Next Article in Journal
Physiological Roles of Plant Methionine Sulfoxide Reductases in Redox Homeostasis and Signaling
Next Article in Special Issue
Enrichment and Assessment of the Contributions of the Major Polyphenols to the Total Antioxidant Activity of Onion Extracts: A Fractionation by Flash Chromatography Approach
Previous Article in Journal
Astrocyte Antioxidant Systems
Article Menu
Issue 9 (September) cover image

Export Article

Open AccessArticle

Investigation into the Thermal Response and Pharmacological Activity of Substituted Schiff Bases on α-Amylase and α-Glucosidase

Institute of Chemical and Biotechnology, Vaal University of Technology, Vanderbijlpark 1900, South Africa
Author to whom correspondence should be addressed.
Antioxidants 2018, 7(9), 113;
Received: 2 July 2018 / Revised: 10 August 2018 / Accepted: 15 August 2018 / Published: 28 August 2018
(This article belongs to the Special Issue Synthetic Antioxidants: Health Benefits, Hazards and Alternatives)
PDF [2137 KB, uploaded 28 August 2018]


The emphasis of previous studies has targeted the development of insulin mimic with little attention given to the development of metabolic enzyme inhibitors. Our focus is to synthesise nine o-hydroxy and p-nitro-azomethine analogues, investigate their digestive enzyme inhibitory capacity, as well as the antioxidant and antimicrobial activities. The substituted Schiff bases were analysed using thermal gravimetric analyser (TGA), X-ray diffractometer (XRD), nuclear magnetic resonance spectroscopy (NMR), elemental analyser, and Fourier-transform infrared spectroscopy (FT-IR). Determination of synthetic yield revealed that the o-hydroxy analogues produced the highest yield of ≥77.1% compared to p-nitro and unsubstituted analogues. Spectra study showed the presence of azomethine stretching vibration at 1698–1613 cm−1, proton signals at δ 8.46–9.81, and carbon signals at δ 145.95–159.53 ppm. Investigation into the thermal property indicated an elevated melting point for the o-hydroxy analogue, compared to the p-nitro derivative which showed high stability to heat. There are similarities in crystalline structure with few unique patterns suggesting different substituent group. The antioxidant activities of the substituted analogues registered low half maximal inhibitory concentration (IC50), with exception to the ferric reducing power; indicating that the Schiff bases are weak siderophores. All nine Schiff bases were bacteriostatic or fungistatic at the screened concentrations; however, the nitro-substituted analogues have an enhanced activity with Minimum Inhibitory Concentration (MIC) values of 0.03–2.54 µM. Both o-hydroxy and p-nitro-substitution does not improve the antifungal activity of the compounds against A. niger. The o-hydroxyl and p-nitro Schiff base derivatives showed enhanced activity towards the inhibition of α -amylase and α-glucosidase by hydroxylation and glycosylation, respectively. Although, hydroxy derivatives of sulphonic acid derived Schiff base slightly decreased the activities on α-glucosidase and α-amylase. Our findings suggest that p-nitro substitution enhances the in vitro nonenzymatic activity while the o-hydroxy derivatives are good hydrolase inhibitors. Therefore, substituent modification can be used as an enhancement technique in designing novel pharmacophore. View Full-Text
Keywords: antidiabetic; antimicrobial; antioxidant; azomethine; diffractogram; thermogram; Schiff bases antidiabetic; antimicrobial; antioxidant; azomethine; diffractogram; thermogram; Schiff bases

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).

Supplementary material


Share & Cite This Article

MDPI and ACS Style

Okoli, B.J.; Modise, J.S. Investigation into the Thermal Response and Pharmacological Activity of Substituted Schiff Bases on α-Amylase and α-Glucosidase. Antioxidants 2018, 7, 113.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics



[Return to top]
Antioxidants EISSN 2076-3921 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top