Oxidative Stress and Atopic Dermatitis
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Genetics, Oxidative Stress, and Atopic Dermatitis
3.2. Biomarkers
3.3. Treatments of Atopic Dermatitis and Oxidative Stress
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Ahn, C.; Huang, W. Clinical presentation of atopic dermatitis. In Management of Atopic Dermatitis. Advances in Experimental Medicine and Biology; Fortson, E., Feldman, S., Strowd, L., Eds.; Springer: Cham, Switzerland, 2017; Volume 1027, pp. 39–46. [Google Scholar]
- Misery, L.; Finlay, A.Y.; Martin, N.; Boussetta, S.; Nguyen, C.; Myon, E.; Taieb, C. Atopic dermatitis: Impact on the quality of life of patients and their partners. Dermatology 2007, 215, 123–129. [Google Scholar] [CrossRef] [PubMed]
- Boccardi, D.; D’Auria, E.; Turati, F.; Di Vito, M.; Sortino, S.; Riva, E.; Cerri, A. Disease severity and quality of life in children with atopic dermatitis: PO-SCORAD in clinical practice. Minerva Pediatr. 2017, 69, 373–380. [Google Scholar] [PubMed]
- Bridgman, A.C.; Block, J.K.; Drucker, A.M. The multidimensional burden of atopic dermatitis: An update. Ann. Allergy Asthma Immunol. 2018, 120, 603–606. [Google Scholar] [CrossRef] [PubMed]
- Peng, W.; Novak, N. Pathogenesis of atopic dermatitis. Clin. Exp. Allergy 2015, 45, 566–574. [Google Scholar] [CrossRef] [PubMed]
- Otsuka, A.; Nomura, T.; Rerknimitr, P.; Seidel, J.A.; Honda, T.; Kabashima, K. The interplay between genetic and environmental factors in the pathogenesis of atopic dermatitis. Immunol. Rev. 2017, 278, 246–262. [Google Scholar] [CrossRef]
- Han, H.; Roan, F.; Ziegler, S.F. The atopic march: Current insights into skin barrier dysfunction and epithelial cell-derived cytokines. Immunol. Rev. 2017, 278, 116–130. [Google Scholar] [CrossRef]
- D’Auria, E.; Banderali, G.; Barberi, S.; Gualandri, L.; Pietra, B.; Riva, E.; Cerri, A. Atopic dermatitis: Recent insight on pathogenesis and novel therapeutic target. Asian Pac. J. Allergy Immunol. 2016, 34, 98–108. [Google Scholar]
- Czarnowicki, T.; He, H.; Krueger, J.G.; Guttman-Yassky, E. Atopic dermatitis endotypes and implications for targeted therapeutics. J. Allergy Clin. Immunol. 2019, 143, 1–11. [Google Scholar] [CrossRef]
- Cannavò, S.P.; Riso, G.; Casciaro, M.; Di Salvo, E.; Gangemi, S. Oxidative stress involvement in psoriasis: A systematic review. Free Radic. Res. 2019, 53, 829–840. [Google Scholar] [CrossRef]
- Cannavò, S.P.; Tonacci, A.; Bertino, L.; Casciaro, M.; Borgia, F.; Gangemi, S. The role of oxidative stress in the biology of melanoma: A systematic review. Pathol. Res. Pract. 2019, 215, 21–28. [Google Scholar] [CrossRef]
- Ji, H.; Li, X.K. Oxidative stress in atopic dermatitis. Oxid. Med. Cell. Longev. 2016, 2016, 2721469. [Google Scholar] [CrossRef] [PubMed]
- Kwak, E.J.; Hong, J.Y.; Kim, M.N.; Kim, S.Y.; Kim, S.H.; Park, C.O.; Kim, K.W.; Lee, C.G.; Elias, J.A.; Jee, H.M.; et al. Chitinase 3-like 1 drives allergic skin inflammation via Th2 immunity and M2 macrophage activation. Clin. Exp. Allergy 2019, 49, 1464–1474. [Google Scholar] [CrossRef] [PubMed]
- Kasraie, S.; Werfel, T. Role of macrophages in the pathogenesis of atopic dermatitis. Mediat. Inflamm. 2013, 2013, 942375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bickers, D.R.; Athar, M. Oxidative stress in the pathogenesis of skin disease. J. Investig. Dermatol. 2006, 126, 2565–2575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Addor, F.A.S. Antioxidants in dermatology. An. Bras. Dermatol. 2017, 92, 356–362. [Google Scholar] [CrossRef] [Green Version]
- Wen, H.J.; Wang, S.L.; Chen, P.C.; Guo, Y.L. Prenatal perfluorooctanoic acid exposure and glutathione S-transferase T1/M1 genotypes and their association with atopic dermatitis at 2 years of age. PLoS ONE 2019, 14, e0210708. [Google Scholar] [CrossRef]
- Shibama, S.; Ugajin, T.; Yamaguchi, T.; Yokozeki, H. Bilirubin oxidation derived from oxidative stress is associated with disease severity of atopic dermatitis in adults. Clin. Exp. Dermatol. 2019, 44, 153–160. [Google Scholar] [CrossRef]
- Hüls, A.; Klümper, C.; MacIntyre, E.A.; Brauer, M.; Melén, E.; Bauer, M.; Berdel, D.; Bergström, A.; Brunekreef, B.; Chan-Yeung, M.; et al. Atopic dermatitis: Interaction between genetic variants of GSTP1, TNF, TLR2, and TLR4 and air pollution in early life. Pediatr. Allergy Immunol. 2018, 29, 596–605. [Google Scholar] [CrossRef]
- Uysal, P.; Avcil, S.; Neşelioğlu, S.; Biçer, C.; Çatal, F. Association of oxidative stress and dynamic thiol-disulphide homeostasis with atopic dermatitis severity and chronicity in children: A prospective study. Clin. Exp. Dermatol. 2018, 43, 124–130. [Google Scholar] [CrossRef] [PubMed]
- Quist, S.R.; Wiswedel, I.; Doering, I.; Quist, J.; Gollnick, H.P. Effects of topical tacrolimus and polyunsaturated fatty acids on in vivo release of eicosanoids in atopic dermatitis during dermal microdialysis. Acta Derm. Venereol. 2016, 96, 905–909. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uysal, P.; Avcil, S.; Abas, B.İ.; Yenisey, Ç. Evaluation of oxidant–antioxidant balance in children with atopic dermatitis: A case-control study. Am. J. Clin. Dermatol. 2016, 17, 527–537. [Google Scholar] [CrossRef] [PubMed]
- Chang, H.Y.; Suh, D.I.; Yang, S.I.; Kang, M.J.; Lee, S.Y.; Lee, E.; Choi, I.A.; Lee, K.S.; Shin, Y.J.; Shin, Y.H.; et al. Prenatal maternal distress affects atopic dermatitis in offspring mediated by oxidative stress. J. Allergy Clin. Immunol. 2016, 138, 468–475.e5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sol, I.S.; Kim, Y.H.; Lee, K.E.; Hong, J.Y.; Kim, M.N.; Kim, Y.S.; Oh, M.S.; Kim, M.J.; Yoon, S.H.; Park, Y.A.; et al. Serum clusterin level in children with atopic dermatitis. Allergy Asthma Proc. 2016, 37, 335–339. [Google Scholar] [CrossRef] [PubMed]
- Amin, M.N.; Liza, K.F.; Sarwar, M.S.; Ahmed, J.; Adnan, M.T.; Chowdhury, M.I.; Hossain, M.Z.; Islam, M.S. Effect of lipid peroxidation, antioxidants, macro minerals and trace elements on eczema. Arch. Dermatol. Res. 2015, 307, 617–623. [Google Scholar] [CrossRef] [PubMed]
- Sivaranjani, N.; Venkata Rao, S.; Rajeev, G. Role of reactive oxygen species and antioxidants in atopic dermatitis. J. Clin. Diagn. Res. 2013, 7, 2683–2685. [Google Scholar] [CrossRef] [PubMed]
- Song, S.; Paek, D.; Park, C.; Lee, C.; Lee, J.H.; Yu, S.D. Exposure to ambient ultrafine particles and urinary 8-hydroxyl-2-deoxyguanosine in children with and without eczema. Sci. Total Environ. 2013, 458–460, 408–413. [Google Scholar] [CrossRef]
- Peroni, D.G.; Bodini, A.; Corradi, M.; Coghi, A.; Boner, A.L.; Piacentini, G.L. Markers of oxidative stress are increased in exhaled breath condensates of children with atopic dermatitis. Br. J. Dermatol. 2012, 166, 839–843. [Google Scholar] [CrossRef]
- Portugal-Cohen, M.; Horev, L.; Ruffer, C.; Schlippe, G.; Voss, W.; Ma’or, Z.; Oron, M.; Soroka, Y.; Frušić-Zlotkin, M.; Milner, Y.; et al. Non-invasive skin biomarkers quantification of psoriasis and atopic dermatitis: Cytokines, antioxidants and psoriatic skin auto-fluorescence. Biomed. Pharmacother. 2012, 66, 293–299. [Google Scholar] [CrossRef]
- Toyran, M.; Kaymak, M.; Vezir, E.; Harmanci, K.; Kaya, A.; Giniş, T.; Köse, G.; Kocabaş, C.N. Trace element levels in children with atopic dermatitis. J. Investig. Allergol. Clin. Immunol. 2012, 22, 341–344. [Google Scholar]
- Sapuntsova, S.G.; Lebed’ko, O.A.; Shchetkina, M.V.; Fleyshman, M.Y.; Kozulin, E.A.; Timoshin, S.S. Status of free-radical oxidation and proliferation processes in patients with atopic dermatitis and lichen planus. Bull. Exp. Biol. Med. 2011, 150, 690–692. [Google Scholar] [CrossRef]
- Cho, H.R.; Uhm, Y.K.; Kim, H.J.; Ban, J.Y.; Chung, J.H.; Yim, S.V.; Choi, B.K.; Lee, M.H. Glutathione S-transferase M1 (GSTM1) polymorphism is associated with atopic dermatitis susceptibility in a Korean population. Int. J. Immunogenet. 2011, 38, 145–150. [Google Scholar] [CrossRef] [PubMed]
- Iwai, I.; Shimadzu, K.; Kobayashi, Y.; Hirao, T.; Etou, T. Increased carbonyl protein level in the stratum corneum of inflammatory skin disorders: A non-invasive approach. J. Dermatol. 2010, 37, 693–698. [Google Scholar] [CrossRef] [PubMed]
- Oh, S.Y.; Chung, J.; Kim, M.K.; Kwon, S.O.; Cho, B.H. Antioxidant nutrient intakes and corresponding biomarkers associated with the risk of atopic dermatitis in young children. Eur. J. Clin. Nutr. 2010, 64, 245–252. [Google Scholar] [CrossRef] [PubMed]
- Wakamatsu, T.H.; Dogru, M.; Ayako, I.; Takano, Y.; Matsumoto, Y.; Ibrahim, O.M.A.; Okada, N.; Satake, Y.; Fukagawa, K.; Shimazaki, J.; et al. Evaluation of lipid oxidative stress status and inflammation in atopic ocular surface disease. Mol. Vis. 2010, 16, 2465–2475. [Google Scholar] [PubMed]
- Wang, I.J.; Guo, Y.L.; Lin, T.J.; Chen, P.C.; Wu, Y.N. GSTM1, GSTP1, prenatal smoke exposure, and atopic dermatitis. Ann Allergy. Asthma Immunol. 2010, 105, 124–129. [Google Scholar] [CrossRef]
- Nakai, K.; Yoneda, K.; Maeda, R.; Munehiro, A.; Fujita, N.; Yokoi, I.; Moriue, J.; Moriue, T.; Kosaka, H.; Kubota, Y. Urinary biomarker of oxidative stress in patients with psoriasis vulgaris and atopic dermatitis. J. Eur. Acad. Dermatol. Venereol. 2009, 23, 1405–1408. [Google Scholar] [CrossRef]
- Chung, J.; Oh, S.Y.; Shin, Y.K. Association of glutathione-S-transferase polymorphisms with atopic dermatitis risk in preschool age children. Clin. Chem. Lab. Med. 2009, 47, 1475–1481. [Google Scholar] [CrossRef]
- Hoppu, U.; Salo-Väänänen, P.; Lampi, A.M.; Isolauri, E. Serum alpha- and gamma-tocopherol levels in atopic mothers and their infants are correlated. Biol. Neonate 2005, 88, 24–26. [Google Scholar] [CrossRef]
- Niwa, Y.; Sumi, H.; Kawahira, K.; Terashima, T.; Nakamura, T.; Akamatsu, H. Protein oxidative damage in the stratum corneum: Evidence for a link between environmental oxidants and the changing prevalence and nature of atopic dermatitis in Japan. Br. J. Dermatol. 2003, 149, 248–254. [Google Scholar] [CrossRef]
- Safronova, O.G.; Vavilin, V.A.; Lyapunova, A.A.; Makarova, S.I.; Lyakhovich, V.V.; Kaznacheeva, L.F.; Manankin, N.A.; Batychko, O.A.; Gavalov, S.M. Relationship between glutathione S-transferase P1 polymorphism and bronchial asthma and atopic dermatitis. Bull. Exp. Biol. Med. 2003, 136, 73–75. [Google Scholar] [CrossRef]
- Tsukahara, H.; Shibata, R.; Ohta, N.; Sato, S.; Hiraoka, M.; Ito, S.; Noiri, E.; Mayumi, M. High levels of urinary pentosidine, an advanced glycation end product, in children with acute exacerbation of atopic dermatitis: Relationship with oxidative stress. Metabolism 2003, 52, 1601–1605. [Google Scholar] [CrossRef]
- Vavilin, V.A.; Safronova, O.G.; Lyapunova, A.A.; Lyakhovich, V.V.; Kaznacheeva, L.F.; Manankin, N.A.; Molokova, A.V. Interaction of GSTM1, GSTT1, and GSTP1 genotypes in determination of predisposition to atopic dermatitis. Bull. Exp. Biol. Med. 2003, 136, 388–391. [Google Scholar] [CrossRef] [PubMed]
- Antille, C.; Sorg, O.; Lübbe, J.; Saurat, J.H. Decreased oxidative state in non-lesional skin of atopic dermatitis. Dermatology 2002, 204, 69–71. [Google Scholar] [CrossRef] [PubMed]
- Omata, N.; Tsukahara, H.; Ito, S.; Ohshima, Y.; Yasutomi, M.; Yamada, A.; Jiang, M.; Hiraoka, M.; Nambu, M.; Deguchi, Y.; et al. Increased oxidative stress in childhood atopic dermatitis. Life Sci. 2001, 69, 223–228. [Google Scholar] [CrossRef]
- Tsuboi, H.; Kouda, K.; Takeuchi, H.; Takigawa, M.; Masamoto, Y.; Takeuchi, M.; Ochi, H. 8-Hydroxydeoxyguanosine in urine as an index of oxidative damage to DNA in the evaluation of atopic dermatitis. Br. J. Dermatol. 1998, 138, 1033–1035. [Google Scholar] [CrossRef]
- Carlsen, K.H.; Halvorsen, R.; Pettersen, M.; Lødrup Carlsen, K.C. Inflammation markers and symptom activity in children with bronchial asthma. Influence of atopy and eczema. Pediatr. Allergy Immunol. 1997, 8, 112–120. [Google Scholar] [CrossRef]
- Kristjánsson, S.; Shimizu, T.; Strannegård, I.L.; Wennergren, G. Eosinophil cationic protein, myeloperoxidase and tryptase in children with asthma and atopic dermatitis. Pediatr. Allergy Immunol. 1994, 5, 223–229. [Google Scholar] [CrossRef]
- Polla, B.S.; Alan Ezekowitz, R.; Leung, D.Y.M. Monocytes from patients with atopic dermatitis are primed for superoxide production. J. Allergy Clin. Immunol. 1992, 89, 545–551. [Google Scholar] [CrossRef]
- David Boothe, W.; Tarbox, J.A.; Tarbox, M.B. Atopic dermatitis: Pathophysiology. Adv. Exp. Med. Biol. 2017, 1027, 21–37. [Google Scholar]
- Patruno, C.; Amerio, P.; Chiricozzi, A.; Costanzo, A.; Cristaudo, A.; Cusano, F.; Foti, C.; Girolomoni, G.; Guarneri, F.; Naldi, L.; et al. Optimizing a clinical guidance for diagnosis of atopic dermatitis in adults: Joint recommendations of the Italian Society of Dermatology and Venereology (SIDeMaST), Italian Association of Hospital Dermatologists (ADOI), and Italian Society of Allergological, Occupational and Environmental Dermatology (SIDAPA). G. Ital. Dermatol. Venereol. 2020, 155. [Google Scholar] [CrossRef]
- Guarneri, C.; Lotti, J.; Fioranelli, M.; Roccia, M.G.; Lotti, T.; Guarneri, F. Possible role of Helicobacter pylori in diseases of dermatological interest. J. Biol. Regul. Homeost. Agents 2017, 31 (Suppl. 2), 57–77. [Google Scholar] [PubMed]
- Megna, M.; Patruno, C.; Balato, A.; Rongioletti, F.; Stingeni, L.; Balato, N.; Italian Adult Atopic Dermatitis Study Group. An Italian multicentre study on adult atopic dermatitis: Persistent versus adult-onset disease. Arch. Dermatol. Res. 2017, 309, 443–452. [Google Scholar] [CrossRef] [PubMed]
- Guarneri, F.; Costa, C.; Foti, C.; Hansel, K.; Guarneri, C.; Guarneri, B.; Lisi, P.; Stingeni, L. Frequency of autoallergy to manganese superoxide dismutase in patients with atopic dermatitis: Experience of three Italian dermatology centres. Br. J. Dermatol. 2015, 173, 559–562. [Google Scholar] [CrossRef] [PubMed]
- Imbesi, S.; Musolino, C.; Allegra, A.; Saija, A.; Morabito, F.; Calapai, G.; Gangemi, S. Oxidative stress in oncohematologic diseases: An update. Expert Rev. Hematol. 2013, 6, 317–325. [Google Scholar] [CrossRef] [PubMed]
- Nettis, E.; Distaso, M.; Saitta, S.; Casciaro, M.; Cristani, M.; Saija, A.; Vacca, A.; Gangemi, S.; Minciullo, P.L. Involvement of new oxidative stress markers in chronic spontaneous urticaria. Postepy Dermatol. Alergol. 2017, 34, 448–452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruggeri, R.M.; Vicchio, T.M.; Cristani, M.; Certo, R.; Caccamo, D.; Alibrandi, A.; Giovinazzo, S.; Saija, A.; Campennì, A.; Trimarchi, F.; et al. Oxidative stress and advanced glycation end products in Hashimoto’s thyroiditis. Thyroid 2016, 26, 504–511. [Google Scholar] [CrossRef]
- Piacentini, S.; Polimanti, R.; Porreca, F.; Martínez-Labarga, C.; De Stefano, G.F.; Fuciarelli, M. GSTT1 and GSTM1 gene polymorphisms in European and African populations. Mol. Biol. Rep. 2011, 38, 1225–1230. [Google Scholar] [CrossRef]
- Lea, R.A.; Selvey, S.; Ashton, K.J.; Curran, J.E.; Gaffney, P.T.; Green, A.C.; Griffiths, L.R. The null allele of GSTM1 does not affect susceptibility to solar keratoses in the Australian white population. J. Am. Acad. Dermatol. 1998, 38, 631–633. [Google Scholar] [CrossRef]
- Uhm, Y.K.; Yoon, S.H.; Kang, I.J.; Chung, J.H.; Yim, S.V.; Lee, M.H. Association of glutathione S-transferase gene polymorphisms (GSTM1 and GSTT1) of vitiligo in Korean population. Life Sci. 2007, 81, 223–227. [Google Scholar] [CrossRef]
- Guarneri, F.; Sapienza, D.; Papaiann, V.; Marafioti, I.; Guarneri, C.; Mondello, C.; Roccuzzo, S.; Asmundo, A.; Cannavò, S.P. Association between genetic polymorphisms of glutathione S-transferase M1/T1 and psoriasis in a population from the area of the strict of Messina (Southern Italy). Free Radic. Res. 2019, 10, 1–7. [Google Scholar] [CrossRef]
- Guarneri, F.; Asmundo, A.; Sapienza, D.; Borgia, F.; Papaianni, V.; Cannavò, S.P. Glutathione S-transferase M1/T1 genotype and melanoma in a Southern Italian population: A case-control study. G. Ital. Dermatol. Venereol. 2016, 151, 140–144. [Google Scholar] [PubMed]
- Guarneri, F.; Asmundo, A.; Sapienza, D.; Cannavò, S.P. Glutathione S-transferase M1/T1 gene polymorphisms and vitiligo in a Mediterranean population. Pigment Cell Melanoma Res. 2011, 24, 731–733. [Google Scholar] [CrossRef] [PubMed]
- Guarneri, F.; Asmundo, A.; Sapienza, D.; Gazzola, A.; Cannavò, S.P. Polymorphism of glutathione S-transferases M1 and T1: Susceptibility to solar keratoses in an Italian population. Clin. Exp. Dermatol. 2010, 35, 771–775. [Google Scholar] [CrossRef] [PubMed]
- Solak, B.; Karkucak, M.; Turan, H.; Ocakoğlu, G.; Özemri Sağ, Ş.; Uslu, E.; Yakut, T.; Erdem, T. Glutathione S-transferase M1 and T1 gene polymorphisms in patients with chronic plaque-type psoriasis: A case-control study. Med. Princ. Pract. 2016, 25, 155–158. [Google Scholar] [CrossRef] [PubMed]
- Minashkin, M.M.; Salnikova, L.E.; Lomonosov, K.M.; Korobko, I.V.; Tatarenko, A.O. Possible contribution of GSTP1 and other xenobiotic metabolizing genes to vitiligo susceptibility. Arch. Dermatol. Res. 2013, 305, 233–239. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Li, C.; Gao, J.; Li, K.; Gao, L.; Gao, T. Genetic polymorphisms of glutathione s-transferase and risk of vitiligo in the chinese population. J. Investig. Dermatol. 2009, 129, 2646–2652. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okayama, Y. Oxidative stress in allergic and inflammatory skin diseases. Curr. Drug Targets Inflamm. Allergy 2005, 4, 517–519. [Google Scholar] [CrossRef]
- Wiseman, H. Vitamin D is a membrane antioxidant. Ability to inhibit iron-dependent lipid peroxidation in liposomes compared to cholesterol, ergosterol and tamoxifen and relevance to anticancer action. FEBS Lett. 1993, 326, 285–288. [Google Scholar] [CrossRef] [Green Version]
- Mukhopadhyay, S.; Singh, M.; Chatterjee, M. Vitamin D3 as a modulator of cellular antioxidant defence in murine lymphoma. Nutr. Res. 2000, 20, 91–102. [Google Scholar] [CrossRef]
- Kim, G.; Bae, J.H. Vitamin D and atopic dermatitis: A systematic review and meta-analysis. Nutrition 2016, 32, 913–920. [Google Scholar] [CrossRef]
- Wright, R.J.; Cohen, R.T.; Cohen, S. The impact of stress on the development and expression of atopy. Curr. Opin. Allergy Clin. Immunol. 2005, 5, 23–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Authors [reference] | Year | Study Population | No. of Patients | Tissue(s) | Gene(s) | Therapy or Other Factors | Markers of Oxidative Stress | Main Outcome (s) |
---|---|---|---|---|---|---|---|---|
Wen et al. [17] | 2019 | Children | 45/839 AD | Cord blood | GSTT1, GSTM1 | PFAS | In-utero PFOA exposure with GSST1/M1 null genotype is associated with AD | |
Shibama et al. [18] | 2019 | Adults | 11 AD 7 HC | Urine, blood, skin | Urinary biopyrrins | Urinary biopyrrins correlate with serum IgE and TARC expression. In AD lesions, biopyrrins are strongly expressed and bilirubin oxidation augmented. | ||
Huls et al. [19] | 2018 | Children | 5685 * | Blood | GSTP1, TNF, TLR2, TLR4 | NO2 | Marginal association of a weighted genetic risk score from nine SNPs of the genes studied and its interaction with air pollution suggest the role of OS and inflammation in AD. | |
Uysal et al. [20] | 2018 | Children | 60 AD 60 HC | Blood | Serum disulphide, disulphide/native thiol ratio, disulphide/total thiol ratio | OS and impaired dTDH are related to childhood AD. dTDH could be a possible diagnostic tool to predict AD chronicity. | ||
Quist et al. [21] | 2016 | Adults | 12 AD | Dermal microdialysis | Tacrolimus 0.1% ointment, 12% ω-6 fatty acid lotion | Isoprostanes, prostaglandins 9α,11α-PGF2α and PGE2 | Eicosanoids are increased in lesional AD skin. Tacrolimus reduces OS and inflammation. No significant reduction of eicosanoids with ω-6 fatty acids. | |
Uysal et al. [22] | 2016 | Children | 73 AD 67 HC | Blood | Melatonin, NO, MDA, NO/melatonin, MDA/melatonin | Serum melatonin levels higher in AD patients, but negatively correlated with disease severity. NO, NO/melatonin and MDA/melatonin lower in AD patients than in HC. | ||
Chang et al. [23] | 2016 | Children | 476 AD 2028 HC | Placenta, blood | Prenatal maternal distress | GSH, GSSG | 11BHSD2 and GSH levels in the placenta were lowest among those who were exposed to prenatal maternal distress and later had AD. | |
Sol et al. [24] | 2016 | Children | 100 AD 40 HC | Blood | Clusterin | Clusterin levels are higher in AD patients than in HC and correlate with disease severity. | ||
Amin et al. [25] | 2015 | Children and adults | 65 AD 65 HC | Blood | MDA, Vitamin A, E and C, Na, K, Ca, Zn, Fe | Higher levels of MDA and lower levels of vitamin A, E, C and Na, K, Ca, Zn, Fe in AD patients than in HC. | ||
Sivaranjani et al. [26] | 2013 | Children and adults | 25 AD 25 HC | Blood | MDA, SOD, CAT, GPX, GSH, Vitamin A, E, C | Increased MDA and decreased enzymatic and non-enzymatic antioxidants in AD patients. | ||
Song et al. [27] | 2013 | Children | 41 AD 43 HC | Urine | PMs, UFPs | 8-OHdG | Increase of ambient UFPs causes within 24 hours an increase of urinary 8-OHdG in children with AD. | |
Peroni et al. [28] | 2012 | Children | 33 AD 23 HC | Exhaled breath condensates | Leukotriene B4, 8-isoprostane, H2O2, MDA, 4-HNE | Significant decrease of pH and increase of leukotriene B4 and 8-isoprostane in AD patients. These could be markers of airway inflammation in children with AD. | ||
Portugal-Cohen et al. [29] | 2012 | Adults | 13 AD 17 HC | Skin wash sampling | Total antioxidant scavenging capacity, uric acid | TNFalpha, IL-1alpha, IL-6 and total scavenging capacity are not different between AD patients and HC. Uric acid is decreased in lesional skin and even more in non-lesional skin of AD patients compared to HC. | ||
Toyran et al. [30] | 2012 | Children | 92 AD 70 HC | Blood | Fe, Cu, Mg, Zn | Mg and Zn decreased in AD patients. No correlation of micronutrients with AD severity. | ||
Sapuntsova et al. [31] | 2011 | Adults | 18 AD 24 HC | Skin biopsy | Thymodepressin i.m. | Free radicals, LPO, intensity of generation of free radicals, concentration of lipid peroxides, peroxidation resistance of the substrate, activity of antioxidant antiradical defense | All parameters are significantly higher in AD patients before therapy than controls; after therapy, they all significantly decrease except the intensity of generation of superoxide anion radicals, but remain significantly higher than in controls. | |
Cho et al. [32] | 2011 | Children and adults | 145 AD 267 HC | Blood | GSTM1, GSTT1 | GSTM1 null genotype is associated with AD, family history of AD, childhood onset AD and AD without other allergic diseases. There is no correlation between AD and GSTT1. | ||
Iwai et al. [33] | 2010 | Adults | 17 AD 6 HC | Stratum corneum sample | SCCP | Increased SCCP in lesional areas of AD patients vs. non-lesional areas and healthy skin. Data suggest involvement of OS in the modification of stratum corneum protein and consequently in AD pathogenesis. | ||
Oh et al. [34] | 2010 | Children | 180 AD 242 HC | Blood | Vitamin E, beta-carotene, folic acid, iron, vitamin C | Alpha tocopherol, retinol, beta carotene, vitamin C | Intake of vitamin E, beta carotene, folic acid, iron is correlated with lower risk of AD. Alpha tocopherol and retinol concentrations are negatively associated with AD. | |
Wakamatsu et al. [35] | 2010 | Children and adults | 14 AD 9 HC | Ocular brush cytology | HEL, 4-HNE | Lipid peroxidation and inflammation coexist in the conjunctiva of patient with AKC. | ||
Wang et al. [36] | 2010 | Children | 34 AD 106 HC | Cord blood | GSTM1, GSTP1 | Prenatal smoke exposure | Cotinine | GSTM1 null and GSTP1 Ile/Ile genotypes are correlated with increased risk of AD. Cotinine levels influence the genotype pattern susceptibility. |
Nakai et al. [37] | 2009 | Adults | 21 AD 20 HC | Urine | Nitrate, MDA, 8-OHdG | Urinary nitrate is higher in AD patients than in HC. Nitrate and MDA levels correlate with AD severity and extent. | ||
Chung et al. [38] | 2009 | Children | 124 AD 260 HC | Blood | GSTP1, GSTT1, GSTM1 | Total antioxidant capacity, MDA, GSH | Increased OS may play a role in AD pathogenesis. Total antioxidant capacity is lower in AD patients. | |
Hoppu et al. [39] | 2005 | Children | 13/34 AD 34 HC | Blood | Alpha tocopherol, gamma tocopherol | Serum tocopherol levels are not associated with AD. | ||
Niwa et al. [40] | 2003 | Adults | 75 AD 15 HC | Skin biopsy | DNP, SOD, 4-HNE | Carbonyl moieties levels are directly correlated with AD severity. SOD activity is high in mild AD and progressively decreases with the increase of AD severity, becoming lower than that of HC in extra-severe AD. | ||
Safronova et al. [41] | 2003 | Children | 258 AD 157 HC | Blood | GSTP1 | Both homozygotes GSTP1 (Ile 105 and Val 105) are at high risk of AD development (near significant differences), while the GSTP1-Ile105/Val105 genotype is significantly associated to resistance to AD. | ||
Tsukahara et al. [42] | 2003 | Children | 32 AD 30 HC | Urine | Systemic antibiotics, topical antiseptics and corticosteroids | Pentosidine, pyrraline, 8-OHdG | Pentosidine is higher during acute exacerbation of AD compared to stable AD and HC. 8-OHdG is increased in all phases of AD. Pentosidine levels are correlated with 8-OHdG and OS. In AD patients with acute exacerbation, pentosidine and 8-OHdG decrease after 7-9 days of treatment. | |
Vavilin et al. [43] | 2003 | Children | 126 AD 199 HC | Blood | GSTM1, GSTT1, GSTP1 | Significant association of AD with the GSTT1 null allele and the GSTM1 null-T1 null-P1 Ile/Ile haplotype, almost significant with the GSTM1 active-T1 null-P1 Ile/Ile, GSTM1 null-T1 null-P1 Ile/Val and GSTM1 null-T1 active-P1 Val/Val haplotypes. | ||
Antille et al. [44] | 2002 | Children and adults | 14 AD 14 HC | Skin scraping and biopsy | Alpha-tocopherol, lipid peroxides | In non lesional skin of AD patients, alpha-tocopherol is higher and lipid peroxides are lower than in HC, and there is an adaptive response to chronic inflammation. | ||
Omata et al. [45] | 2001 | Children | 27 AD 25 HC | Urine | 8-OHdG, nitrite/nitrate, selenium | Impaired homeostasis of oxygen/nitrogen radicals and increased OS are involved in the pathophysiology of AD. | ||
Tsuboi et al. [46] | 1998 | Children and adults | 17 AD 17 HC | Urine, blood | 8-OHdG | 8-OHdG levels are an index of biochemical damage in AD and are positively correlated with log IgE. | ||
Carlsen et al. [47] | 1997 | Children | 34 AD 67 HC | Blood | s-MPO | ECP but not MPO reflect disease activity of AD. | ||
Kristjansson et al. [48] | 1994 | Children | 14 AD 15 HC | Blood | MPO | ECP is a good marker of ongoing asthma or AD. | ||
Polla et al. [49] | 1992 | Children and adults | 9 AD 9 HC | Blood | PMA OZ | O2– | PBMs from AD patients are primed for O2– production and may participate, through this way, in AD pathogenesis. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bertino, L.; Guarneri, F.; Cannavò, S.P.; Casciaro, M.; Pioggia, G.; Gangemi, S. Oxidative Stress and Atopic Dermatitis. Antioxidants 2020, 9, 196. https://doi.org/10.3390/antiox9030196
Bertino L, Guarneri F, Cannavò SP, Casciaro M, Pioggia G, Gangemi S. Oxidative Stress and Atopic Dermatitis. Antioxidants. 2020; 9(3):196. https://doi.org/10.3390/antiox9030196
Chicago/Turabian StyleBertino, Lucrezia, Fabrizio Guarneri, Serafinella Patrizia Cannavò, Marco Casciaro, Giovanni Pioggia, and Sebastiano Gangemi. 2020. "Oxidative Stress and Atopic Dermatitis" Antioxidants 9, no. 3: 196. https://doi.org/10.3390/antiox9030196
APA StyleBertino, L., Guarneri, F., Cannavò, S. P., Casciaro, M., Pioggia, G., & Gangemi, S. (2020). Oxidative Stress and Atopic Dermatitis. Antioxidants, 9(3), 196. https://doi.org/10.3390/antiox9030196