Oxidative Stress and Cancer: Chemopreventive and Therapeutic Role of Triphala
Abstract
:1. Introduction
2. Oxidative Stress and Cancer
3. Triphala: A Formulation of Three Fruits
4. Antioxidant Effects of Triphala
4.1. In Vitro Studies
4.2. In Vivo Studies
5. Prooxidant Nature of Triphala
6. Chemopreventive and Chemotherapeutic Effects
6.1. In Vitro Studies
6.2. In Vivo Studies
7. Immunomodulatory Effect of Triphala
8. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2019. CA Cancer J. Clin. 2019, 69, 7–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Narod, S.A.; Iqbal, J.; Miller, A.B. Why have breast cancer mortality rates declined? J. Cancer Policy 2015, 5, 8–17. [Google Scholar] [CrossRef] [Green Version]
- Huang, C.Y.; Ju, D.T.; Chang, C.F.; Reddy, P.M.; Velmurugan, B.K. A review on the effects of current chemotherapy drugs and natural agents in treating non-small cell lung cancer. Biomedicine 2017, 7, 12–23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bouayed, J.; Bohn, T. Exogenous antioxidants-Double-edged swords in cellular redox state: Health beneficial effects at physiologic doses versus deleterious effects at high doses. Oxid. Med. Cell. Longev. 2010, 3, 228–237. [Google Scholar] [CrossRef] [PubMed]
- Anand, P.; Kunnumakkara, A.B.; Sundaram, C.; Harikumar, K.B.; Tharakan, S.T.; Lai, O.S.; Sung, B.; Aggarwal, B.B. Cancer is a preventable disease that requires major lifestyle changes. Pharm. Res. 2008, 25, 2097–2116. [Google Scholar] [CrossRef]
- Prasad, S.; Gupta, S.C.; Tyagi, A.K. Reactive oxygen species (ROS) and cancer: Role of antioxidative nutraceuticals. Cancer Lett. 2017, 387, 95–105. [Google Scholar] [CrossRef]
- Hamanaka, R.B.; Chandel, N.S. Mitochondrial reactive oxygen species regulate cellular signaling and dictate biological outcomes. Trends Biochem. Sci. 2010, 35, 505–513. [Google Scholar] [CrossRef] [Green Version]
- Turrens, J.F. Mitochondrial formation of reactive oxygen species. J. Physiol. 2003, 552, 335–344. [Google Scholar] [CrossRef]
- Muller, F.L.; Liu, Y.H.; Van Remmen, H. Complex III releases superoxide to both sides of the inner mitochondrial membrane. J. Biol. Chem. 2004, 279, 49064–49073. [Google Scholar] [CrossRef] [Green Version]
- Bedard, K.; Krause, K.H. The NOX family of ROS-generating NADPH oxidases: Physiology and pathophysiology. Physiol. Rev. 2007, 87, 245–313. [Google Scholar] [CrossRef]
- Fang, F.C. Antimicrobial reactive oxygen and nitrogen species: Concepts and controversies. Nat. Rev. Microbiol. 2004, 2, 820–832. [Google Scholar] [CrossRef] [PubMed]
- Di Meo, S.; Reed, T.T.; Venditti, P.; Victor, V.M. Role of ROS and RNS Sources in Physiological and Pathological Conditions. Oxid. Med. Cell. Longev. 2016, 2016, 1245049. [Google Scholar] [CrossRef] [PubMed]
- Giudice, A.; Montella, M. Activation of the Nrf2-ARE signaling pathway: A promising strategy in cancer prevention. Bioessays 2006, 28, 169–181. [Google Scholar] [CrossRef] [PubMed]
- Giudice, A.; Arra, C.; Turco, M.C. Review of molecular mechanisms involved in the activation of the Nrf2-ARE signaling pathway by chemopreventive agents. Methods Mol. Biol. 2010, 647, 37–74. [Google Scholar] [CrossRef] [PubMed]
- Rojo de la Vega, M.; Chapman, E.; Zhang, D.D. NRF2 and the Hallmarks of Cancer. Cancer Cell 2018, 34, 21–43. [Google Scholar] [CrossRef] [PubMed]
- Giudice, A.; Barbieri, A.; Bimonte, S.; Cascella, M.; Cuomo, A.; Crispo, A.; D’Arena, G.; Galdiero, M.; Della Pepa, M.E.; Botti, G.; et al. Dissecting the prevention of estrogen-dependent breast carcinogenesis through Nrf2-dependent and independent mechanisms. Onco. Targets. Ther. 2019, 12, 4937–4953. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.J.; Sun, Z.; Villeneuve, N.F.; Zhang, S.; Zhao, F.; Li, Y.; Chen, W.; Yi, X.; Zheng, W.; Wondrak, G.T.; et al. Nrf2 enhances resistance of cancer cells to chemotherapeutic drugs, the dark side of Nrf2. Carcinogenesis 2008, 29, 1235–1243. [Google Scholar] [CrossRef] [Green Version]
- Satoh, H.; Moriguchi, T.; Takai, J.; Ebina, M.; Yamamoto, M. Nrf2 prevents initiation but accelerates progression through the Kras signaling pathway during lung carcinogenesis. Cancer Res. 2013, 73, 4158–4168. [Google Scholar] [CrossRef] [Green Version]
- DeNicola, G.M.; Karreth, F.A.; Humpton, T.J.; Gopinathan, A.; Wei, C.; Frese, K.; Mangal, D.; Yu, K.H.; Yeo, C.J.; Calhoun, E.S.; et al. Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis. Nature 2011, 475, 106–109. [Google Scholar] [CrossRef]
- Wang, H.; Liu, X.; Long, M.; Huang, Y.; Zhang, L.; Zhang, R.; Zheng, Y.; Liao, X.; Wang, Y.; Liao, Q.; et al. NRF2 activation by antioxidant antidiabetic agents accelerates tumor metastasis. Sci. Transl. Med. 2016, 8, 334–351. [Google Scholar] [CrossRef] [Green Version]
- Choi, B.; Kwak, M. Shadows of NRF2 in cancer: Resistance to chemotherapy. Curr. Opin. Toxicol. 2016, 1, 20–28. [Google Scholar] [CrossRef]
- Valko, M.; Rhodes, C.J.; Moncol, J.; Izakovic, M.; Mazur, M. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem. Biol. Interact. 2006, 160, 1–40. [Google Scholar] [CrossRef] [PubMed]
- Pramanik, K.C.; Boreddy, S.R.; Srivastava, S.K. Role of mitochondrial electron transport chain complexes in capsaicin mediated oxidative stress leading to apoptosis in pancreatic cancer cells. PLoS ONE 2011, 6, e20151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prasad, S.; Gupta, S.C.; Tyagi, A.K.; Aggarwal, B.B. Curcumin, a component of golden spice: From bedside to bench and back. Biotechnol. Adv. 2014, 32, 1053–1064. [Google Scholar] [CrossRef]
- Prasad, S.; Kalra, N.; Singh, M.; Shukla, Y. Protective effects of lupeol and mango extract against androgen induced oxidative stress in Swiss albino mice. Asian J. Androl. 2008, 10, 313–318. [Google Scholar] [CrossRef]
- Aggarwal, B.B.; Prasad, S.; Reuter, S.; Kannappan, R.; Yadev, V.R.; Park, B.; Kim, J.H.; Gupta, S.C.; Phromnoi, K.; Sundaram, C.; et al. Identification of novel anti-inflammatory agents from Ayurvedic medicine for prevention of chronic diseases: “reverse pharmacology” and “bedside to bench” approach. Curr. Drug Targets 2011, 12, 1595–1653. [Google Scholar] [CrossRef] [Green Version]
- Garodia, P.; Ichikawa, H.; Malani, N.; Sethi, G.; Aggarwal, B.B. From ancient medicine to modern medicine: ayurvedic concepts of health and their role in inflammation and cancer. J. Soc. Integr. Oncol. 2007, 5, 25–37. [Google Scholar] [CrossRef] [Green Version]
- Shukla, S.D.; Bhatnagar, M.; Khurana, S. Critical evaluation of ayurvedic plants for stimulating intrinsic antioxidant response. Front. Neurosci. 2012, 6, 112. [Google Scholar] [CrossRef] [Green Version]
- Sruthi, C.V.; Sindhu, A. A comparison of the antioxidant property of five Ayurvedic formulations commonly used in the management of vata vyadhis. J. Ayurveda Integr. Med. 2012, 3, 29–32. [Google Scholar] [CrossRef] [Green Version]
- Shyni, G.L.; Ratheesh, M.; Sindhu, G.; Helen, A. Anti-inflammatory and antioxidant effects of Jeevaneeya Rasayana: An ayurvedic polyherbal formulation on acute and chronic models of inflammation. Immunopharmacol. Immunotoxicol. 2010, 32, 569–575. [Google Scholar] [CrossRef]
- Ratheesh, M.; Sandya, S.; Pramod, C.; Asha, S.; Svenia, J.P.; Premlal, S.; GrishKumar, B. Anti-inflammatory and antioxidant effect of Kerabala: A value-added ayurvedic formulation from virgin coconut oil inhibits pathogenesis in adjuvant-induced arthritis. Inflammopharmacology 2017, 25, 41–53. [Google Scholar] [CrossRef] [PubMed]
- Samarakoon, S.M.; Chandola, H.M.; Shukla, V.J. Evaluation of antioxidant potential of Amalakayas Rasayana: A polyherbal Ayurvedic formulation. Int. J. Ayurveda Res. 2011, 2, 23–28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mathew, M.; Subramanian, S. In vitro screening for anti-cholinesterase and antioxidant activity of methanolic extracts of ayurvedic medicinal plants used for cognitive disorders. PLoS ONE 2014, 9, e86804. [Google Scholar] [CrossRef] [PubMed]
- Nariya, M.; Shukla, V.; Jain, S.; Ravishankar, B. Comparison of enteroprotective efficacy of triphala formulations (Indian Herbal Drug) on methotrexate-induced small intestinal damage in rats. Phytother. Res. 2009, 23, 1092–1098. [Google Scholar] [CrossRef] [PubMed]
- Kumar, N.; Khurana, S.M.P. Phytochemistry and medicinal potential of the Terminalia bellirica Roxb. (Bahera). Indian J. Nat. Prod. Resour. 2018, 9, 97–107. [Google Scholar]
- Habib-ur-Rehman; Yasin, K.A.; Choudhary, M.A.; Khaliq, N.; Atta-ur-Rahman; Choudhary, M.I.; Malik, S. Studies on the chemical constituents of Phyllanthus emblica. Nat. Prod. Res. 2007, 21, 775–781. [Google Scholar] [CrossRef]
- Hazra, B.; Sarkar, R.; Biswas, S.; Mandal, N. Comparative study of the antioxidant and reactive oxygen species scavenging properties in the extracts of the fruits of Terminalia chebula, Terminalia belerica and Emblica officinalis. BMC Complement. Altern. Med. 2010, 10, 20. [Google Scholar] [CrossRef] [Green Version]
- Chang, C.L.; Lin, C.S. Phytochemical Composition, Antioxidant Activity, and Neuroprotective Effect of Terminalia chebula Retzius Extracts. Evid.-Based Complement. Altern. Med. 2012, 2012, 125247. [Google Scholar] [CrossRef] [Green Version]
- Singh, M.P.; Gupta, A.; Sisodia, S.S. A Comparative Pharmacognostic Evaluation of Different Extracts of Terminalia bellerica Roxb. Fruit. J. Res. Med. Dent. Sci. 2018, 6, 213–218. [Google Scholar]
- Poltanov, E.A.; Shikov, A.N.; Dorman, H.J.; Pozharitskaya, O.N.; Makarov, V.G.; Tikhonov, V.P.; Hiltunen, R. Chemical and antioxidant evaluation of Indian gooseberry (Emblica officinalis Gaertn., syn. Phyllanthus emblica L.) supplements. Phytother. Res. 2009, 23, 1309–1315. [Google Scholar] [CrossRef]
- Shilpa, S.; Venkatesha Murthy, C.G. Understanding personality from Ayurvedic perspective for psychological assessment: A case. AYU 2011, 32, 12–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peterson, C.T.; Denniston, K.; Chopra, D. Therapeutic Uses of Triphala in Ayurvedic Medicine. J. Altern. Complement. Med. 2017, 23, 607–614. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, R.K.; Dash, B. Carka Samhita; Chowkamba Sanskrit Series Office: Varanasi, India, 1998; Volume II. [Google Scholar]
- Baliga, M.S. Triphala, Ayurvedic formulation for treating and preventing cancer: A review. J. Altern. Complement. Med. 2010, 16, 1301–1308. [Google Scholar] [CrossRef] [PubMed]
- Takauji, Y.; Miki, K.; Mita, J.; Hossain, M.N.; Yamauchi, M.; Kioi, M.; Ayusawa, D.; Fujii, M. Triphala, a formulation of traditional Ayurvedic medicine, shows protective effect against X-radiation in HeLa cells. J. Biosci. 2016, 41, 569–575. [Google Scholar] [CrossRef]
- Sandhya, T.; Lathika, K.M.; Pandey, B.N.; Bhilwade, H.N.; Chaubey, R.C.; Priyadarsini, K.I.; Mishra, K.P. Protection against radiation oxidative damage in mice by Triphala. Mutat. Res. 2006, 609, 17–25. [Google Scholar] [CrossRef]
- Parveen, R.; Shamsi, T.N.; Singh, G.; Athar, T.; Fatima, S. Phytochemical analysis and in-vitro biochemical characterization of aqueous and methanolic extract of Triphala, a conventional herbal remedy. Biotechnol. Rep. 2018, 17, 126–136. [Google Scholar] [CrossRef]
- Naik, G.H.; Priyadarsini, K.I.; Bhagirathi, R.G.; Mishra, B.; Mishra, K.P.; Banavalikar, M.M.; Mohan, H. In vitro antioxidant studies and free radical reactions of triphala, an ayurvedic formulation and its constituents. Phytother. Res. 2005, 19, 582–586. [Google Scholar] [CrossRef]
- Varma, S.R.; Sivaprakasam, T.O.; Mishra, A.; Kumar, L.M.; Prakash, N.S.; Prabhu, S.; Ramakrishnan, S. Protective Effects of Triphala on Dermal Fibroblasts and Human Keratinocytes. PLoS ONE 2016, 11, e0145921. [Google Scholar] [CrossRef]
- Baskaran, U.L.; Martin, S.J.; Mahaboobkhan, R.; Prince, S.E. Protective role of Triphala, an Indian traditional herbal formulation, against the nephrotoxic effects of bromobenzene in Wistar albino rats. J. Integr. Med. 2015, 13, 115–121. [Google Scholar] [CrossRef]
- Sharma, A.; Sharma, K.K. Chemoprotective role of triphala against 1,2-dimethylhydrazine dihydrochloride induced carcinogenic damage to mouse liver. Indian J. Clin. Biochem. 2011, 26, 290–295. [Google Scholar] [CrossRef] [Green Version]
- Gupta, S.K.; Kalaiselvan, V.; Srivastava, S.; Agrawal, S.S.; Saxena, R. Evaluation of anticataract potential of Triphala in selenite-induced cataract: In vitro and in vivo studies. J. Ayurveda Integr. Med. 2010, 1, 280–286. [Google Scholar] [CrossRef] [Green Version]
- Srikumar, R.; Parthasarathy, N.J.; Manikandan, S.; Narayanan, G.S.; Sheeladevi, R. Effect of Triphala on oxidative stress and on cell-mediated immune response against noise stress in rats. Mol. Cell Biochem. 2006, 283, 67–74. [Google Scholar] [CrossRef] [PubMed]
- Deep, G.; Dhiman, M.; Rao, A.R.; Kale, R.K. Chemopreventive potential of Triphala (a composite Indian drug) on benzo(a)pyrene induced forestomach tumorigenesis in murine tumor model system. J. Exp. Clin. Cancer Res. 2005, 24, 555–563. [Google Scholar] [PubMed]
- Sandhya, T.; Lathika, K.M.; Pandey, B.N.; Mishra, K.P. Potential of traditional ayurvedic formulation, Triphala, as a novel anticancer drug. Cancer Lett. 2006, 231, 206–214. [Google Scholar] [CrossRef] [PubMed]
- Sandhya, T.; Mishra, K.P. Cytotoxic response of breast cancer cell lines, MCF 7 and T 47 D to triphala and its modification by antioxidants. Cancer Lett. 2006, 238, 304–313. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Sahu, R.P.; Srivastava, S.K. Triphala inhibits both in vitro and in vivo xenograft growth of pancreatic tumor cells by inducing apoptosis. BMC Cancer 2008, 8, 294. [Google Scholar] [CrossRef] [Green Version]
- Tsering, J.; Hu, X. Triphala Suppresses Growth and Migration of Human Gastric Carcinoma Cells In Vitro and in a Zebrafish Xenograft Model. Biomed. Res. Int. 2018, 2018, 7046927. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Li, Y.; Hu, X. Chebulinic acid derived from triphala is a promising antitumour agent in human colorectal carcinoma cell lines. BMC Complement. Altern. Med. 2018, 18, 342. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Wang, M.; Tsering, J.; Li, H.; Li, S.; Li, Y.; Liu, Y.; Hu, X. An Integrated Study on the Antitumor Effect and Mechanism of Triphala Against Gynecological Cancers Based on Network Pharmacological Prediction and In Vitro Experimental Validation. Integr. Cancer Ther. 2018, 17, 894–901. [Google Scholar] [CrossRef] [Green Version]
- Cheriyamundath, S.; Mahaddalkar, T.; Save, S.N.; Choudhary, S.; Hosur, R.V.; Lopus, M. Aqueous extract of Triphala inhibits cancer cell proliferation through perturbation of microtubule assembly dynamics. Biomed. Pharmacother. 2018, 98, 76–81. [Google Scholar] [CrossRef]
- Vadde, R.; Radhakrishnan, S.; Reddivari, L.; Vanamala, J.K. Triphala Extract Suppresses Proliferation and Induces Apoptosis in Human Colon Cancer Stem Cells via Suppressing c-Myc/Cyclin D1 and Elevation of Bax/Bcl-2 Ratio. Biomed. Res. Int. 2015, 2015, 649263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaur, S.; Michael, H.; Arora, S.; Harkonen, P.L.; Kumar, S. The in vitro cytotoxic and apoptotic activity of Triphala--an Indian herbal drug. J. Ethnopharmacol. 2005, 97, 15–20. [Google Scholar] [CrossRef] [PubMed]
- Srikumar, R.; Jeya Parthasarathy, N.; Sheela Devi, R. Immunomodulatory activity of triphala on neutrophil functions. Biol. Pharm. Bull. 2005, 28, 1398–1403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Horani, A.; Shoseyov, D.; Ginsburg, I.; Mruwat, R.; Doron, S.; Amer, J.; Safadi, R. Triphala (PADMA) extract alleviates bronchial hyperreactivity in a mouse model through liver and spleen immune modulation and increased anti-oxidative effects. Ther. Adv. Respir. Dis. 2012, 6, 199–210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phetkate, P.; Kummalue, T.; Yaowalak, U.-P.; Kietinun, S. Significant increase in cytotoxic T lymphocytes and natural killer cells by triphala: A clinical phase I study. Evid.-Based Complement. Altern. Med. 2012, 2012, 239856. [Google Scholar] [CrossRef] [Green Version]
- Rayudu, V.; Raju, A.B. Effect of Triphala on dextran sulphate sodium-induced colitis in rats. AYU 2014, 35, 333–338. [Google Scholar] [CrossRef] [Green Version]
- Kalaiselvan, S.; Rasool, M.K. The anti-inflammatory effect of triphala in arthritic-induced rats. Pharm. Biol. 2015, 53, 51–60. [Google Scholar] [CrossRef] [Green Version]
- Sabina, E.P.; Rasool, M. An in vivo and in vitro potential of Indian ayurvedic herbal formulation Triphala on experimental gouty arthritis in mice. Vascul. Pharmacol. 2008, 48, 14–20. [Google Scholar] [CrossRef]
- Jagetia, G.C.; Malagi, K.J.; Baliga, M.S.; Venkatesh, P.; Veruva, R.R. Triphala, an ayurvedic rasayana drug, protects mice against radiation-induced lethality by free-radical scavenging. J. Altern. Complement. Med. 2004, 10, 971–978. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Yi, J. Cancer cell killing via ROS: to increase or decrease, that is the question. Cancer Biol. Ther. 2008, 7, 1875–1884. [Google Scholar] [CrossRef]
- Wang, L.; Leite de Oliveira, R.; Huijberts, S.; Bosdriesz, E.; Pencheva, N.; Brunen, D.; Bosma, A.; Song, J.Y.; Zevenhoven, J.; Los-de Vries, G.T.; et al. An Acquired Vulnerability of Drug-Resistant Melanoma with Therapeutic Potential. Cell 2018, 173, 1413–1425. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Girdhani, S.; Bhosle, S.M.; Thulsidas, S.A.; Kumar, A.; Mishra, K.P. Potential of radiosensitizing agents in cancer chemo-radiotherapy. J. Cancer Res. Ther. 2005, 1, 129–131. [Google Scholar] [CrossRef] [PubMed]
- Birla, N.; Das, P.K. Phytochemical and anticarcinogenic evaluation of Triphala powder extract, against melanoma cell line induced skin cancer in rats. Pharm. Biol. Eval. 2016, 3, 366–370. [Google Scholar]
- Lu, K.; Chakroborty, D.; Sarkar, C.; Lu, T.; Xie, Z.; Liu, Z.; Basu, S. Triphala and its active constituent chebulinic acid are natural inhibitors of vascular endothelial growth factor-a mediated angiogenesis. PLoS ONE 2012, 7, e43934. [Google Scholar] [CrossRef] [Green Version]
- Aher, V.; Wahi, A. Immunomodulatory Activity of Alcohol Extract of Terminalia chebula Retz Combretaceae. Trop. J. Pharm. Res. 2011, 10, 567–575. [Google Scholar] [CrossRef] [Green Version]
- Saraphanchotiwitthaya, A.; Sripalakit, P.; Ingkaninan, K. Effects of Terminalia bellerica Roxb. methanolic extract on mouse immune response in vitro. Maejo Int. J. Sci. Technol. 2008, 2, 400–407. [Google Scholar]
- Suja, R.S.; Nair, A.M.C.; Sujith, S.; Preethy, J.; Deepa, A.K. Evaluation of immunomodulatory potential’ of emblica officinalis fruit pulp extract in mice. Indian J. Anim. Res. 2009, 43, 103–106. [Google Scholar]
- Neuhouser, M.L.; Barnett, M.J.; Kristal, A.R.; Ambrosone, C.B.; King, I.B.; Thornquist, M.; Goodman, G.G. Dietary supplement use and prostate cancer risk in the Carotene and Retinol Efficacy Trial. Cancer Epidemiol. Biomark. Prev. 2009, 18, 2202–2206. [Google Scholar] [CrossRef] [Green Version]
- Goodman, G.E.; Thornquist, M.D.; Balmes, J.; Cullen, M.R.; Meyskens, F.L., Jr.; Omenn, G.S.; Valanis, B.; Williams, J.H., Jr. The Beta-Carotene and Retinol Efficacy Trial: incidence of lung cancer and cardiovascular disease mortality during 6-year follow-up after stopping beta-carotene and retinol supplements. J. Natl. Cancer Inst. 2004, 96, 1743–1750. [Google Scholar] [CrossRef] [Green Version]
- Wiel, C.; Le Gal, K.; Ibrahim, M.X.; Jahangir, C.A.; Kashif, M.; Yao, H.; Ziegler, D.V.; Xu, X.; Ghosh, T.; Mondal, T.; et al. BACH1 Stabilization by Antioxidants Stimulates Lung Cancer Metastasis. Cell 2019, 178, 330–345. [Google Scholar] [CrossRef]
Effects | Studies | References |
---|---|---|
ROS scavenging | Eliminates X-radiation-induced ROS generation in HeLa cells. | [45] |
Quenches γ-radiation-induced free radicals. | [46] | |
Scavenges free radicals comparable with ascorbic acid. | [47] | |
Scavenges free radicals such as DPPH and superoxide. | [48] | |
Antioxidant enzymes | Increases expression of SOD-2 in HDF or HaCaT skin cells. | [49] |
Restores CAT, SOD, GST, GPx and GSH in bromobenzene treated rat kidney. | [50] | |
Prevents peroxidative damage by increasing GSH and GST and decreasing LPO in DMH treated mouse liver. | [51] | |
Restores GSH, CAT, SOD, GPx, and GST in cataract mouse model. | [52] | |
Restores GSH content and decreases LPO in MTX-induced small intestinal damage in rats. | [34] | |
Prevents noise-stress induced decrease in SOD, CAT, GPx, ascorbic acid, and increase in LPO in plasma and thymus tissues. | [53] | |
Inhibits γ-radiation-induced lipid peroxidation in rat liver microsomes. | [48] | |
Radioprotective | Prevents γ-radiation-induced DNA damage in HeLa cells. | [45] |
Prevents DNA damage in blood leukocytes and splenocytes of mice exposed with whole body γ-radiation. | [46] | |
Chemopreventive | Reduces B(a)P-induced forestomach papillomagenesis in mice at a dose of 2.5% and 5% in diet. | [54] |
Prooxidant | Increases ROS level and induces apoptosis in breast cancer MCF-7 and barcl-95 cells. | [55] |
Induces ROS and inhibits proliferation in MCF 7 and T47D breast cancer cells. | [56] | |
Induces apoptosis and phosphorylation of p53 and ERK through ROS generation in Capan-2 cancer cells. | [57] | |
Therapeutic | Decreases survival and induces apoptosis in Capan-2 pancreatic cells cancer with an IC50 of 50 µg/mL. | [57] |
Inhibits gastric cancer cell proliferation and suppresses cell migration in vitro. | [58] | |
Exerts anti-proliferative, apoptotic and anti-migratory effects in colon cancer cells. | [59] | |
Inhibits proliferation of gynecological cancers cell with IC50 values of 98.28–101.23 µg/mL against SKOV-3, HeLa, and HEC-1B cells. | [60] | |
Inhibits proliferation of HeLa, PANC-1, and MDA-MB-231 cells and suppresses the clonogenicity of HeLa cells. | [61] | |
Inhibits proliferation of HCT116 and HCCSCs cells independent of p53 status. | [62] | |
Inhibits colony formation and viability of breast cancer MCF-7 cells with wild type p53, which was more sensitive | [56] | |
Induces cytotoxicity in Shionogi 115 and MCF-7 breast cancer cells and PC-3 and DU-145 prostate cancer cells. | [63] | |
Oral administration at 50–100 mg/kg dose suppresses growth of Capan-2 pancreatic tumor-xenograft. | [57] | |
Inhibits xenograft growth and metastasis of transplanted gastric carcinoma cells in vivo zebrafish xenograft model. | [58] | |
Oral feeding to mice at 40 mg/kg inhibits barcl-95 tumor growth transplanted in nude mice. | [55] | |
Immunomodulatory | Stimulates neutrophil functions in the immunized rats and prevents stress-induced suppression in the neutrophil functions. | [64] |
Prevents the noise-stress induced changes in cell-mediated immune response in rats. | [53] | |
Ameliorates functional and histological ovalbumin-induced bronchial hyperreactivity and increases CD4 counts in lung and spleen. | [65] | |
Increases cytotoxic T cells and natural killer cells in healthy human volunteers. | [66] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prasad, S.; Srivastava, S.K. Oxidative Stress and Cancer: Chemopreventive and Therapeutic Role of Triphala. Antioxidants 2020, 9, 72. https://doi.org/10.3390/antiox9010072
Prasad S, Srivastava SK. Oxidative Stress and Cancer: Chemopreventive and Therapeutic Role of Triphala. Antioxidants. 2020; 9(1):72. https://doi.org/10.3390/antiox9010072
Chicago/Turabian StylePrasad, Sahdeo, and Sanjay K. Srivastava. 2020. "Oxidative Stress and Cancer: Chemopreventive and Therapeutic Role of Triphala" Antioxidants 9, no. 1: 72. https://doi.org/10.3390/antiox9010072