1738.2) |
Days between 2nd dose and blood collection, mean (SD) | 72.7 (±51.4) | |
Days between 2nd and 3rd dose, mean (SD) | 179.8 (±42.5) | |
THIRD DOSE | ||
BNT162b2 | 24 | 1570.5 (985.7–3765.4) |
Mixed | 50 | 1559.1 (627.8–3561.3) |
AZD1222 | 0 | NA |
mRNA-1273 | 2 | 4265.4 (2959.7–5571.2) |
Median antibody concentration for all vaccines (n and median) | 79 | 1604.7 (700.1–3764.0) |
Days between 3rd dose and blood collection, mean (SD) | 135.8 (±35.1) | |
p value * | <0.001 |
Characteristic | Delta | Delta | Omicron | Omicron | Omicron | Omicron | Omicron |
---|---|---|---|---|---|---|---|
Age | 58 | 58 | 57 | 70 | 49 | 56 | 45 |
Sex | Female | Male | Female | Male | Male | Female | Male |
FIRST DOSE | |||||||
Vaccine | mRNA-1273 | BNT162b2 | BNT162b2 | AZD1222 | BNT162b2 | AZD1222 | BNT162b2 |
Days between blood collection and 1st dose | 56 days | 26 days | 61 days | N/A | N/A | N/A | N/A |
Antibody (BAU/mL) | 268.5 | 538.2 | 118.2 | N/A | N/A | N/A | N/A |
Interval between 1st and 2nd dose | 64 days | 49 days | 80 days | 66 days | 114 days | 79 days | 91 days |
SECOND DOSE | |||||||
Vaccine | mRNA-1273 | BNT162b2 | mRNA-1273 | BNT162b2 | BNT162b2 | BNT162b2 | BNT162b2 |
Interval between blood collection and 2nd dose | 54 days | 25 days | 25 days | 107 days | 115 days | 67 days | 56 days |
Interval between 2nd dose blood collection and infection | 102 days | 115 days | 163 days | 85 days | 29 days | 252 days | 352 days |
Antibody prior to infection (BAU/mL) | 3249.4 | 2748.4 | 4893.9 | 209.1 | 231.5 | 725.7 | 2346.6 |
Interval between 2nd and 3rd dose | N/A | N/A | 177 days | N/A | N/A | N/A | 170 days |
THIRD DOSE | |||||||
Vaccine | BNT162b2 | BNT162b2 | BNT162b2 | BNT162b2 | BNT162b2 | BNT162b2 | BNT162b2 |
Interval between blood collection and 3rd dose | N/A | N/A | 107 days | N/A | N/A | N/A | 202 days |
3rd dose Antibody Result (BAU/mL) | 5962.5 | 9019.5 | N/A | N/A | 9673.8 | 6915.3 | 6108 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Macrae, K.; Gong, C.Y.; Sheth, P.; Martinez-Cajas, J.; Gong, Y. Quantitative Analysis of SARS-CoV-2 Serological Responses Post Three Doses of Immunization and Prior to Breakthrough COVID-19 Infections. Vaccines 2022, 10, 1590. https://doi.org/10.3390/vaccines10101590
Macrae K, Gong CY, Sheth P, Martinez-Cajas J, Gong Y. Quantitative Analysis of SARS-CoV-2 Serological Responses Post Three Doses of Immunization and Prior to Breakthrough COVID-19 Infections. Vaccines. 2022; 10(10):1590. https://doi.org/10.3390/vaccines10101590
Chicago/Turabian StyleMacrae, Kathryn, Catherine Yuqing Gong, Prameet Sheth, Jorge Martinez-Cajas, and Yanping Gong. 2022. "Quantitative Analysis of SARS-CoV-2 Serological Responses Post Three Doses of Immunization and Prior to Breakthrough COVID-19 Infections" Vaccines 10, no. 10: 1590. https://doi.org/10.3390/vaccines10101590
APA StyleMacrae, K., Gong, C. Y., Sheth, P., Martinez-Cajas, J., & Gong, Y. (2022). Quantitative Analysis of SARS-CoV-2 Serological Responses Post Three Doses of Immunization and Prior to Breakthrough COVID-19 Infections. Vaccines, 10(10), 1590. https://doi.org/10.3390/vaccines10101590