Green Extraction Approaches for Carotenoids and Esters: Characterization of Native Composition from Orange Peel
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Samples
2.3. Obtainment of Carotenoids Extracts
2.3.1. Conventional Extraction with Acetone
2.3.2. Ionic Liquid Extraction with [C4mim]Cl
2.3.3. Supercritical Fluid Extraction (SFE)
2.4. Determination of Native Carotenoids Composition
2.4.1. HPLC-DAD-APCI/MS Analysis
2.4.2. SFC-APCI/QqQ/MS Analysis
2.5. NMR Analysis
2.6. Statistical Analysis
3. Results and Discussion
3.1. Determination of Native Carotenoids Composition
3.1.1. HPLC-DAD-APCI/MS Analysis
3.1.2. SFE-SFC-APCI/QqQ/MS Analysis
3.2. NMR Analysis
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- FUNDECRITRUS Inventário da safra de laranja 2019/2020 do cinturão citrícola de São Paulo e Triângulo/Sudoeste Mineiro. Available online: https://www.fundecitrus.com.br/pdf/pes_relatorios/2019_05_24_Inventário_e_Estimativa_do_Cinturao_Citricola_2019-2020.pdf (accessed on 20 August 2019).
- Petry, F.C.; de Nadai, F.B.; Cristofani-Yaly, M.; Latado, R.R.; Mercadante, A.Z. Carotenoid biosynthesis and quality characteristics of new hybrids between tangor (Citrus reticulata x C. sinensis) cv. ‘Murcott’ and sweet orange (C. sinensis) cv. ‘Pêra’. Food Res. Int. 2019, 122, 461–470. [Google Scholar] [CrossRef]
- Nwachukwu, I.D.; Udenigwe, C.C.; Aluko, R.E. Lutein and zeaxanthin: Production technology, bioavailability, mechanisms of action, visual function, and health claim status. Trends Food Sci. Technol. 2016, 49, 74–84. [Google Scholar] [CrossRef]
- Rodriguez-Concepcion, M.; Avalos, J.; Bonet, M.L.; Boronat, A.; Gomez-Gomez, L.; Hornero-Mendez, D.; Limon, M.C.; Melendez-Martinez, A.J.; Olmedilla-Alonso, B.; Palou, A.; et al. A global perspective on carotenoids: Metabolism, biotechnology, and benefits for nutrition and health. Prog. Lipid Res. 2018, 70, 62–93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cicero, A.F.G.; Colletti, A. Effects of carotenoids on health: Are all the same? Results from clinical trials. Curr. Pharm. Des. 2017. [Google Scholar] [CrossRef] [PubMed]
- Mariutti, L.R.B.; Mercadante, A.Z. Carotenoid esters analysis and occurrence: What do we know so far? Arch. Biochem. Biophys. 2018, 648, 36–43. [Google Scholar] [CrossRef]
- Harrison, P.J.; Bugg, T.D.H. Enzymology of the carotenoid cleavage dioxygenases: Reaction mechanisms, inhibition and biochemical roles. Arch. Biochem. Biophys. 2014, 544, 105–111. [Google Scholar] [CrossRef]
- Saini, R.K.; Nile, S.H.; Park, S.W. Carotenoids from fruits and vegetables: Chemistry, analysis, occurrence, bioavailability and biological activities. Food Res. Int. 2015, 76, 735–750. [Google Scholar] [CrossRef]
- Petry, F.C.; Mercadante, A.Z. Composition by LC-MS/MS of New Carotenoid Esters in Mango and Citrus. J. Agric. Food Chem. 2016, 64, 8207–8224. [Google Scholar] [CrossRef]
- Giuffrida, D.; Dugo, P.; Salvo, A.; Saitta, M.; Dugo, G. Free carotenoid and carotenoid ester composition in native orange juices of different varieties. Fruits 2010, 65, 277–284. [Google Scholar] [CrossRef]
- Cazzonelli, C.I.; Pogson, B.J. Source to sink: Regulation of carotenoid biosynthesis in plants. Trends Plant Sci. 2010, 15, 266–274. [Google Scholar] [CrossRef]
- Howitt, C.A.; Pogson, B.J. Carotenoid accumulation and function in seeds and non-green tissues. Plant. Cell Environ. 2006, 29, 435–445. [Google Scholar] [CrossRef] [PubMed]
- Mercadante, A.Z.; Rodrigues, D.B.; Petry, F.C.; Mariutti, L.R.B. Carotenoid esters in foods—A review and practical directions on analysis and occurrence. Food Res. Int. 2017, 99, 830–850. [Google Scholar] [CrossRef] [PubMed]
- Lu, Q.; Huang, X.; Lv, S.; Pan, S. Carotenoid profiling of red navel orange “Cara Cara” harvested from five regions in China. Food Chem. 2017, 232, 788–798. [Google Scholar] [CrossRef] [PubMed]
- Dugo, P.; Giuffrida, D.; Herrero, M.; Donato, P.; Mondello, L. Epoxycarotenoids esters analysis in intact orange juices using two-dimensional comprehensive liquid chromatography. J. Sep. Sci. 2009, 32, 973–980. [Google Scholar] [CrossRef]
- Dahiya, S.; Kumar, A.N.; Shanthi Sravan, J.; Chatterjee, S.; Sarkar, O.; Mohan, S.V. Food waste biorefinery: Sustainable strategy for circular bioeconomy. Bioresour. Technol. 2018, 248, 2–12. [Google Scholar] [CrossRef] [PubMed]
- Utczás, M.; Cacciola, F.; Giuffrida, D.; Russo, M.; Bonaccorsi, I.; Dugo, P.; Mondello, L. Bioactives Screening in Overripe Fruits and Vegetables by Liquid Chromatography Coupled to Photodiode Array and Mass Spectrometry Detection. Food Anal. Methods 2018, 11, 3053–3070. [Google Scholar] [CrossRef]
- Choi, Y.H.; Verpoorte, R. Green solvents for the extraction of bioactive compounds from natural products using ionic liquids and deep eutectic solvents. Curr. Opin. Food Sci. 2019, 26, 87–93. [Google Scholar] [CrossRef]
- Ventura, S.P.M.; e Silva, F.A.; Quental, M.V.; Mondal, D.; Freire, M.G.; Coutinho, J.A.P. Ionic-Liquid-Mediated Extraction and Separation Processes for Bioactive Compounds: Past, Present, and Future Trends. Chem. Rev. 2017, 117, 6984–7052. [Google Scholar] [CrossRef]
- Jablonsky, M.; Skulcova, A.; Malvis, A.; Sima, J. Extraction of value-added components from food industry based and agro-forest biowastes by deep eutectic solvents. J. Biotechnol. 2018, 282, 46–66. [Google Scholar] [CrossRef]
- Murador, D.C.; de Souza Mesquita, L.M.; Vannuchi, N.; Braga, A.R.C.; de Rosso, V. V Bioavailability and biological effects of bioactive compounds extracted with natural deep eutectic solvents and ionic liquids: advantages over conventional organic solvents. Curr. Opin. Food Sci. 2019, 26, 25–34. [Google Scholar] [CrossRef]
- de Souza Mesquita, L.M.; Ventura, S.P.M.; Braga, A.R.C.; Pisani, L.P.; Dias, A.C.R.V.; de Rosso, V.V. Ionic liquid-high performance extractive approach to recover carotenoids from Bactris gasipaes fruits. Green Chem. 2019, 21, 2380–2391. [Google Scholar] [CrossRef]
- Anunciação, P.C.; Giuffrida, D.; Murador, D.C.; de Paula Filho, G.X.; Dugo, G.; Pinheiro-Sant’Ana, H.M. Identification and quantification of the native carotenoid composition in fruits from the Brazilian Amazon by HPLC–DAD–APCI/MS. J. Food Compos. Anal. 2019, 83, 103296. [Google Scholar] [CrossRef]
- Martins, P.L.G.; De Rosso, V.V. Carotenoids achieving from tomatoes discarded using ionic liquids as extracting for application in food industry. In Proceedings of the XIV Safety, Health and Environment World Congress, Brasil, Cubatão, 20–23 June 2014; 2014; pp. 35–38. [Google Scholar]
- De Rosso, V.V.; Mercadante, A.Z. HPLC–PDA–MS/MS of Anthocyanins and Carotenoids from Dovyalis and Tamarillo Fruits. J. Agric. Food Chem. 2007, 55, 9135–9141. [Google Scholar] [CrossRef] [PubMed]
- De Rosso, V.V.; Mercadante, A.Z. Carotenoid composition of two Brazilian genotypes of acerola (Malpighia punicifolia L.) from two harvests. Food Res. Int. 2005, 38, 1073–1077. [Google Scholar] [CrossRef]
- Murador, D.C.; Braga, A.R.C.; Martins, P.L.G.; Mercadante, A.Z.; de Rosso, V. V Ionic liquid associated with ultrasonic-assisted extraction: A new approach to obtain carotenoids from orange peel. Food Res. Int. 2019, 126, 108653. [Google Scholar] [CrossRef]
- Giuffrida, D.; Zoccali, M.; Arigo, A.; Cacciola, F.; Roa, C.O.; Dugo, P.; Mondello, L. Comparison of different analytical techniques for the analysis of carotenoids in tamarillo (Solanum betaceum Cav.). Arch. Biochem. Biophys. 2018, 646, 161–167. [Google Scholar] [CrossRef]
- Murillo, E.; Giuffrida, D.; Menchaca, D.; Dugo, P.; Torre, G.; Melendez-Martinez, A.J.; Mondello, L. Native carotenoids composition of some tropical fruits. Food Chem. 2013, 140, 825–836. [Google Scholar] [CrossRef]
- Giuffrida, D.; Cacciola, F.; Mapelli-Brahm, P.; Stinco, C.M.; Dugo, P.; Oteri, M.; Mondello, L.; Meléndez-Martínez, A.J. Free carotenoids and carotenoids esters composition in Spanish orange and mandarin juices from diverse varieties. Food Chem. 2019, 300, 125139. [Google Scholar] [CrossRef]
- Giuffrida, D.; Zoccali, M.; Giofrè, S.V.; Dugo, P.; Mondello, L. Apocarotenoids determination in Capsicum chinense Jacq. cv. Habanero, by supercritical fluid chromatography-triple-quadrupole/mass spectrometry. Food Chem. 2017, 231, 316–323. [Google Scholar] [CrossRef]
- Rodrigues, D.B.; Mariutti, L.R.B.; Mercadante, A.Z. Two-step cleanup procedure for the identification of carotenoid esters by liquid chromatography-atmospheric pressure chemical ionization-tandem mass spectrometry. J. Chromatogr. A 2016, 1457, 116–124. [Google Scholar] [CrossRef]
- Britton, G.; Liaaen-Jensen, S.; Pfander, H. Mass Spectrometry. In Carotenoids; Enzell, C.R., Back, S., Eds.; Birkhäuser Verlag: Basel, Switzerland, 1995; pp. 261–320. [Google Scholar]
- Delgado-Pelayo, R.; Gallardo-Guerrero, L.; Hornero-Méndez, D. Carotenoid composition of strawberry tree (Arbutus unedo L.) fruits. Food Chem. 2016, 199, 165–175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodrigues, D.B.; Mercadante, A.Z.; Mariutti, L.R.B. Marigold carotenoids: Much more than lutein esters. Food Res. Int. 2019, 119, 653–664. [Google Scholar] [CrossRef] [PubMed]
- Dugo, P.; Herrero, M.; Giuffrida, D.; Kumm, T.; Dugo, G.; Mondello, L. Application of comprehensive two-dimensional liquid chromatography to elucidate the native carotenoid composition in red orange essential oil. J. Agric. Food Chem. 2008, 56, 3478–3485. [Google Scholar] [CrossRef]
- Meléndez-Martínez, A.J.; Vicario, I.M.; Heredia, F.J. Geometrical isomers of violaxanthin in orange juice. Food Chem. 2007, 104, 169–175. [Google Scholar] [CrossRef]
- Dugo, P.; Herrero, M.; Giuffrida, D.; Ragonese, C.; Dugo, G.; Mondello, L. Analysis of native carotenoid composition in orange juice using C30 columns in tandem. J. Sep. Sci. 2008, 31, 2151–2160. [Google Scholar] [CrossRef]
- Mellado-Ortega, E.; Hornero-Méndez, D. Isolation and identification of lutein esters, including their regioisomers, in tritordeum (×Tritordeum Ascherson et Graebner) grains: Evidence for a preferential xanthophyll acyltransferase activity. Food Chem. 2012, 135, 1344–1352. [Google Scholar] [CrossRef]
- Ziegler, J.U.; Wahl, S.; Wurschum, T.; Longin, C.F.H.; Carle, R.; Schweiggert, R.M. Lutein and lutein esters in whole grain flours made from 75 genotypes of 5 triticum species grown at multiple sites. J. Agric. Food Chem. 2015, 63, 5061–5071. [Google Scholar] [CrossRef]
- Adadi, P.; Barakova, N.V.; Krivoshapkina, E.F. Selected Methods of Extracting Carotenoids, Characterization, and Health Concerns: A Review. J. Agric. Food Chem. 2018, 66, 5925–5947. [Google Scholar] [CrossRef]
- Uquiche, E.; del Valle, J.M.; Ortiz, J. Supercritical carbon dioxide extraction of red pepper (Capsicum annuum L.) oleoresin. J. Food Eng. 2004, 65, 55–66. [Google Scholar] [CrossRef]
- Giuffrida, D.; Donato, P.; Dugo, P.; Mondello, L. Recent Analytical Techniques Advances in the Carotenoids and Their Derivatives Determination in Various Matrixes. J. Agric. Food Chem. 2018, 66, 3302–3307. [Google Scholar] [CrossRef]
- Li, B.; Zhao, H.; Liu, J.; Liu, W.; Fan, S.; Wu, G.; Zhao, R. Application of ultra-high performance supercritical fluid chromatography for the determination of carotenoids in dietary supplements. J. Chromatogr. A 2015, 1425, 287–292. [Google Scholar] [CrossRef] [PubMed]
- Jumaah, F.; Plaza, M.; Abrahamsson, V.; Turner, C.; Sandahl, M. A fast and sensitive method for the separation of carotenoids using ultra-high performance supercritical fluid chromatography-mass spectrometry. Anal. Bioanal. Chem. 2016, 408, 5883–5894. [Google Scholar] [CrossRef] [PubMed]
- Durante, M.; Lenucci, M.S.; Mita, G. Supercritical carbon dioxide extraction of carotenoids from pumpkin (Cucurbita spp.): A review. Int. J. Mol. Sci. 2014, 15, 6725–6740. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zoccali, M.; Giuffrida, D.; Dugo, P.; Mondello, L. Direct online extraction and determination by supercritical fluid extraction with chromatography and mass spectrometry of targeted carotenoids from red Habanero peppers (Capsicum chinense Jacq.). J. Sep. Sci. 2017, 40, 3905–3913. [Google Scholar] [CrossRef] [PubMed]
- Zoccali, M.; Giuffrida, D.; Salafia, F.; Socaciu, C.; Skjanes, K.; Dugo, P.; Mondello, L. First Apocarotenoids Profiling of Four Microalgae Strains. Antioxidants 2019, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zoccali, M.; Giuffrida, D.; Salafia, F.; Giofrè, S.V.; Mondello, L. Carotenoids and apocarotenoids determination in intact human blood samples by online supercritical fluid extraction-supercritical fluid chromatography-tandem mass spectrometry. Anal. Chim. Acta 2018, 1032, 40–47. [Google Scholar] [CrossRef]
- Chedea, V.S.; Kefalas, P.; Socaciu, C. Patterns of Carotenoid Pigments Extracted from Two Orange Peel Wastes (Valencia and Navel var.). J. Food Biochem. 2010, 34, 101–110. [Google Scholar] [CrossRef]
- Zepka, L.Q.; Mercadante, A.Z. Degradation compounds of carotenoids formed during heating of a simulated cashew apple juice. Food Chem. 2009, 117, 28–34. [Google Scholar] [CrossRef]
- Mercadante, A.Z. Carotenoids in foods: Sources and stability during processing and storage. In Food colorants: Chemical and functional properties; Socaciu, C., Ed.; CRC Press: Boca Raton, FL, USA, 2007; pp. 213–240. [Google Scholar]
- Meléndez-Martínez, A.J.; Britton, G.; Vicario, I.M.; Heredia, F.J. The complex carotenoid pattern of orange juices from concentrate. Food Chem. 2008, 109, 546–553. [Google Scholar] [CrossRef]
- Mortensen, A.; Skibsted, L.H. Kinetics and mechanism of the primary steps of degradation of carotenoids by acid in homogeneous solution. J. Agric. Food Chem. 2000, 48, 279–286. [Google Scholar] [CrossRef]
Peak | Carotenoid | tRa (min) | λmaxb (nm) | % III/II | % AB/AII | [M+H]+ (m/z) | [M]−• (m/z) | Fragment Ions (m/z) |
---|---|---|---|---|---|---|---|---|
1 | n.i. | 7.4–8.2 | 451 | n.c. | 0 | 435 | 434 | 419, 362, 391 |
2 | (all-E)-luteoxanthin | 8.9–10.0 | 399, 422, 449 | n.c. | n.d. | 601 | n.d. | 583[M+H−18]+, 509[M+H−18−18]+, 565[M+H−92]+ |
3 | n.i. | 9.8–11.5 | 463 | n.c. | 0 | 589 | n.d. | 571 [M+H−18]+, 553 [M+H−18−18]+ |
4 | sintaxanthin | 11.1–12.8 | 417, 439, 468 | 50 | 0 | 430 | 429 | 412[M+H−18]+, 394[M+H−18−18]+, 338[M+H−92]+ |
5 | (all-E)-lutein | 14.8–17.5 | 423, 444, 472 | 56 | 0 | 551 | 568 | 551[M+H−18]+ |
6 | (all-E)-zeaxanthin | 18.2–21.7 | 423, 450, 476 | 14 | 0 | 569 | 568 | 551[M+H−18]+ |
7 | (all-E)-lutein 3-O-C4:0 | 31.2–36.3 | 418, 440, 470 | n.c. | 0 | 638 | 636 | 620[M+H−18]+, 602[M+H−18−18]+, 546[M+H−92]+, 551[M+H−4:0]+, 533[M+H−4:0−18]+, 514[M+H−4:0−18−18]+, 510[M+H−92−18−18]+ |
8 | n.i. | 37.6–42.1 | 447 | 33 | n.d. | 712 | 710 | 694 [M+H−18]+, 676 [M+H−18−18]+, 620 [M+H−92]+ |
9 | (13Z)- or (15Z)-violaxanthin-C12:0 | 39.2–44.0 | 329, 418, 438, 468 | n.c. | n.c. | 783 | n.d. | 765[M+H−18]+, 747[M+H−18−18]+, 673[M+H−92−18]+, 583[M+H−12:0]+, 565[M+H−12:0−18]+, 547[M+H−12:0−18−18]+ |
10 | (all-E)-lutein 3-O-C6:0 | 45.5–50.7 | 416, 436, 465 | n.c. | n.c. | 666 | 664 | 648[M+H−18]+, 630[M+H−18−18]+, 573[M+H−92]+, 556[M+H−92−18]+, 551[M+H−6:0]+, 538[M+H−92−18−18]+, 533[M+H−6:0−18]+ |
11 | (all-E)-lutein 3-O-C8:0 | 47.5–52.8 | 419, 441, 470 | n.c. | 0 | 696 | 694 | 678[M+H−18]+, 603[M+H−92]+, 585[M+H−92−18]+, 551[M+H−8:0]+, 533[M+H−8:0−18]+, 517[M+H−8:0−18−18]+ |
12 | (all-E)-antheraxanthin-C12:0 | 49.3–54.4 | 417, 436, 468 | n.c. | 0 | n.d. | n.d. | 749[M+H−18]+, 675[M+H−92]+, 567[M+H−12:0]+, 531[M+H−12:0−18−18]+ |
13 | (9Z)-violaxanthin-C8:0 | 50.3–54.3 | 328, 417, 436, 466 | n.c | 18 | 728 | 726 | 710[M+H−18]+, 692[M+H−18−18]+, 636[M+H−92]+, 600[M+H−92−18−18]+, 583[M+H−8:0]+, 565[M+H−8:0−18]+, 548[M+H−8:0−18−18]+ |
14 | (all-E)-α-carotene | 51.5–56.6 | 418, 446, 470 | n.c. | 0 | 537 | 536 | n.d. |
15 | (Z)-antheraxanthin-C18:0 | 53.4–58.1 | 330, 416, 436, 467 | n.c. | n.c. | 851 | n.d. | 833[M+H−18]+, 759[M+H−92]+, 741[M+H−92−18]+, 567[M+H−18:0]+, 549[M+H−18:0−18]+, 475[M+H−18:0−92]+ |
16 | (all-E)-β-carotene | 57.7–62.4 | 426, 450, 478 | 0 | 0 | 537 | 536 | 444[M+H−92]+ |
17 | (9Z)-violaxanthin-C4:0-C16:0 | 60.7–65.2 | 328, 415, 439, 466 | 59 | n.c. | n.d. | n.d. | 891[M+H−18]+, 873[M+H−18−18]+, 821[M+H−4:0]+, 653[M+H−16:0]+, 565[M+H−4:0−16:0]+ |
18 | (13Z)- or (15Z)-antheraxanthin-C12:0-C12:0 | 65.9–69.9 | 329, 416, 437, 466 | n.c. | n.c. | 949 | n.d. | 913[M+H−18−18]+, 857[M+H−92]+, 749[M+H−12:0]+, 531[M+H−12:0−12:0−18]+ |
19 | (all-E)-antheraxanthin-C10:0-C12:0 | 69.8 | 415, 441, 469 | 60 | 0 | 921 | n.d. | 903[M+H−18]+, 885[M+H−18−18]+, 829[M+H−92]+, 811[M+H−92−18]+, 749[M+H−10:0]+, 731[M+H−10:0−18]+, 721[M+H−12:0]+, 703[M+H−12:0−18]+, 549[M+H−10:0−12:0]+ |
20 | (9Z)-violaxanthin-C12:0-C14:0 | 71.4–74.9 | 330, 418, 437, 466 | 84 | 12 | 993 | n.d. | 975[M+H−18]+, 883[M+H−92−18]+, 793[M+H−12:0]+, 775[M+H−12:0−18]+, 765[M+H−14:0]+, 747[M+H−14:0−18]+, 565[M+H−12:0−14:0]+ |
21 | (all-E)-violaxanthin-C14:0-C14:0 | 75.2–75.6 | 419, 443, 471 | 42 | 0 | 1022 | n.d. | 1004[M+H−18]+, 986[M+H−18−18]+, 930[M+H−92]+, 794[M+H−14:0]+, 565[M+H−14:0−14:0]+, 547[M+H−14:0−14:0−18]+ |
22 | (9Z)-violaxanthin-C14:0-C14:0 | 77.3–80.4 | 330, 415, 438, 466 | 87 | 21 | 1022 | n.d. | 1004[M+H−18]+, 912[M+H−92−18]+, 776[M+H−14:0−18]+, 565[M+H−14:0−14:0]+, 547[M+H−14:0−14:0−18]+ |
23 | (13Z)- or (15Z)-violaxanthin C12:0-C18:0 | 80.1–80.3 | 330, 417, 440, 469 | n.c. | 18 | 1050 | n.d. | 1031[M+H−18]+, 959[M+H−92]+, 939[M+H−92−18]+, 850[M+H−12:0]+, 766[M+H−18:0]+, 565[M+H−12:0−18:0]+, 547[M+H−12:0−18:0−18]+ |
24 | (13Z)- or (15Z)-violaxanthin C14:0-C16:0 | 81.8–84.5 | 330, 415, 438, 467 | 86 | 16 | 1050 | n.d. | 1031[M+H−18]+, 959[M+H−92]+, 939[M+H−92−18]+, 821[M+H−14:0]+, 803[M+H−14:0−18]+, 793[M+H−16:0]+, 775[M+H−16:0−18]+, 565[M+H−14:0−16:0]+, 547[M+H−14:0−16:0−18]+ |
25 | (all-E)-lutein 3-O-C12:0- 3′-O-C18:0 or 3′-O-C12:0- 3-O-C18:0 | 82.6–82.8 | 420, 446, 469 | 29 | 0 | 1016 | n.d. | 998[M+H−18]+, 816[M+H−12:0]+, 732[M+H−18:0]+, 533[M+H−12:0−18:0]+ |
26 | (all-E)-lutein 3-O-C14:0- 3′-O-C16:0 or 3′-O-C14:0- 3-O-C16:0 | 83.3 | 420, 444, 469 | 33 | 0 | 1016 | n.d. | 998[M+H−18]+, 788[M+H−14:0]+, 760[M+H−16:0]+, 533[M+H−14:0−16:0]+ |
27 | (13Z)- or (15Z)-violaxanthin-C16:0-C16:0 | 85.4–85.6 | 331, 414, 439, 467 | n.c. | n.c. | 1077 | n.d. | 1059[M+H−18]+, 821[M+H−16:0]+, 803[M+H−16:0−18]+, 565[M+H−16:0−16:0]+ |
Type of Extract | Quantification of Carotenoids and Esters (µg/g of Dry Matter) * | |||
---|---|---|---|---|
Free Carotenoids | Monoesters | Diesters | Total Carotenoids | |
Acetone | 50.9 ± 6.2 a | 29.3 ± 10.0 a | 20.3 ± 5.9 a | 97.4 ± 17.1 a |
[C4mim]Cl | 32.1 ± 6.2 b | 24.6 ± 3.8 a | 7.6 ± 1.8 b | 64.2 ± 9.3 a |
Compounds | SIM (−) m/z | MRM Transition (CE) | Ion Ratio % (+) | |
---|---|---|---|---|
Quantifier (Q) | Qualifier (q) | |||
Free Carotenoids | ||||
Luteoxanthin | 600 | n.d. | n.d. | n.c. |
Antheraxanthin | 478 | n.d. | n.d. | n.c. |
Lutein | 568 | n.d. | n.d. | n.c. |
Zeaxanthin | 568 | + 569 > 119 (−39) | + 569 > 135 (−22) | 95 |
β-cryptoxanthin | 552 | + 553 > 119 (−32) | + 553 > 145 (-38) | 61 |
Phytoene | 544 | n.d. | n.d. | n.c. |
β-carotene | 536 | + 537 > 119 (−39) | + 537 > 121 (−32) | 84 |
β-cryptoxanthin-5,6-epoxide | 568 | n.d. | n.d. | n.c. |
β-carotene-5,6-epoxide or β-carotene-5,8-epoxide | 552 | n.d. | n.d. | n.c. |
Carotenoids Esters | ||||
antheraxanthin-C12:0 | 766 | n.d. | n.d. | n.c. |
zeaxanthin-C12:0 | 750 | n.d. | n.d. | n.c. |
lutein-C14:0 or zeaxanthin-C14:0 | 778 | n.d. | n.d. | n.c. |
β-cryptoxanthin-C12:0 | 734 | n.d. | n.d. | n.c. |
β-cryptoxanthin-C14:0 | 762 | n.d. | n.d. | n.c. |
β-cryptoxanthin-C16:0 | 790 | n.d. | n.d. | n.c. |
Apo-Carotenoids | ||||
β-citraurinol | 434 | n.d. | n.d. | n.c. |
β-apo-8′-carotenal | 416 | + 417 > 119 (−25) | + 417 > 105 (−35) | 73 |
β-apo-10′-carotenal | 376 | + 377 > 105 (−35) | + 377 > 119 (−30) | 79 |
β-apo-12′-carotenal | 350 | + 351 > 105 (−35) | + 351 > 119 (−25) | 74 |
β-apo-14′-carotenal | 310 | + 311 > 105 (−25) | + 311 > 119 (−25) | 77 |
apo-8′-zeaxanthinal | 432 | + 433 > 119 (−30) | + 433 > 105 (−35) | 95 |
apo-10′-zeaxanthinal | 392 | + 393 > 105 (−35) | + 393 > 119 (−25) | 92 |
apo-12′-zeaxanthinal | 366 | + 367 > 105 (−35) | + 367 > 119 (−30) | 80 |
apo-14′-zeaxanthinal | 326 | + 327 > 105 (−35) | + 327 > 119 (−30) | 61 |
apo-15-zeaxanthinal | 300 | + 301 > 173 (−15) | + 301 > 105 (−30) | 57 |
apo-8-luteinal | 432 | + 415 > 119 (−40) | + 415 > 91 (−50) | 95 |
apo-10-luteinal | 392 | + 375 > 105 (−40) | + 375 > 91 (−50) | 91 |
apo-12-luteinal | 366 | + 349 > 105 (−40) | + 349 > 91 (−50) | 90 |
apo-14-luteinal | 326 | + 309 > 91 (−50) | + 309 > 105 (−40) | 55 |
apo-8′-violaxanthinal | 448 | n.d. | n.d. | n.c. |
apo-10′-violaxanthinal | 408 | n.d. | n.d. | n.c. |
apo-12′-violaxanthinal | 382 | n.d. | n.d. | n.c. |
apo-14′-violaxanthinal | 342 | n.d. | n.d. | n.c. |
apo-15′-violaxanthinal | 316 | n.d. | n.d. | n.c. |
Apo-Esters | ||||
apo-10′-zeaxanthinal-C4:0 | 462 | + 463 > 105 (−40) | + 463 > 119 (−35) | 71 |
apo-10′-zeaxanthinal-C10:0 | 546 | + 547 > 105 (−35) | + 547 > 119 (−30) | 87 |
apo-10′-zeaxanthinal-C12:0 | 574 | + 575 > 105 (−35) | + 575 > 119 (−30) | 75 |
apo-10′-zeaxanthinal-C14:0 | 602 | + 603 > 105 (−40) | + 603 > 119 (−30) | 77 |
apo-8′-zeaxanthinal-C6:0 | 530 | + 531 > 119 (−40) | + 531 > 105 (−40) | 78 |
apo-8′-zeaxanthinal-C8:0 | 558 | + 559 > 105 (−40) | + 559 > 119 (−40) | 70 |
apo-8′-zeaxanthinal-C10:0 | 586 | + 587 > 119 (−40) | + 587 > 105 (−40) | 81 |
apo-8′-zeaxanthinal-C12:0 | 614 | + 615 > 105 (−40) | + 615 > 119 (−40) | 79 |
No. | 1H | 13C | HMBC |
---|---|---|---|
1 | - | 135.1 | - |
2 | 7,46 d (J = 2,40) 1H | 123.5 | 34.8; 123.5; 133.3; 149.1 and 185.3 |
3 | - | 149.1 * | - |
4 | 7.18 bs 1H | 132.5 | 123.5; 133.3 and 135.1 |
5 | - | 148.8 * | - |
6 | 6.96 d (J = 2,40) 1H | 133.3 | 34.8; 123.5; 132.5; 135.1; 149.1 and 185.4 |
5-CH3 | 1.31 s 9H | 28.7 | 28.7; 34.8; 123.5 and 149.1 |
3-CH3 | 1.28 s 9H | 28.7 | 28.7; 34.4; 133.3; 148.8 and 185.3 |
5 > C< | - | 34.8 * | - |
3 > C< | - | 34.4 * | - |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Murador, D.C.; Salafia, F.; Zoccali, M.; Martins, P.L.G.; Ferreira, A.G.; Dugo, P.; Mondello, L.; de Rosso, V.V.; Giuffrida, D. Green Extraction Approaches for Carotenoids and Esters: Characterization of Native Composition from Orange Peel. Antioxidants 2019, 8, 613. https://doi.org/10.3390/antiox8120613
Murador DC, Salafia F, Zoccali M, Martins PLG, Ferreira AG, Dugo P, Mondello L, de Rosso VV, Giuffrida D. Green Extraction Approaches for Carotenoids and Esters: Characterization of Native Composition from Orange Peel. Antioxidants. 2019; 8(12):613. https://doi.org/10.3390/antiox8120613
Chicago/Turabian StyleMurador, Daniella C., Fabio Salafia, Mariosimone Zoccali, Paula L. G. Martins, Antônio G. Ferreira, Paola Dugo, Luigi Mondello, Veridiana V. de Rosso, and Daniele Giuffrida. 2019. "Green Extraction Approaches for Carotenoids and Esters: Characterization of Native Composition from Orange Peel" Antioxidants 8, no. 12: 613. https://doi.org/10.3390/antiox8120613
APA StyleMurador, D. C., Salafia, F., Zoccali, M., Martins, P. L. G., Ferreira, A. G., Dugo, P., Mondello, L., de Rosso, V. V., & Giuffrida, D. (2019). Green Extraction Approaches for Carotenoids and Esters: Characterization of Native Composition from Orange Peel. Antioxidants, 8(12), 613. https://doi.org/10.3390/antiox8120613