Phytochemical Characterization and Bioactive Properties of Cinnamon Basil (Ocimum basilicum cv. ‘Cinnamon’) and Lemon Basil (Ocimum × citriodorum)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Preparation of the Extracts
2.2. Chemical Composition
2.2.1. Phenolic Compounds
2.2.2. Volatile Compounds
2.3. Bioactive Properties
2.3.1. Evaluation of In Vitro Antioxidant Properties
Thiobarbituric Acid Reactive Substances (TBARS)
Oxidative Hemolysis Inhibition Assay (OxHLIA)
2.3.2. Antimicrobial Activity
2.3.3. Cytotoxic Activity
2.3.4. Anti-inflammatory Activity
2.4. Statistical Analysis
3. Results and Discussion
3.1. Chemical Composition
3.1.1. Phenolic Compounds Profile
3.1.2. Volatile Compounds
3.2. Bioactive Properties
3.2.1. Antioxidant Activity
3.2.2. Antimicrobial Activity
3.2.3. Cytotoxic Activity and Anti-inflammatory Activity
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Rewers, M.; Jedrzejczyk, I. Genetic characterization of Ocimum genus using flow cytometry andinter-simple sequence repeat markers. Ind. Crops Prod. 2016, 91, 142–151. [Google Scholar] [CrossRef]
- Ch, M.A.; Naz, S.B.; Sharif, A.; Akram, M.; Saeed, M.A. Biological and Pharmacological Properties of the Sweet Basil (Ocimum basilicum). Br. J. Pharm. Res. 2015, 7, 330–339. [Google Scholar] [CrossRef]
- Meyers, M. Basil: An Herb Society of America Guide; The Herb Society of America: Kirtland, OH, USA, 2003; pp. 6–7. [Google Scholar]
- Vieira, R.F.; Simon, J.E. Chemical characterization of basil (Ocimum spp.) based on volatile oils. Flavour Fragr. J. 2006, 21, 214–221. [Google Scholar] [CrossRef] [Green Version]
- Avetisyan, A.; Markosian, A.; Petrosyan, M.; Sahakyan, N.; Babayan, A.; Aloyan, S.; Trchounian, A. Chemical composition and some biological activities of the essential oils from basil Ocimum different cultivars. BMC Complemen.t Altern. Med. 2017, 17, 60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wesolowska, A.; Jadczak, D. Composition of the Essential Oils from Inflorescences, Leaves and Stems of Ocimum basilicum ‘Cinnamon’ Cultivated in North-western Poland. J. Essent. Oil Bear. Plants 2016, 19, 1037–1042. [Google Scholar] [CrossRef]
- Paulus, D.; Valmorbida, R.; Ramos, C.E. Productivity and chemical composition of the essential oil of Ocimum x citriodorum Vis. according to ontogenetic and diurnal variation. J. Appl. Res. Med. Aroma. 2019, 12, 59–65. [Google Scholar] [CrossRef]
- Bessada, S.M.; Barreira, J.C.; Barros, L.; Ferreira, I.C.; Oliveira, M.B.P. Phenolic profile and antioxidant activity of Coleostephus myconis (L.) Rchb. f.: An underexploited and highly disseminated species. Ind. Crops Prod. 2016, 89, 45–51. [Google Scholar] [CrossRef] [Green Version]
- Spréa, R.M.; Fernandes, Â.; Calhelha, R.C.; Pereira, C.; Pires, T.C.S.P.; Alves, M.J.; Canan, C.; Barros, L.; Amaral, J.S.; Ferreira, I.C. Chemical and bioactive characterization of the aromatic plant Levisticum officinale WDJ Koch: A comprehensive study. Food Funct. 2020, 11, 1292–1303. [Google Scholar] [CrossRef]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, 5th ed.; Allured Pub Corp: TX, USA, 2017. [Google Scholar]
- Pinela, J.; Barros, L.; Dueñas, M.; Carvalho, A.M.; Santos-Buelga, C.; Ferreira, I.C. Antioxidant activity, ascorbic acid, phenolic compounds and sugars of wild and commercial Tuberaria lignosa samples: Effects of drying and oral preparation methods. Food Chem. 2012, 135, S1028–S1035. [Google Scholar] [CrossRef]
- Lockowandt, L.; Pinela, J.; Roriz, C.L.; Pereira, C.; Abreu, R.M.V.; Calhelha, R.C.; Alves, M.J.; Barros, L.; Bredol, M.; Ferreira, I.C.F.R. Chemical features and bioactivities of cornflower (Centaurea cyanus L.) capitula: The blue flowers and the unexplored non-edible part. Ind. Crops Prod. 2019, 128, 496–503. [Google Scholar] [CrossRef] [Green Version]
- Abreu, R.M.; Ferreira, I.C.; Calhelha, R.C.; Lima, R.T.; Vasconcelos, M.H.; Adega, F.; Queiroz, M.J.R. Anti-hepatocellular carcinoma activity using human HepG2 cells and hepatotoxicity of 6-substituted methyl 3-aminothieno [3, 2-b] pyridine-2-carboxylate derivatives: In vitro evaluation, cell cycle analysis and QSAR studies. Eur. J. Med. Chem. 2011, 46, 5800–5806. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taofiq, O.; Calhelha, R.C.; Heleno, S.; Barros, L.; Martins, A.; Santos-Buelga, C.; Ferreira, I.C.F.R. The contribution of phenolic acids to the anti-inflammatory activity of mushrooms: Screening in phenolic extracts; individual parent molecules and synthesized glucuronated and methylated derivatives. Food Resear. Int. 2015, 76, 821–827. [Google Scholar] [CrossRef] [Green Version]
- Jayasinghe, C.; Gotoh, N.; Aoki, T.; Wada, S. Phenolics composition and antioxidant activity of sweet basil (Ocimum basilicum L.). J. Agric. Food Chem. 2003, 51, 4442–4449. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Scagel, C.F. Chicoric acid found in basil (Ocimum basilicum L.) leaves. Food Chem. 2009, 115, 650–656. [Google Scholar] [CrossRef]
- Hossain, M.B.; Rai, D.K.; Brunton, N.P.; Martin-Diana, A.B.; Barry-Ryan, C. Characterization of phenolic composition in Lamiaceae species by LC-ESI-MS/MS. J. Agric. Food Chem. 2010, 58, 10576–10581. [Google Scholar] [CrossRef] [PubMed]
- Kwee, E.M.; Niemeyer, E.D. Variations in phenolic composition and antioxidant properties among 15 basil (Ocimum basilicum L.) cultivars. Food Chem. 2011, 128, 1044–1050. [Google Scholar] [CrossRef]
- Harnafi, H.; Ramchoun, M.; Tits, M.; Wauters, J.; Frederich, M.; Angenot, L.; Aziz, M.; Alem, C.; Amrani, S. Phenolic acid-rich extract of sweet basil restores cholesterol and triglycerides metabolism in high fat diet-fed mice: A comparison with fenofibrate. Biomed. Prev. Nut. 2013, 3, 393–397. [Google Scholar] [CrossRef]
- Koca, N.; Karaman, Ş. the effects of plant growth regulators and L-phenylalanine on phenolic compounds of sweet basil. Food Chem. 2015, 166, 515–521. [Google Scholar] [CrossRef]
- Ruan, M.; Li, Y.; Li, X.; Luo, J.; Kong, L. Qualitative and quantitative analysis of the major constituents on Chinese medicinal preparation Guan-Xin-Ning injection by HPLC-DAD-ESI-MSn. J. Pharm. Biomed. Anal. 2018, 59, 184–189. [Google Scholar] [CrossRef]
- Barros, L.; Dueñas, M.; Dias, M.I.; Sousa, M.J.; Santos-Buelga, C.; Ferreira, I.C.F.R. Phenolic profile of cultivated, in vitro cultured and commercial samples of Melissa officinalis L. Infusions. Food Chem. 2013, 136, 1–8. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, Q.; Wang, X.; Yang, J.; Qang, Q. Qualitative analysis and simultaneous quantification of phenolic compounds in the aerial parts of Salvia miltiorrhiza by HPLCDAD and ESI/MSn. Phytochem. Anal. 2011, 22, 247–257. [Google Scholar] [CrossRef] [PubMed]
- Javanmardi, K.A.; Kashi, A.; Bais, H.P.; Vivanco, J.M. Chemical characterization of Basil (Ocimum basilicum L.) found in local accessions and used in traditional medicines in Iran. J. Agric. Food Chem. 2002, 50, 5878–5883. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, P.M.; Kwee, E.M.; Niemeyer, E.D. Potassium rate alters the antioxidant capacity and phenolic concentration of basil (Ocimum basilicum L.) leaves. Food Chem. 2010, 123, 1235–1241. [Google Scholar] [CrossRef]
- Zgórka, G.; Glowniak, K. Variation of free phenolic acids in medicinal plants belonging to the Lamiaceae family. J. Pharm. Biomed. Anal. 2001, 26, 79–87. [Google Scholar] [CrossRef]
- Simeoni, M.C.; Pellegrini, M.; Sergi, M.; Pittia, P.; Ricci, A.; Compagnone, D. Analysis of Polyphenols in the Lamiaceae Family by Matrix Solid-Phase Dispersion Extraction Followed by Ultra-High-Performance Liquid Chromatography–Tandem Mass Spectrometry Determination. ACS Omega 2018, 3, 17610–17616. [Google Scholar] [CrossRef]
- Hakkim, F.L.; Arivazhagan, G.; Boopathy, R. Antioxidant property of selected Ocimum species and their secondary metabolite content. J. Med. Plants Res. 2008, 2, 250–257. [Google Scholar]
- Tsasi, G.; Mailis, T.; Daskalaki, A.; Sakadani, E.; Razis, P.; Samaras, Y.; Skaltsa, H. The Effect of Harvesting on the Composition of Essential Oils from Five Varieties of Ocimum basilicum L. Cultivated in the Island of Kefalonia, Greece. Plants 2017, 6, 41. [Google Scholar] [CrossRef] [Green Version]
- Carovic-Stanko, K.; Liber, Z.; Besendorfer, V.; Javornik, B.; Bohanec, B.; Kolak, I.; Satovic, Z. Genetic relations among basil taxa (Ocimum L.) based onmolecular markers nuclear DNA content, and chromosome number. Plant Syst.Evol. 2010, 285, 13–22. [Google Scholar] [CrossRef]
- Al-Kateb, H.; Mottram, D.S. The relationship between growth stages and aroma composition of lemon basil Ocimum citriodorum vis. Food Chem. 2014, 152, 440–446. [Google Scholar] [CrossRef]
- Tangpao, T.; Chung, H.; Sommano, S.R. Aromatic Profiles of Essential Oils from Five Commonly Used Thai Basils. Foods 2018, 7, 175. [Google Scholar] [CrossRef] [Green Version]
- Kaurinovic, B.; Popovic, M.; Vlaisavljevic, S.; Trivic, S. Antioxidant Capacity of Ocimum basilicum L. and Origanum vulgare L. Extracts. Molecules 2011, 16, 7401–7414. [Google Scholar] [CrossRef] [PubMed]
- Touiss, I.; Harnafi, M.; Khatib, S.; Bekkouch, O.; Ouguerram, K.; Amrani, S.; Harnafi, H. Rosmarinic acid-rich extract from Ocimum basilicum L. decreases hyperlipidemia in high fat diet-induced hyperlipidemic mice and prevents plasma lipid oxidation. Physiol, Pharmacol. 2019, 23, 197–207. [Google Scholar]
- Silva, V.; Falco, V.; Dias, M.I.; Barros, L.; Silva, A.; Capita, R.; Alonso-Calleja, C.; Amaral, J.S.; Igrejas, G.; Ferreira, I.C.F.R.; et al. Evaluation of the phenolic profile of Castanea sativa Mill. by-products and their antioxidant and antimicrobial activity against multiresistant bacteria. Antioxidants 2020, 9, 87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matejczyk, M.; Świsłocka, R.; Golonko, A.; Lewandowski, W.; Hawrylik, E. Cytotoxic, genotoxic and antimicrobial activity of caffeic and rosmarinic acids and their lithium, sodium and potassium salts as potential anticancer compounds. Adv. Med. Sci. 2018, 63, 14–21. [Google Scholar] [CrossRef]
- Qamar, K.A.; Farooq, A.D.; Siddiqui, B.S.; Kabir, N.; Begum, S. Antiproliferative Effects of Ocimum basilicum Methanolic Extract and Fractions, Oleanolic Acid and 3-epi-Ursolic Acid. Curr. Tradit. Med. 2020, 6, 134–146. [Google Scholar] [CrossRef]
Peak | Rt (min) | λmax (nm) | [M − H]− (m/z) | MS2 (m/z) | Tentative Identification | Quantification (mg/g of Extract) | |||
---|---|---|---|---|---|---|---|---|---|
Ocimum basilicum cv. ’Cinnamon’ | Ocimum × citriodorum | ||||||||
EtOH:H2O | Infusion | EtOH:H2O | Infusion | ||||||
1 | 4.81 | 326 | 341 | 179(100),161(62),135(34) | Caffeic acid hexoside A | tr | tr | tr | tr |
2 | 9.89 | 323 | 179 | 135(100) | Caffeic acid A | 1.194 ± 0.002 c | 0.63 ± 0.02 d | 1.41 ± 0.03 b | 3.1 ± 0.1 a |
3 | 13.54 | 327 | 473 | 311(100),293(98),179(8),149(5),135(5) | Chicoric acid A | 0.51 ± 0.03 d | 0.61 ± 0.01 c | 0.64 ± 0.01 b | 1.09 ± 0.05 a |
4 | 15.88 | 350 | 595 | 463(25),301(100) | Quercetin-O-pentoside-O-hexoside B | 2.07 ± 0.06 a | 1.54 ± 0.02 b | nd | nd |
5 | 17.63 | 355 | 609 | 301(100) | Quercetin-3-O-rutinoside B | 4.53 ± 0.01 a | 3.24 ± 0.04 b | 1.525 ± 0.003 d | 2.85 ± 0.02 c |
6 | 18.21 | 340 | 717 | 537(40),519(100),493(15),359(10),339(8),321(5) | Salvianolic acid B isomer 1 C | nd | nd | 2.23 ± 0.04 b | 2.47 ± 0.03 a |
7 | 18.53 | 341 | 463 | 301(100) | Quercetin-3-O-glucoside D | 3.405 ± 0.003 a | 2.22 ± 0.04 d | 2.91 ± 0.08 b | 2.43 ± 0.02 c |
8 | 20.05 | 337 | 549 | 505(5),463(28),301(100) | Quercetin-O-malonyl-hexoside B | 3.4 ± 0.1 a | 2.82 ± 0.03 b | 1.87 ± 0.02 d | 2.11 ± 0.03 c |
9 | 20.45 | 337 | 549 | 505(6),463(48),301(100) | Quercetin-O-malonyl-hexoside B | nd | nd | 1.58 ± 0.02 b | 1.84 ± 0.05 b |
10 | 21.75 | 339 | 359 | 197(25),179(41),161(100),135(5) | Rosmarinic acid C | 77 ± 1 a | 41.0 ± 0.2 d | 50 ± 1 c | 59.1 ± 0.3 b |
11 | 25.79 | 329 | 717 | 537(5),519(100),493(5),339(5),321(7),295(5) | Salvianolic acid B isomer 2 C | 5.2 ± 0.1 c | 7.3 ± 0.4 a | nd | 6.9 ± 0.1 b |
12 | 30.44 | 284/329 | 537 | 493(100),439(5),359(62),197(5),179(10),161(15) | Lithospermic acid A C | 7.11 ± 0.02 a | 2.82 ± 0.06 b | nd | nd |
Total Phenolic Acids | 91 ± 1 a | 52.4 ± 0.4 d | 55 ± 1 c | 72.7 ± 0.3 b | |||||
Total Flavonoids | 13.4 ± 0.2 a | 9.8 ± 0.1 b | 7.9 ± 0.1 d | 9.2 ± 0.1 c | |||||
Total Phenolic Compounds | 105 ± 1 a | 62.2 ± 0.1 c | 63 ± 2 c | 81.9 ± 0.2 b |
Compound | RT | LRI a | LRI b | Quantification c (Relative %) | ||
---|---|---|---|---|---|---|
O. basilicum cv. ’Cinnamon’ | O. × citriodorum | |||||
1 | 1-Hexanal | 7.90 | 800 | 801 | − | 0.014 ± 0.001 |
2 | 2-Hexenal | 10.23 | 850 | 846 | − | 0.012 ± 0.001 |
3 | α-Thujene | 13.90 | 926 | 924 | 0.07 ± 0.003 | 0.044 ± 0.002 |
4 | α-Pinene | 14.22 | 932 | 932 | 0.036 ± 0.001 | 0.245 ± 0.005 |
5 | Camphene | 14.96 | 947 | 946 | 0.0157 ± 0.0004 | 0.022 ± 0.003 |
6 | Benzaldehyde | 15.55 | 958 | 952 | 0.049 ± 0.003 | 0.012 ± 0.001 |
7 | Sabinene | 16.30 | 972 | 969 | 0.019 ± 0.001 | 0.014 ± 0.003 |
8 | β-Pinene | 16.43 | 975 | 974 | 0.064 ± 0.002 | 0.092 ± 0.002 |
9 | 1-Octen-3-ol | 16.69 | 980 | 974 | − | 0.138 ± 0.002 |
10 | 6-Methyl-5-hepten-2-one | 17.05 | 987 | 985 | − | 0.229 ± 0.003 |
11 | β-Myrcene | 17.27 | 991 | 988 | 0.045 ± 0.001 | 0.061 ± 0.002 |
12 | 4-carene | 18.54 | 1015 | 1011 | 0.038 ± 0.002 | 0.023 ± 0.005 |
13 | o-Cymene | 18.95 | 1023 | 1022 | 0.034 ± 0.002 | 0.252 ± 0.007 |
14 | D-Limonene | 19.16 | 1027 | 1024 | 0.055 ± 0.002 | − |
15 | Eucalyptol | 19.28 | 1030 | 1026 | 1.16 ± 0.04 | − |
16 | 1,8-Cineole | 19.33 | 1031 | 1026 | − | 0.02 ± 0.03 |
17 | Benzeneacetaldehyde | 19.91 | 1042 | 1036 | 0.079 ± 0.006 | 0.082 ± 0.005 |
18 | trans-Ocimene | 20.23 | 1048 | 1044 | 0.066 ± 0.001 | 0.013 ± 0.002 |
19 | Bergamal | 20.51 | 1053 | 1051 | − | 0.029 ± 0.002 |
20 | γ-Terpinene | 20.75 | 1058 | 1054 | 0.080 ± 0.004 | 0.435 ± 0.009 |
21 | trans-4-thujanol | 21.17 | 1066 | 1065 | 0.045 ± 0.002 | 0.017 ± 0.004 |
22 | cis-Linalool oxide | 21.46 | 1072 | 1067 | 0.26 ± 0.01 | 1.67 ± 0.03 |
23 | n-Octanol | 21.97 | 1082 | − | − | 1.071 ± 0.008 |
24 | trans-Linalool oxide | 22.27 | 1088 | 1084 | 0.029 ± 0.01 | 1.73 ± 0.05 |
25 | Rosefuran | 22.77 | 1097 | 1093 | − | 0.079 ± 0.005 |
26 | Linalool | 23.09 | 1101 | 1095 | 26.5 ± 0.3 | 32.8 ± 0.4 |
27 | 1-Octen-3-yl acetate | 23.80 | 1118 | 1110 | − | 0.011 ± 0.002 |
28 | p-Menth-2-en-1-ol | 24.27 | 1127 | 1124 | − | 0.011 ± 0.002 |
29 | 4-Acetyl-1-methylcyclohexene | 24.64 | 1135 | 1137 | − | 0.019 ± 0.002 |
30 | Camphor | 25.10 | 1144 | 1141 | 0.321 ± 0.006 | 0.177 ± 0.003 |
31 | p-Menthan-3-one | 25.57 | 1154 | 1148 | 0.024 ± 0.005 | − |
32 | Nerol oxide | 25.73 | 1157 | 1154 | − | 0.012 ± 0.002 |
33 | Borneol | 26.19 | 1166 | 1165 | 0.018 ± 0.009 | − |
34 | Isoneral | 26.20 | 1166 | 1160 | − | 0.12 ± 0.01 |
35 | δ-terpineol | 26.39 | 1170 | 1162 | − | 0.11 ± 0.02 |
36 | Menthol | 26.52 | 1173 | 1167 | 0.06 ± 0.02 | − |
37 | trans-Pyranoid linalool oxide | 26.54 | 1173 | 1173 | − | 0.079 ± 0.006 |
38 | Terpinen-4-ol | 26.75 | 1177 | 1174 | 0.71 ± 0.02 | 4.96 ± 0.01 |
39 | p-Cymen-8-ol | 27.11 | 1185 | 1179 | 0.016 ± 0.001 | 0.056 ± 0.002 |
40 | α-Terpineol | 27.40 | 1190 | 1186 | 0.32 ± 0.01 | 0.628 ± 0.006 |
41 | Dihydrocarveol | 27.70 | 1196 | 1192 | − | 0.09 ± 0.01 |
42 | Methyl chavicol | 27.79 | 1198 | 1195 | 2.46 ± 0.01 | 0.285 ± 0.009 |
43 | Octanol acetate | 28.40 | 1211 | 1211 | 0.019 ± 0.004 | 0.132 ± 0.002 |
44 | Fenchyl acetate | 28.84 | 1221 | 1218 | 0.028 ± 0.003 | − |
45 | Nerol | 29.19 | 1234 | 1227 | 0.036 ± 0.002 | 3.70 ± 0.05 |
46 | Carvone | 29.93 | 1244 | 1239 | 0.0355 ± 0.0001 | 0.34 ±0.01 |
47 | Neral | 29.98 | 1245 | 1235 | − | 2.21 ± 0.04 |
48 | Geraniol | 30.60 | 1258 | 1249 | − | 1.60± 0.01 |
49 | Geranial | 31.16 | 1270 | 1264 | 0.012 ± 0.001 | 2.68 ± 0.02 |
50 | Neryl formate | 31.71 | 1282 | 1280 | − | 0.054 ± 0.001 |
51 | Bornyl acetate | 31.93 | 1287 | 1284 | 0.38 ± 0.01 | − |
52 | Carvacrol | 32.69 | 1303 | 1298 | − | 0.202 ± 0.008 |
53 | (Z)-Methyl cinnamate | 32.83 | 1306 | 1299 | 3.14 ± 0.02 | 0.054 ± 0.005 |
54 | Methyl geranate | 33.64 | 1324 | 1322 | − | 0.078 ± 0.001 |
55 | Myrtenyl acetate | 33.72 | 1326 | 1324 | 0.0214 ± 0.0004 | − |
56 | exo-2-Hydroxycineole acetate | 34.45 | 1343 | 0.037 ± 0.003 | − | |
57 | α-Cubebene | 34.84 | 1352 | 1345 | 0.157 ± 0.003 | 0.456 ± 0.003 |
59 | Eugenol | 35.16 | 1359 | 1356 | 2.18 ± 0.04 | 0.323 ± 0.001 |
60 | Neryl acetate | 35.46 | 1366 | 1359 | − | 1.04 ± 0.01 |
61 | α-Copaene | 36.02 | 1379 | 1374 | 0.40 ± 0.02 | 1.011 ± 0.005 |
62 | (E)-Methyl cinnamate | 36.46 | 1384 | 1376 | 24.70 ± 0.06 | − |
63 | β-Bourbonene | 36.47 | 1389 | 1387 | − | 0.313 ± 0.002 |
64 | β-Elemene | 36.78 | 1395 | 1389 | 3.00 ± 0.05 | 0.27 ± 0.03 |
65 | n-Tetradecane | 36.98 | 1400 | 1400 | − | 0.012 ± 0.001 |
66 | cis-α-Bergamotene | 37.78 | 1419 | 1411 | − | 0.012 ± 0.001 |
67 | β-Ylangene + β-cedrene | 37.93 | 1423 | 1419; 149 | 0.335 ± 0.009 | − |
68 | (E)-Caryophyllene | 37.98 | 1424 | 1417 | − | 4.32 ± 0.03 |
69 | β-Copaene | 38.37 | 1434 | 1430 | − | 0.120 ± 0.002 |
70 | trans-α-Bergamotene | 38.57 | 1438 | 1432 | 0.66 ± 0.03 | 5.76 ± 0.04 |
71 | α-Guaiene | 38.72 | 1442 | 1437 | 1.26 ± 0.02 | − |
72 | Muurola-3,5-diene | 39.05 | 1450 | 1448 | 0.011 ± 0.001 | − |
73 | Geranyl acetone | 39.21 | 1454 | 1453 | − | 0.109 ± 0.002 |
74 | trans-β-farnesene+ humulene | 39.44 | 1459 | 1454;1542 | − | 1.14 ± 0.03 |
75 | Sesquisabinene | 39.53 | 1461 | 1457 | − | 0.056 ± 0.002 |
76 | γ-Muurolene | 40.39 | 1482 | 1478 | − | 0.10 ± 0.01 |
77 | Germacrene D | 40.53 | 1486 | 1480 | 3.17 ± 0.03 | 3.70 ± 0.02 |
78 | β-Selinene | 40.75 | 1491 | 1489 | 0.28 ± 0.02 | 0.585 ± 0.003 |
79 | epi-cubebol + α-Selinene | 41.14 | 1500 | 1493;1492 | − | 0.54 ± 0.01 |
80 | α-Bulnesene | 41.53 | 1510 | 1509 | 2.26 ± 0.03 | − |
81 | β-Bisabolene | 41.58 | 1511 | 1505 | − | 0.49 ± 0.04 |
82 | γ-Cadinene | 41.87 | 1519 | 1513 | 3.76 ± 0.03 | 0.41 ± 0.04 |
83 | δ-Cadinene | 42.18 | 1527 | 1522 | 0.63 ± 0.05 | − |
84 | Cadina-1(10),4-diene | 42.22 | 1528 | 1522 | − | 0.71 ± 0.03 |
85 | epi-Cubebol | 42.49 | 1534 | 1533 | 0.15 ± 0.01 | − |
86 | α-Cadinene | 42.77 | 1541 | 1537 | 0.09 ± 0.01 | − |
87 | (E)-Nerolidol | 43.68 | 1565 | 1561 | 0.87 ± 0.03 | − |
88 | (Z)-Nerolidol | 43.79 | 1567 | 1561 | − | 0.46 ± 0.02 |
89 | Spathulenol | 44.38 | 1583 | 1577 | 1.375 ± 0.003 | − |
90 | Caryophyllene oxide | 44.61 | 1589 | 1582 | 0.35 ± 0.04 | 6.235 ± 0.008 |
91 | Salvial-4(14)-en-1-one | 45.07 | 1600 | 1594 | − | 0.209 ± 0.006 |
92 | Humulene epoxide II | 45.69 | 1616 | 1608 | − | 0.151 ± 0.001 |
93 | 1,10-Di-epi-cubenol | 45.82 | 1620 | 1618 | 1.33 ± 0.07 | − |
94 | τ-Cadinol | 46.80 | 1646 | 1638 | 7.44 ± 0.03 | 0.521 ± 0.002 |
95 | β-Eudesmol | 47.17 | 1656 | 1649 | 0.33 ± 0.01 | − |
96 | α-Cadinol | 47.28 | 1659 | 1652 | 0.6 ± 0.2 | − |
97 | α-Bisabolol | 48.33 | 1687 | 1685 | − | 0.499 ± 0.004 |
98 | Hexahydrofarnesyl acetone | 52.07 | 1849 | 1847 | 0.09 ± 0.01 | 0.105 ± 0.006 |
Total identified | 92.2 ± 0.2 | 88.3 ± 0.2 | ||||
Monoterpenes | 4.6 ± 0.1 | 3.12 ± 0.06 | ||||
Oxygenated monoterpenes | 31.8 ± 0.2 | 55.1 ± 0.3 | ||||
Sesquiterpenes | 13.1 ± 0.2 | 20.2 ± 0.1 | ||||
Oxygenated sesquiterpenes | 12.4 ± 0.2 | 8.1 ± 0.1 | ||||
Other | 30.3 ± 0.5 | 1.79 ± 0.07 |
Sample | TBARS (IC50; µg/mL) | OxHLIA (IC50; µg/mL) Δt = 60 min | |
---|---|---|---|
O. basilicum cv. ’Cinnamon’ | Infusion | 8.9 ± 0.4 | 27.6 ± 0.9 |
EtOH:H2O | 23.8 ± 0.8 | 48 ± 2 | |
O. × citriodorum | Infusion | 14.1 ± 0.7 | 26.9 ± 0.4 |
EtOH:H2O | 15.6 ± 0.6 | 54 ± 1 | |
Trolox | 139 ± 5 | 85 ± 2 |
Antimicrobial Activity | O. basilicum cv. ’Cinnamon’ | O. × citriodorum | Ampicillin (20 mg/mL) | Imipenem (1 mg/mL) | Vancomycin (1 mg/mL) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
EtOH/H2O | Infusion | EtOH/H2O | Infusion | |||||||||||
MIC | MBC | MIC | MBC | MIC | MBC | MIC | MBC | MIC | MBC | MIC | MBC | MIC | MBC | |
Gram-negative bacteria | ||||||||||||||
E. coli | 20 | >20 | 20 | >20 | 10 | >20 | 10 | >20 | <0.15 | <0.15 | <0.0078 | <0.0078 | n.t. | n.t. |
K. pneumoniae | 20 | >20 | 20 | >20 | 10 | >20 | 10 | >20 | 10 | 20 | <0.0078 | <0.0078 | n.t. | n.t. |
M. morganii | 10 | >20 | 10 | >20 | 10 | >20 | 10 | >20 | 20 | >20 | <0.0078 | <0.0078 | n.t. | n.t. |
P. mirabilis | >20 | >20 | >20 | >20 | >20 | >20 | >20 | >20 | <0.15 | <0.15 | <0.0078 | <0.0078 | n.t. | n.t. |
P. aeruginosa | 20 | >20 | 20 | >20 | 20 | >20 | >20 | >20 | >20 | >20 | 0.5 | 1 | n.t. | n.t. |
Gram-positive bacteria | ||||||||||||||
E. faecalis | 10 | >20 | 10 | >20 | 10 | >20 | 10 | >20 | <0.15 | <0.15 | n.t. | n.t. | <0.0078 | <0.0078 |
L. monocytogenes | 10 | >20 | 20 | >20 | 10 | >20 | 10 | >20 | <0.15 | <0.15 | <0.0078 | <0.0078 | n.t. | n.t. |
MRSA | 5 | >20 | 10 | >20 | 5 | >20 | 10 | >20 | <0.15 | <0.15 | n.t. | n.t. | 0.25 | 0.5 |
Samples | Extracts | Cytotoxic Activity GI50 Values (µg/mL) | Anti-Inflammatory Activity EC50 (µg/mL) | ||||
---|---|---|---|---|---|---|---|
NCI H460 | MCF7 | HeLa | HepG2 | PLP2 | RAW264.7 | ||
O. basilicum cv. ’Cinnamon’ | Infusion | >400 | 255 ± 6 | 271 ± 8 | 317 ± 6 | >400 | >400 |
EtOH:H2O | >400 | 273 ± 14 | 310 ± 5 | 322 ± 6 | >400 | >400 | |
O. × citriodorum | Infusion | >400 | 281 ± 8 | 297 ± 16 | 321 ± 10 | >400 | >400 |
EtOH:H2O | 161 ± 9 | 89 ± 4 | 93 ± 3 | 114 ± 2 | 234 ± 21 | 191 ± 7 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Majdi, C.; Pereira, C.; Dias, M.I.; Calhelha, R.C.; Alves, M.J.; Rhourri-Frih, B.; Charrouf, Z.; Barros, L.; Amaral, J.S.; Ferreira, I.C.F.R. Phytochemical Characterization and Bioactive Properties of Cinnamon Basil (Ocimum basilicum cv. ‘Cinnamon’) and Lemon Basil (Ocimum × citriodorum). Antioxidants 2020, 9, 369. https://doi.org/10.3390/antiox9050369
Majdi C, Pereira C, Dias MI, Calhelha RC, Alves MJ, Rhourri-Frih B, Charrouf Z, Barros L, Amaral JS, Ferreira ICFR. Phytochemical Characterization and Bioactive Properties of Cinnamon Basil (Ocimum basilicum cv. ‘Cinnamon’) and Lemon Basil (Ocimum × citriodorum). Antioxidants. 2020; 9(5):369. https://doi.org/10.3390/antiox9050369
Chicago/Turabian StyleMajdi, Chaimae, Carla Pereira, Maria Inês Dias, Ricardo C. Calhelha, Maria José Alves, Boutayna Rhourri-Frih, Zoubida Charrouf, Lillian Barros, Joana S. Amaral, and Isabel C.F.R. Ferreira. 2020. "Phytochemical Characterization and Bioactive Properties of Cinnamon Basil (Ocimum basilicum cv. ‘Cinnamon’) and Lemon Basil (Ocimum × citriodorum)" Antioxidants 9, no. 5: 369. https://doi.org/10.3390/antiox9050369
APA StyleMajdi, C., Pereira, C., Dias, M. I., Calhelha, R. C., Alves, M. J., Rhourri-Frih, B., Charrouf, Z., Barros, L., Amaral, J. S., & Ferreira, I. C. F. R. (2020). Phytochemical Characterization and Bioactive Properties of Cinnamon Basil (Ocimum basilicum cv. ‘Cinnamon’) and Lemon Basil (Ocimum × citriodorum). Antioxidants, 9(5), 369. https://doi.org/10.3390/antiox9050369