Chemical Constituents and Biologic Activities of Sage Species: A Comparison between Salvia officinalis L., S. glutinosa L. and S. transsylvanica (Schur ex Griseb. & Schenk) Schur
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Plant Material
2.3. Extraction Procedure
2.4. HPLC-PDA Analysis of Phenolic Compounds
2.5. Determination of TPC (Total Phenolic Content) and TFC (Total Flavonoid Content)
2.6. Antioxidant Capacity Assays
2.7. In Vitro Evaluation of Enzyme Inhibitory Properties of the Extracts
2.8. Antibacterial Properties of the Extracts
2.8.1. Antibacterial Activity
2.8.2. Antiquorum and Antibiofilm Activity
2.8.3. Antifungal Activity
2.9. Biologic Activities of Salvia Extracts on Cell Lines
2.9.1. Cell Culture
2.9.2. Preparation of Extract Solutions and Cytotoxicity Assay
3. Results and Discussions
3.1. Determination of TPC (Total Phenolic Content) and TFC (Total Flavonoid Content)
3.2. Antioxidant Capacity Assays
3.3. In Vitro Evaluation of Enzyme Inhibitory Properties of the Extracts
3.4. Antimicrobial Properties of the Extracts
3.4.1. Antibacterial Activity
3.4.2. Antiquorum and Antibiofilm Activity
3.4.3. Antifungal Activity
3.5. Cytotoxic Effects of Salvia Extracts on Cell Lines
4. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Gavrilas, L.I.; Cruceriu, D.; Ionescu, C.; Miere, D.; Balacescu, O. Pro-apoptotic genes as new targets for single and combinatorial treatments with resveratrol and curcumin in colorectal cancer. Food Funct. 2019, 10, 3717–3726. [Google Scholar] [CrossRef]
- Harley, R.; Atkins, S.; Bundatsey, A.; Cantino, P.; Conn, B.; Grayer, R. The Families and Genera of Vascular Plants, Lamiales; Kubitski, Springer Verlag: Berlin, Germany, 2004. [Google Scholar]
- Walker, J.B.; Sytsma, K.J. Staminal evolution in the genus Salvia (Lamiaceae): Molecular phylogenetic evidence for multiple origins of the staminal lever. Ann. Bot. 2007, 100, 375–391. [Google Scholar] [CrossRef]
- Drew, B.T.; González-Gallegos, J.G.; Xiang, C.L.; Kriebel, R.; Drummond, C.P.; Walker, J.B.; Sytsma, K.J. Salvia united: The greatest good for the greatest number. Taxon 2017, 66, 133–145. [Google Scholar] [CrossRef] [Green Version]
- Final European Union Herbal Monograph on Salvia officinalis L., Folium. Available online: ema.europa.eu/en/documents/herbal-monograph/final-european-union-herbal-monograph-salvia-officinalis-l-folium-revision-1_en.pdf (accessed on 5 April 2020).
- Menghini, L.; Leporini, L.; Pintore, G.; Chessa, M.; Tirillini, B. Essential oil content and composition of three sage varieties grown in Central Italy. J. Med. Plants Res. 2013, 7, 480–489. [Google Scholar] [CrossRef]
- Grdiša, M.; Jug-Dujaković, M.; Lončarić, M.; Carović-Stanko, K.; Ninčević, T.; Liber, Z.; Radosavljević, I.; Šatović, Z. Dalmatian sage (Salvia officinalis L.): A review of biochemical contents, medical properties and genetic diversity. Agric. Conspec. Sci. 2015, 80, 69–78. [Google Scholar]
- Fu, Z.; Wang, H.; Hu, X.; Sun, Z.; Han, C. The pharmacological properties of Salvia essential oils. J. Appl. Pharm. Sci. 2013, 3, 122–127. [Google Scholar] [CrossRef]
- Ghorbani, A.; Esmaeilizadeh, M. Pharmacological properties of Salvia officinalis and its components. J. Tradit. Complement. Med. 2017, 7, 433–440. [Google Scholar] [CrossRef]
- Hamidpour, M.; Hamidpour, R.; Hamidpour, S.; Shahlari, M. Chemistry, pharmacology, and medicinal property of sage (Salvia) to prevent and cure illnesses such as obesity, diabetes, depression, dementia, lupus, autism, heart disease, and cancer. J. Tradit. Complement. Med. 2014, 4, 82–88. [Google Scholar] [CrossRef] [Green Version]
- Topçu, G. Bioactive triterpenoids from Salvia species. J. Nat. Prod. 2006, 69, 482–487. [Google Scholar] [CrossRef]
- Lu, Y.; Yeap Foo, L. Polyphenolics of Salvia—A review. Phytochemistry 2002, 59, 117–140. [Google Scholar] [CrossRef]
- Janicsák, G.; Zupkó, I.; Máthé, I.; Hohmann, J. Comparative study of the antioxidant activities of eleven Salvia species. Nat. Prod. Commun. 2010, 5, 227–230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maklad, Y.A.; Aboutabl, E.A.; El-Sherei, M.M.; Meselhy, K.M. Bioactivity studies of Salvia transsylvanica (Schur ex Griseb) grown in Egypt. Phyther. Res. 1999, 13, 147–150. [Google Scholar] [CrossRef]
- Velickovic, D.; Ristic, M.; Velickovic, A. Chemical composition of the essential oils obtained from the flower, leaf and stem of Salvia aethiopis L. and Salvia glutinosa L. originating from the southeast region of Serbia. J. Essent. Oil Res. 2003, 15, 346–349. [Google Scholar] [CrossRef]
- Veličković, D.T.; Karabegović, I.T.; Stojičević, S.S.; Lazić, M.L.; Marinković, V.D.; Veljković, V.B. Comparison of antioxidant and antimicrobial activities of extracts obtained from Salvia glutinosa L. and Salvia officinalis L. Hem. Ind. 2011, 65, 599–605. [Google Scholar] [CrossRef] [Green Version]
- Mocan, A.; Diuzheva, A.; Carradori, S.; Andruch, V.; Massafra, C.; Moldovan, C.; Sisea, C.; Petzer, J.P.; Petzer, A.; Zara, S.; et al. Development of novel techniques to extract phenolic compounds from Romanian cultivars of Prunus domestica L. and their biological properties. Food Chem. Toxicol. 2018, 119, 189–198. [Google Scholar] [CrossRef]
- Babotă, M.; Mocan, A.; Vlase, L.; Crișan, O.; Ielciu, I.; Gheldiu, A.; Vodnar, D.C.; Crișan, G. Phytochemical analysis, antioxidant and antimicrobial activities of Helichrysum arenarium (L.) Moench. and Antennaria dioica (L.) Gaertn. flowers. Molecules 2018, 23, 409. [Google Scholar] [CrossRef] [Green Version]
- Mocan, A.; Crișan, G.; Vlase, L.; Crișan, O.; Vodnar, D.C.; Raita, O.; Gheldiu, A.; Toiu, A.; Oprean, R.; Tilea, I. Comparative Studies on Polyphenolic Composition, Antioxidant and Antimicrobial Activities of Schisandra chinensis Leaves and Fruits. Molecules 2014, 19, 15162–15179. [Google Scholar] [CrossRef] [Green Version]
- Aktumsek, A.; Zengin, G.; Guler, G.O.; Cakmak, Y.S.; Duran, A. Antioxidant potentials and anticholinesterase activities of methanolic and aqueous extracts of three endemic Centaurea L. species. Food Chem. Toxicol. 2013, 55, 290–296. [Google Scholar] [CrossRef]
- Martins, N.; Barros, L.; Dueñas, M.; Santos-Buelga, C.; Ferreira, I.C.F.R. Characterization of phenolic compounds and antioxidant properties of Glycyrrhiza glabra L. rhizomes and roots. RSC Adv. 2015, 5, 26991–26997. [Google Scholar] [CrossRef] [Green Version]
- Rusu, M.E.; Gheldiu, A.M.; Mocan, A.; Moldovan, C.; Popa, D.S.; Tomuta, I.; Vlase, L. Process optimization for improved phenolic compounds recovery from walnut (Juglans regia L.) Septum: Phytochemical profile and biological activities. Molecules 2018, 23, 2814. [Google Scholar] [CrossRef] [Green Version]
- Mocan, A.; Schafberg, M.; Crisan, G.; Rohn, S. Determination of lignans and phenolic components of Schisandra chinensis (Turcz.) Baill. using HPLC-ESI-ToF-MS and HPLC-online TEAC: Contribution of individual components to overall antioxidant activity and comparison with traditional antioxidant assays. J. Funct. Food 2016, 24, 579–594. [Google Scholar] [CrossRef]
- Apak, R.; Güçlü, K.; Demirata, B.; Özyürek, M.; Çelik, S.E.; Bektaşoğlu, B.; Berker, K.I.; Özyurt, D. Comparative evaluation of various total antioxidant capacity assays applied to phenolic compounds with the CUPRAC assay. Molecules 2007, 12, 1496–1547. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tanase, C.; Mocan, A.; Coşarcă, S.; Găvan, A.; Nicolescu, A.; Gheldiu, A.-M.; Vodnar, D.C.; Muntean, D.-L.; Crişan, O. Biological and Chemical Insights of Beech (Fagus sylvatica L.) Bark: A Source of Bioactive Compounds with Functional Properties. Antioxidants 2019, 8, 417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Menghini, L.; Leporini, L.; Vecchiotti, G.; Locatelli, M.; Carradori, S.; Ferrante, C.; Zengin, G.; Recinella, L.; Chiavaroli, A.; Leone, S.; et al. Crocus sativus L. stigmas and byproducts: Qualitative fingerprint, antioxidant potentials and enzyme inhibitory activities. Food Res. Int. 2018, 109, 91–98. [Google Scholar] [CrossRef] [PubMed]
- Les, F.; Venditti, A.; Cásedas, G.; Frezza, C.; Guiso, M.; Sciubba, F.; Serafini, M.; Bianco, A.; Valero, M.S.; López, V. Everlasting flower (Helichrysum stoechas Moench) as a potential source of bioactive molecules with antiproliferative, antioxidant, antidiabetic and neuroprotective properties. Ind. Crops Prod. 2017, 108, 295–302. [Google Scholar] [CrossRef]
- Zengin, G.; Aktumsek, A.; Ceylan, R.; Uysal, S.; Mocan, A.; Guler, G.O.; Mahomoodally, M.F.; Glamočlija, J.; Ćirić, A.; Soković, M. Shedding light on the biological and chemical fingerprints of three Achillea species (A. biebersteinii, A. millefolium and A. teretifolia). Food Funct. 2017, 8, 1152–1165. [Google Scholar] [CrossRef]
- Eloff, J.N. A sensitive and quick microplate method to determine the minimal inhibitory concentration of plant extracts for bacteria. Planta Med. 1998, 64, 711–713. [Google Scholar] [CrossRef] [Green Version]
- Drenkard, E.; Ausubel, F.M. Pseudomonas biofilm formation and antibiotic resistance are linked to phenotypic variation. Nature 2002, 416, 740–743. [Google Scholar] [CrossRef]
- Mocan, A.; Fernandes, A.; Barros, L.; Crișan, G.; Smiljkovic, M.; Sokovic, M.; Ferreira, I.C.F.R. Chemical composition and bioactive properties of the wild mushroom Polyporus squamosus (Huds.) Fr: A study with samples from Romania. Food Funct. 2018, 9, 160–170. [Google Scholar] [CrossRef] [Green Version]
- Naveed, M.; Hejazi, V.; Abbas, M.; Kamboh, A.A.; Khan, G.J.; Shumzaid, M.; Ahmad, F.; Babazadeh, D.; FangFang, X.; Modarresi-Ghazani, F.; et al. Chlorogenic acid (CGA): A pharmacological review and call for further research. Biomed. Pharmacother. 2018, 97, 67–74. [Google Scholar] [CrossRef]
- Veličković, D.T.; Nikolova, M.T.; Ivancheva, S.V.; Stojanović, J.B.; Veljković, V.B. Extraction of flavonoids from garden (Salvia officinalis L.) and glutinous (Salvia glutinosa L.) sage by ultrasonic and classical maceration. J. Serbian Chem. Soc. 2007, 72, 73–80. [Google Scholar] [CrossRef]
- Gullón, B.; Lú-Chau, T.A.; Moreira, M.T.; Lema, J.M.; Eibes, G. Rutin: A review on extraction, identification and purification methods, biological activities and approaches to enhance its bioavailability. Trends Food Sci. Technol. 2017, 67, 220–235. [Google Scholar] [CrossRef]
- Huang, D.; Ou, B.; Prior, R. The Chemistry behind Antioxidant Capacity Assays. J. Agric. food Chem. 2005, 53, 1841–1856. [Google Scholar] [CrossRef] [PubMed]
- Rice-Evans, C.A.; Miller, N.J.; Paganga, G. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic. Biol. Med. 1996, 20, 933–956. [Google Scholar] [CrossRef]
- Sharma, Y.; Fagan, J.; Schaefer, J. Ethnobotany, phytochemistry, cultivation and medicinal properties of Garden medicinal properties of Garden sage (Salvia officinalis L.). J. Pharmacogn. Phytochem. 2019, 8, 3139–3148. [Google Scholar]
- Akhondzadeh, S.; Noroozian, M.; Mohammadi, M.; Ohadinia, S.; Jamshidi, A.H.; Khani, M. Salvia officinalis extract in the treatment of patients with mild to moderate Alzheimer’s disease: A double blind, randomized and placebo-controlled trial. J. Clin. Pharm. Ther. 2003, 28, 53–59. [Google Scholar] [CrossRef]
- Angeloni, C.; Vauzour, D. Natural products and neuroprotection. Int. J. Mol. Sci. 2019, 20, 5570. [Google Scholar] [CrossRef] [Green Version]
- Burčul, F.; Blažević, I.; Radan, M.; Politeo, O. Terpenes, Phenylpropanoids, Sulfur and Other Essential Oil Constituents as Inhibitors of Cholinesterases. Curr. Med. Chem. 2019, 26. [Google Scholar] [CrossRef]
- Alarcon-Aguilar, F.J.; Roman-Ramos, R.; Flores-Saenz, J.L.; Aguirre-Garcia, F. Investigation on the hypoglycaemic effects of extracts of four Mexican medicinal plants in normal and alloxan-diabetic mice. Phyther. Res. 2002, 16, 383–386. [Google Scholar] [CrossRef]
- Bouajaj, S.; Benyamna, A.; Bouamama, H.; Romane, A.; Falconieri, D.; Piras, A.; Marongiu, B. Antibacterial, allelopathic and antioxidant activities of essential oil of Salvia officinalis L. growing wild in the Atlas Mountains of Morocco. Nat. Prod. Res. 2013, 27, 1673–1676. [Google Scholar] [CrossRef]
- Mekinić, I.G.; Skroza, D.; Ljubenkov, I.; Šimat, V.; Smole Možina, S.; Katalinić, V. In vitro Antioxidant and Antibacterial Activity of Lamiaceae Phenolic Extracts: A Correlation Study. Food Technol. Biotechnol. 2014, 52, 119–127. [Google Scholar]
- Sanders, W.E.; Sanders, C.C. Enterobacter spp.: Pathogens poised to flourish at the turn of the century. Clin. Microbiol. Rev. 1997, 10, 220–241. [Google Scholar] [CrossRef] [PubMed]
- Abu-Darwish, M.S.; Cabral, C.; Ferreira, I.V.; Gonçalves, M.J.; Cavaleiro, C.; Cruz, M.T.; Al-Bdour, T.H.; Salgueiro, L. Essential oil of common sage (Salvia officinalis L.) from Jordan: Assessment of safety in mammalian cells and its antifungal and anti-inflammatory potential. Biomed Res. Int. 2013, 2013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alexa, E.; Sumalan, R.M.; Danciu, C.; Obistioiu, D.; Negrea, M.; Poiana, M.A.; Rus, C.; Radulov, I.; Pop, G.; Dehelean, C. Synergistic antifungal, allelopatic and anti-proliferative potential of Salvia officinalis L., and Thymus vulgaris L. Essential oils. Molecules 2018, 23, 185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Badiee, P.; Nasirzadeh, A.R.; Motaffaf, M. Comparison of Salvia officinalis L. essential oil and antifungal agents against Candida species. J. Pharm. Technol. Drug Res. 2012, 1, 7. [Google Scholar] [CrossRef] [Green Version]
- Sookto, T.; Srithavaj, T.; Thaweboon, S.; Thaweboon, B.; Shrestha, B. In vitro effects of Salvia officinalis L. essential oil on Candida albicans. Asian Pac. J. Trop. Biomed. 2013, 3, 376–380. [Google Scholar] [CrossRef] [Green Version]
- Pozzatti, P.; Scheid, L.A.; Spader, T.B.; Atayde, M.L.; Santurio, J.M.; Alves, S.H. In vitro activity of essential oils extracted from plants used as spices against fluconazole-resistant and fluconazole-susceptible Candida spp. Can. J. Microbiol. 2008, 54, 950–956. [Google Scholar] [CrossRef]
- Daferera, D.J.; Ziogas, B.N.; Polissiou, M.G. The effectiveness of plant essential oils on the growth of Botrytis cinerea, Fusarium sp. and Clavibacter michiganensis subsp. michiganensis. Crop Prot. 2003, 22, 39–44. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhang, L.; Rupasinghe, H.P.V. Antiproliferative effects of extracts from Salvia officinalis L. and Saliva miltiorrhiza Bunge on hepatocellular carcinoma cells. Biomed. Pharmacother. 2017, 85, 57–67. [Google Scholar] [CrossRef]
Compound | S. transsylvanica | S. glutinosa | S. officinalis | |
---|---|---|---|---|
1 | Catechin | 1911.1 ± 11.2 | 1292.1 ± 207.4 | 1112.6 ± 201.7 |
2 | Chlorogenic acid | 149.5 ± 19 | 106.3 ± 32.1 | NF |
3 | p-OH benzoic acid | 113.9 ± 21.7 | 182.3 ± 36.9 | 89.1 ± 1.7 |
4 | Epicatechin | 569.2 ± 25 | NF | 1659.1 ± 10.8 |
5 | p-Coumaric acid | 284.3 ± 40.8 | 998.9 ± 239.5 | NF |
6 | Rutin | 3034.9 ± 31.8 | 4070.2 ± 636.5 | 1357.9 ± 34.4 |
7 | Naringin | 304.9 ± 13.1 | 668.9 ± 55.9 | 222.1 ± 22.6 |
8 | Quercetin | 156.6 ± 11.3 | 130.5 ± 13.7 | 332.5 ± 20.3 |
9 | Naringenin | NF | 828.5 ± 253.9 | NF |
10 | Carvacrol | 239.3 ± 50.7 | 183.3 ± 0.3 | 164.3 ± 1.5 |
Total (μg/g) | 6763.7 ± 224.6 | 8461 ± 1476.2 | 4937.6 ± 293 |
Samples | TPC (mg GAE/g Extract) | TFC (mg RE/g Extract) |
---|---|---|
S. glutinosa | 37.74 ± 0.69 | 16.03 ± 0.40 |
S. officinalis | 65.02 ± 2.44 | 31.80 ± 0.24 |
S. transsylvanica | 20.32 ± 1.01 | 13.94 ± 0.55 |
Samples | Phosphomolybdenum Assay (mmolTE/g Extract) | DPPH (mgTE/g Extract) | ABTS (mgTE/g Extract) | CUPRAC (mgTE/g Extract) | FRAP (mgTE/g Extract) | Metal Chelating Activity (mgEDTAE/g Extract) |
---|---|---|---|---|---|---|
S. glutinosa | 1.58 ± 0.14 | 80.42 ± 0.95 | 126.70 ± 5.22 | 175.91 ± 6.18 | 130.59 ± 4.71 | 9.92 ± 0.44 |
S. officinalis | 2.99 ± 0.46 | 194.85 ± 0.40 | 358.56 ± 6.37 | 400.01 ± 4.41 | 329.32 ± 8.04 | 6.22 ± 0.96 |
S. transsylvanica | 0.90 ± 0.02 | 59.29 ± 2.37 | 77.53 ± 2.25 | 118.11 ± 4.17 | 90.94 ± 2.55 | 6.18 ± 0.56 |
Samples | AChE Inhibition (mgGALAE/g Extract) | BChE Inhibition (mgGALAE/g Extract) | α-Amylase Inhibition (mmolACAE/g Extract) | α-Glucosidase Inhibition (mmolACAE/g Extract) | Tyrosinase Inhibition (mgKAE/g Extract) |
---|---|---|---|---|---|
S. glutinosa | 1.70 ± 0.16 | 0.52 ± 0.10 | 0.74 ± 0.01 | 21.54 ± 1.29 | NA |
S. officinalis | 1.97 ± 0.06 | 2.40 ± 0.16 | 0.63 ± 0.05 | 27.01 ± 0.12 | NA |
S. transsylvanica | 1.72 ± 0.09 | 1.43 ± 0.19 | 0.65 ± 0.01 | 25.62 ± 1.10 | NA |
Gram-Negative Bacteria | Gram-Positive Bacteria | ||||||||
---|---|---|---|---|---|---|---|---|---|
E. coli | P. aeruginosa | S. typhimurium | L. monocytogenes | E. cloacae | M. flavus | B. cereus | S. aureus | ||
S. officinalis | MIC | 0.045 | 0.09 | 0.09 | 0.18 | 0.01 | 0.18 | 0.18 | 0.18 |
MBC | 0.09 | 0.18 | 0.18 | 0.36 | 0.02 | 0.36 | 0.36 | 0.36 | |
S. transsylvanica | MIC | 1.1 | 1.5 | 0.75 | 1.5 | 1.5 | 0.75 | 0.75 | 0.75 |
MBC | 2.2 | 3 | 1.5 | 3 | 3 | 1.5 | 1.5 | 1.5 | |
S. glutinosa | MIC | 0.6 | 1.5 | 0.75 | 1.5 | 0.38 | 0.75 | 0.09 | 1.5 |
MBC | 1.2 | 3 | 1.5 | 3 | 0.75 | 1.5 | 0.18 | 3 | |
Ampicillin | MIC | 0.18 | 0.4 | 0.13 | 0.2 | 0.17 | 0.13 | 0.17 | 0.1 |
MBC | 0.27 | 0.67 | 0.2 | 0.33 | 0.2 | 0.15 | 0.2 | 0.2 | |
Streptomycin | MIC | 0.13 | 0.13 | 0.17 | 0.22 | 0.03 | 0.07 | 0.03 | 0.13 |
MBC | 0.2 | 0.23 | 0.27 | 0.4 | 0.07 | 0.17 | 0.07 | 0.3 |
Sample | Inhibition Rate | ||
---|---|---|---|
1/2 MIC | 1/4 MIC | 1/8 MIC | |
S. officinalis | 61.1 | 27.5 | 13.9 |
S. transsylvanica | 48.4 | 34.9 | NE |
S. glutinosa | 30.5 | 19.6 | 7.8 |
Ampicillin | 43.5 | 30.9 | 7.8 |
Streptomycin | 50.7 | 29 | 11.4 |
Sample | Inhibition Rate (%) |
---|---|
S. officinalis (0.9 mg/mL) | NE |
S. transsylvanica (0.75 mg/mL) | 28 |
S. glutinosa (0.75 mg/mL) | NE |
Ampicillin (0.2 mg/mL) | 19 |
Streptomycin (0.65 mg/mL) | 21 |
Samples | A. fumigatus | A. versicolor | A. ochraceus | A. niger | T. viride | P. funiculosum | P. ochrochlorum | P. verrucosum | |
---|---|---|---|---|---|---|---|---|---|
S. officinalis | MIC | 0.4 | 0.2 | 0.4 | 0.4 | 0.4 | 0.06 | 0.4 | 0.12 |
MFC | 0.8 | 0.4 | 0.8 | 0.8 | 0.8 | 0.12 | 0.8 | 0.24 | |
S. transsylvanica | MIC | 0.9 | 0.9 | 0.45 | 0.9 | 0.45 | 0.9 | 1.8 | 0.9 |
MFC | 1.8 | 1.8 | 0.9 | 1.8 | 0.9 | 1.8 | 3.6 | 1.8 | |
S. glutinosa | MIC | 1.5 | 0.75 | 0.75 | 0.75 | 0.37 | 0.75 | 3 | 0.75 |
MFC | 3 | 1.5 | 1.5 | 1.5 | 0.75 | 1.5 | 6 | 1.5 | |
Ketoconazole | MIC | 0.2 | 0.2 | 0.15 | 0.2 | 1 | 0.2 | 1 | 0.2 |
MFC | 0.5 | 0.5 | 0.2 | 0.5 | 1.5 | 0.5 | 1.5 | 0.3 | |
Bifonazole | MIC | 0.15 | 0.1 | 0.15 | 0.15 | 0.15 | 0.2 | 0.2 | 0.1 |
MFC | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.25 | 0.25 | 0.2 |
Samples | IC50 (µg/mL) | |||||||
---|---|---|---|---|---|---|---|---|
24 h | 48 h | |||||||
HepG2 | A549 | MCF-7 | HGF | HepG2 | A549 | MCF-7 | HGF | |
S. glutinosa | >200 | >200 | >200 | >200 | 100.2 ± 3.4 | >200 | >200 | >200 |
S. officinalis | 177.9 ± 66.1 | 118.7 ± 37.5 | >100 | >200 | 50.9 ± 2.4 | 35.5 ± 1.9 | 56.4 ± 2.0 | 110.7 ± 7.7 |
S. transsylvanica | >200 | >200 | >100 | >200 | >200 | 163.3 ± 23.2 | >100 | >200 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mocan, A.; Babotă, M.; Pop, A.; Fizeșan, I.; Diuzheva, A.; Locatelli, M.; Carradori, S.; Campestre, C.; Menghini, L.; Sisea, C.R.; et al. Chemical Constituents and Biologic Activities of Sage Species: A Comparison between Salvia officinalis L., S. glutinosa L. and S. transsylvanica (Schur ex Griseb. & Schenk) Schur. Antioxidants 2020, 9, 480. https://doi.org/10.3390/antiox9060480
Mocan A, Babotă M, Pop A, Fizeșan I, Diuzheva A, Locatelli M, Carradori S, Campestre C, Menghini L, Sisea CR, et al. Chemical Constituents and Biologic Activities of Sage Species: A Comparison between Salvia officinalis L., S. glutinosa L. and S. transsylvanica (Schur ex Griseb. & Schenk) Schur. Antioxidants. 2020; 9(6):480. https://doi.org/10.3390/antiox9060480
Chicago/Turabian StyleMocan, Andrei, Mihai Babotă, Anca Pop, Ionel Fizeșan, Alina Diuzheva, Marcello Locatelli, Simone Carradori, Cristina Campestre, Luigi Menghini, Cristian R. Sisea, and et al. 2020. "Chemical Constituents and Biologic Activities of Sage Species: A Comparison between Salvia officinalis L., S. glutinosa L. and S. transsylvanica (Schur ex Griseb. & Schenk) Schur" Antioxidants 9, no. 6: 480. https://doi.org/10.3390/antiox9060480