A New Black Elderberry Dye Enriched in Antioxidants Designed for Healthy Sweets Production
Abstract
:1. Introduction
2. Material and Methods
2.1. Raw Material
2.2. Preparing of Black Elder Dyes
2.3. Application of Black Elderberry Dyes in Jellies Preparation
2.4. Analysis of Polyphenol Profile of Raw Materials Performed by UPLC Method
2.4.1. Sample Preparation
2.4.2. Analysis Parameters
2.4.3. Qualitative Analysis
2.4.4. Quantitative Analysis
2.5. Antioxidant Properties of Obtained Dyes
2.5.1. Ferric Reducing/Antioxidant Power Assay
2.5.2. DPPH Radical Scavenging Activity
2.5.3. Total Phenolic Content
2.6. PCL Assay
2.7. Statistical Analysis
3. Results and Discussion
3.1. Raw Materials Comparison by UPLC
3.2. Antioxidant Activity of Black Elder Dyes
3.3. The Effect of Black Elder Dye on Antioxidant Activity of Jellies
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Lee, J.; Finn, C.E. Anthocyanins and other polyphenolics in American elderberry (Sambucus canadensis) and European elderberry (S. nigra) cultivars. J. Sci. Food Agric. 2007, 87, 2665–2675. [Google Scholar] [CrossRef] [PubMed]
- Finn, C.E.; Thomas, A.L.; Byers, P.L.; Serçe, S. Evaluation of American (Sambucus canadensis) and European (S. nigra) elderberry genotypes grown in diverse environments and implications for cultivar development. Hortscience 2008, 43, 1385–1391. [Google Scholar] [CrossRef]
- Milbury, P.E.; Cao, G.; Prior, R.L.; Blumberg, J. Bioavailability of elderberry anthocyanins. Mech. Ageing Dev. 2002, 123, 997–1006. [Google Scholar] [CrossRef]
- Ozgen, M.; Scheerens, J.C.; Reese, R.N.; Miller, R.A. Total phenolic, anthocyanin contents and antioxidant capacity of selected elderberry (Sambucus canadensis L.) accessions. Pharmacogn. Mag. 2010, 6, 198–203. [Google Scholar] [CrossRef] [PubMed]
- Schmitzer, V.; Stampar, F.; Veberic, R. European elderberry (Sambucus Nigra L.) and American Elderberry (Sambucus Canadensis L.): Botanical, chemical and health properties of flowers, berries and their products. In Berries: Properties, Consumption and Nutrition, 1st ed.; Tuberoso, C., Ed.; Nova Biomedical: New York, NY, USA, 2012; Chapter VI; pp. 127–148. [Google Scholar]
- Veberic, R.; Jakopic, J.; Stampar, F.; Schmitzer, V. European elderberry (Sambucus nigra L.) rich in sugars, oganic acids, anthocyanins and selected polyphenols. Food Chem. 2009, 114, 511–515. [Google Scholar] [CrossRef]
- Duymuş, H.G.; Göger, F.; Başer, K.H. In vitro antioxidant properties and anthocyanin compositions of elderberry extracts. Food Chem. 2014, 155, 112–119. [Google Scholar] [CrossRef] [PubMed]
- Cejpek, K.; Malouušková, I.; Konečnỳ, M.; Velíšek, J. Antioxidant activity in various prepared elderberry foods and supplements. Czech J. Food Sci. 2009, 27, 45–48. [Google Scholar] [CrossRef]
- Zakay-Rones, Z.; Thorn, E.; Wollan, T.; Wadstein, J. Randomized study of the efficacy and safety of oral elderberry extract in the treatment of influenza A and B virus infections. J. Int. Med. Res. 2004, 32, 132–140. [Google Scholar] [CrossRef]
- Sidor, A.; Gramza-Michałowska, A. Advanced research on the antioxidant and health benefit of elderberry (Sambucus nigra) in food—A review. J. Funct. Foods 2015, 18, 941–958. [Google Scholar] [CrossRef]
- Dawidowicz, A.L.; Wianowska, D.; Baraniak, B. The antioxidant properties of alcoholic extracts from Sambucus nigra L. (antioxidative properties of extracts). Food Sci. Technol. 2006, 39, 308–315. [Google Scholar]
- Thole, J.M.; Kraft, T.F.B.; Sueiro, L.A.; Kang, Y.H.; Gills, J.J.; Cuendet, M.; Pezzuto, J.M.; Seigler, D.S.; Lila, M.A. A comparative evaluation of the anticancer properties of European and American elderberry fruits. J. Med. Food 2006, 9, 498–504. [Google Scholar] [CrossRef] [PubMed]
- Kaack, K.; Christen, L.P.; Huges, M.; Eder, R. Relationship between sensory quality and volatile compounds of elderflower (Sambucus nigra L.) extracts. Eur. Food Res. Technol. 2006, 223, 57–70. [Google Scholar] [CrossRef]
- Benzie, I.F.; Strain, J.J. Ferric reducing/antioxidant power assay: Direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Methods Enzymol. 1999, 299, 15–27, PMID: 9916193. [Google Scholar] [PubMed]
- Anton, A.M.; Pintea, A.M.; Rugina, D.O.; Sconta, Z.M.; Hanganu, D.; Vlase, L.; Benedec, D. Preliminary studies on the chemical characterization and antioxidant capacity of polyphenols from Sambucus sp. Digest J. Nanomater. Biostruct. 2013, 8, 973–980. [Google Scholar]
- Singleton, V.L.; Rossi, J.A. Restricted access colorimetry of total phenolics with phosphomolybdicphosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar]
- Besco, E.; Braccioli, E.; Vertuani, S.; Ziosi, P.; Brazzo, F.; Bruni, R.; Sacchetti, G.; Manfredini, S. The use of photochemiluminescence for the measurement of the integral antioxidant capacity of baobab products. Food Chem. 2007, 102, 1352–1356. [Google Scholar] [CrossRef]
- Wu, X.; Gu, L.; Prior, R.L.; McKay, S. Characterization of anthocyanins and procyanidins in some cultivars of Ribes, Aronia, and Sambucus and their antioxidant capacity. J. Agric. Food Chem. 2004, 52, 7846–7856. [Google Scholar] [CrossRef]
- Christensen, L.P.; Knaack, K.; Frette, X.C. Selection of elderberry (Sambucus nigra L.) genotypes best suited for the preparation of elderflower extracts rich in flavonoids and phenolic acids. Eur. Food Res. Technol. 2007, 227, 293–305. [Google Scholar] [CrossRef]
- Gil, M.; Wianowska, D. Chlorogenic acids—their properties, occurrence and analysis. Ann. Univ. Mariae Curie-Skłodowska Chem. 2017, XXII, 61–103. [Google Scholar] [CrossRef]
- Ganeshpurkar, A.; Saluja, A.K. The Pharmacological Potential of Rutin. Saudi Pharm. J. 2017, 25, 149–164. [Google Scholar] [CrossRef]
- Kołodziej, B.; Drożdżal, K. Właściwości przeciwutleniające kwiatów i owoców bzu czarnego pozyskiwanego ze stanu naturalnego (Antioxidant properties of elder flowers and fruits obtained from the natural state). Żywność Nauka Technol. Jakość 2011, 4, 36–44, [In Polish]. [Google Scholar]
- Vapiana, A.; Wesolowski, M. The Phenolic Contents and Antioxidant Activities of Infusions of Sambucus nigra L. Plant Foods Hum. Nutr. 2017, 72, 82–87. [Google Scholar] [CrossRef] [PubMed]
- Devi, G.K.; Manivannan, K.; Thirumaran, G.; Rajathi, F.A.A.; Anantharaman, P. In vitro antioxidant activities of selected seaweeds from Southeast coast of India. Asian Pac. J. Trop. Med. 2011, 4, 205–211. [Google Scholar] [CrossRef] [Green Version]
No. of Sample | Gelatin Content [g] | Agar Content [g] | Water Content [mL] | Honey Content [g] | Dye Content [1 g] |
---|---|---|---|---|---|
1 | 3 | - | 51 | 5 | - |
2 | 3 | - | 50 | 5 | F |
3 | 3 | - | 50 | 5 | FL |
4 | 3 | - | 50 | 5 | F + FL |
5 | 1.5 | 1.5 | 51 | 5 | - |
6 | 1.5 | 1.5 | 50 | 5 | F |
7 | 1.5 | 1.5 | 50 | 5 | FL |
8 | 1.5 | 1.5 | 50 | 5 | F + FL |
Identified Anthocyanins | m/z | Rt | Black Elder Frozen Fruit [mg/g d.w.] | Black Elder Dried Fruit [mg/g d.w.] |
---|---|---|---|---|
Cyanidin-3-O-sambubioside-5-glucoside | 743 | 2.26 | 0.04 ± 0.00 b | 1.02 ± 0.15 a |
Cyanidin-3,5-diglucoside | 581 | 2.86 | 1.10 ± 0.05 a | 0.33 ± 0.02 b |
Cyanidin-3-O-sambubioside | 449 | 2.97 | 1.97 ± 0.02 a | 0.27 ± 0.03 b |
Cyanidin-3-O-rutinoside | 611 | 4.55 | 0.10 ± 0.00 b | 0.63 ± 0.07 b |
Total anthocyanins | 3.21 | 2.25 |
Identified Compound | m/z | Rt | Result [mg/g d.w.] |
---|---|---|---|
Neochlorogenic acid | 353 | 2.357 | 0.77 ± 0.09 b |
Chlorogenic acid | 353 | 2.983 | 2.82 ± 0.35 a |
Cryptochlorogenic acid | 353 | 3.127 | 0.21 ± 0.03 b |
Coumaroyl-quinic acid | 337 | 3.681 | 0.39 ± 0.05 b |
Quercetin di-glucoside | 625 | 3.977 | 0.18 ± 0.03 b |
Quercetin 3-rutinoside | 609 | 4.594 | 4.04 ± 0.57 a |
Quercetin 3-glucoside | 463 | 4.806 | 0.56 ± 0.06 b |
Kaempferol 3-rutinoside | 593 | 5.154 | 0.13 ± 0.01 b |
Glucuronide-rhamnoside quercetin | 623 | 5.299 | 0.95 ± 0.08 b |
Kaempferol 3-rutinoside | 447 | 5.364 | 0.25 ± 0.02 b |
Quercetin glucuronide | 477 | 5.538 | 0.26 ± 0.03 b |
Sample | FRAP [µmol TE/g] | DPPH [% inhibition] | TPC [mg GAE/g] |
---|---|---|---|
F dye | 597.46 ± 17.97 b | 68.23 ± 2.24 b | 14.68 ± 2.09 b |
FL dye | 947.98 ± 21.75 a | 96.24 ± 4.84 a | 25.34 ± 5.41 a |
F + FL dye | 849.58 ± 23.96 a | 90.11 ± 3.47 a | 19.58 ± 7.58 b |
Used Additive. | PCL-ACW [µmol AA/1g Product] | PCL-ACL [nmol Trolox/1g Product] | ACW/ACL Ratio |
---|---|---|---|
Gelatin version | |||
Control | 1.49 ± 0.34 a | 4.22 ± 0.37 a | 0.35 |
F dye | 25.75 ± 1.23 b | 5.12 ± 0.03 | 5.03 |
FL dye | 55.75 ± 0.38 c | 7.69 ± 0.11 b | 7.25 |
F + FL dye | 43.05 ± 0.68 c | 7.08 ± 0.09 | 6.08 |
Gelatin-agar version | |||
Control | 2.34 ± 1.53 a | 3.97 ± 0.34 | 0.59 |
F dye | 29.21 ± 1.85 b | 4.93 ± 0.16 | 5.92 |
FL dye | 58.38 ± 1.90 c | 7.19 ± 0.02 | 8.11 |
F + FL dye | 48.50 ± 1.30 c | 6.52 ± 0.08 | 7.43 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dżugan, M.; Pizoń, A.; Tomczyk, M.; Kapusta, I. A New Black Elderberry Dye Enriched in Antioxidants Designed for Healthy Sweets Production. Antioxidants 2019, 8, 257. https://doi.org/10.3390/antiox8080257
Dżugan M, Pizoń A, Tomczyk M, Kapusta I. A New Black Elderberry Dye Enriched in Antioxidants Designed for Healthy Sweets Production. Antioxidants. 2019; 8(8):257. https://doi.org/10.3390/antiox8080257
Chicago/Turabian StyleDżugan, Małgorzata, Aleksandra Pizoń, Monika Tomczyk, and Ireneusz Kapusta. 2019. "A New Black Elderberry Dye Enriched in Antioxidants Designed for Healthy Sweets Production" Antioxidants 8, no. 8: 257. https://doi.org/10.3390/antiox8080257
APA StyleDżugan, M., Pizoń, A., Tomczyk, M., & Kapusta, I. (2019). A New Black Elderberry Dye Enriched in Antioxidants Designed for Healthy Sweets Production. Antioxidants, 8(8), 257. https://doi.org/10.3390/antiox8080257