Saffron: A Natural Potent Antioxidant as a Promising Anti-Obesity Drug
Abstract
:1. Introduction
2. Saffron Bioactive Compounds
2.1. General Characteristics of Crocin
2.2. Crocin Absorption, Bioavailability and Toxicity
3. Biological Properties of Saffron
3.1. Anti-Oxidant Activity of Saffron
Health property | Saffron/Compound | Human/animal subjects | Results | Reference |
---|---|---|---|---|
Hypolipidemic | Crocin | Bovine aortic endothelial cells (EC), bovine aortic smooth muscle cells (SMC) and quail | Crocin decreased OX-LDL induced EC apoptosis as well as SMC proliferation. Crocin decreased Ox-LDL and thus inhibited the formation of atherosclerosis in quails. | [22] |
Crocetin | Quails | A 9-week treatment with crocetin (25, 50, 100 mg/kg/day) reduced serum total cholesterol level and inhibited the formation of aortic plaque, reduced malonaldehyde and decreased nitric oxide in serum. | [39] | |
Crocin | Rats | A 10-day treatment with crocin (25 to 100 mg/kg/day) significantly reduced serum triglyceride, total cholesterol, LDL cholesterol and VLDL cholesterol levels. The hyperlipidemic effect of crocin was attributed to its pancreatic lipase inhibition. | [44] | |
Hypoglycemic & Anti-diabetic | Crocetin | Male Wistar rats | Crocetin (40 mg/kg) prevented dexanethasone-induced insulin resistance. | [40] |
Saffron methanolic extract, crocin and safranal | Alloxan-diabetic rats | Saffron methanolic extract (80 and 240 mg/kg), crocin (50 and 150 mg/kg) and safranal (0.25 and 0.5 mL/kg) significantly reduced the fasting blood glucose and HbA1c levels and significantly increased the blood insulin levels without any significant effects on the blood SGOT, SGPT and creatinine levels in the diabetic rats compared with the control diabetic rats. | [46] | |
Saffron Extract | Healthy male rats | Administration of 50 mg/kg of saffron extract for 14 days significantly decreased serum glucose, cholesterol and insulin levels. | [56] | |
Crocetin | Male Wistar rats | Crocetin (40 mg/kg) improved insulin sensitivity in fructose-fed rats via normalizing the expression of both protein and mRNA of adiponectin (an insulin-sensitizing adipocytokine), TNF-α, and leptin in epididymal white adipose tissue. | [57] | |
Anti-depressant | Aqueous and ethanolic saffron extract, crocin, and safranal | Male BALB/c mice | The antidepressant activity was evaluated via forced swimming test. The aqueous and ethanolic extracts of stigma (0.2–0.8 g/kg), safranal (0.15–0.5 mL/kg) and crocin (50–600 mg/kg) reduced immobility time. Extracts, safranal, and crocin increased swimming time. | [48] |
Capsulated ethanolic saffron extract | Forty adult outpatients | In a 6-week double-blind, placebo-controlled and randomized trial, saffron extract 30 mg/day was effective in the treatment of mild to moderate depression. | [49] | |
Saffron petal extract | Forty adult outpatients | In an 8-week pilot, double-blind randomized trial, petal extract (30 mg/day) was effective similar to fluoxetine (20 mg/day) in the treatment of mild to moderate depression. | [50] | |
Capsulated ethanolic saffron extract | Forty adult outpatients | In a 6-week randomized and double-blind clinical trial, saffron (30 mg/day) was found to be effective similar to fluoxetine (20 mg/day) in the treatment of mild to moderate depression. | [51] | |
Anti-oxidant | Aqueous saffron extract and crocin | Rats | In crocin pretreated groups, a reduction in TBARS levels and elevation in antioxidant power (FRAP value) and total thiol as compared with control group were observed. The extract also reduced lipid peroxidation products and increased antioxidant power in ischemia-reperfusion injured rat kidney. | [58] |
Saffron extract | Rats | Liver MDA content in groups treated with 40 mg/kg saffron extract was significantly decreased as compared with that of the control group. The GSH, SOD, CAT and GSH-Px contents of the liver also significantly increased in the treatment group as compared with those in the control group. | [58] | |
Crocin | Rats | Crocin dose-dependently amelio-rated collagen- and A23187-induced endogenous generation of ROS and H(2)O(2). It also abolished the H(2)O(2)-induced events of intrinsic pathway of apoptosis. | [59] | |
Satiety enhancer and weight loss promoter | Capsulated ethanolic saffron extract | Sixty overweight women | Subjects were given 1 capsule of Satiereal (176.5 mg/day) or an inactive placebo with no limitation in dietary intake. After 2 months, the subjects using the saffron extract reported a decrease in snacking and lost more weight than the control group. | [60] |
3.2. Hypolipidemic Effect of Saffron
Pancreatic Lipase Inhibitory Activity of Saffron
3.3. Hypoglycemic and Anti-Diabetic Effects of Saffron
Glucose Uptake Regulatory Effect of Saffron
3.4. Anti-Depressant and Mood Improving Effects of Saffron
Satiety Enhancer and Weight Loss Promoter
4. Link between Saffron’s Antioxidants and Possible Anti-Obesity Property
4.1. Mechanisms of Anti-Inflammatory Effect of Saffron
4.2. Mechanism of Potential Weight Loss Effect of Saffron
5. Conclusions
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Obesity and Overweight—Factsheet No. 311. September 2006. Available online: http://www.who.int/mediacentre/factsheets/fs311/en/index.html (accessed on 18 January 2011).
- Mayer, M.A.; Hocht, C.; Puyó, A.; Taira, C.A. Recent advances in obesity pharmacotherapy. Curr. Clin. Pharmacol. 2009, 4, 53–61. [Google Scholar] [CrossRef]
- Nakayama, T.; Suzuki, S.; Kudo, H.; Sassa, S.; Nomura, M.; Sakamoto, S. Effects of three Chinese herbal medicines on plasma and liver lipids in mice fed a high-fat diet. J. Ethnopharmacol. 2007, 109, 236–240. [Google Scholar] [CrossRef]
- Moro, C.; Basile, G. Obesity and medicinal plants. Fitoterapia 2000, 71, S73–S82. [Google Scholar] [CrossRef]
- Rayalam, S.; Della-Fera, M.A.; Baile, C.A. Phytochemicals and regulation of the adipocyte life cycle. J. Nutr. Biochem. 2008, 19, 717–726. [Google Scholar] [CrossRef]
- Han, L.-K.; Kimura, Y.; Okuda, H. Anti-obesity effects of natural products. Stud. Nat. Prod. Chem. 2005, 30, 79–110. [Google Scholar] [CrossRef]
- Fernández, J.-A.; Pandalai, S. Biology, biotechnology and biomedicine of saffron. Recent Res. Dev. Plant Sci. 2004, 2, 127–159. [Google Scholar]
- Bathaie, S.Z.; Mousavi, S.Z. New applications and mechanisms of action of saffron and its important ingredients. Crit. Rev. Food Sci. Nutr. 2010, 50, 761–786. [Google Scholar] [CrossRef]
- Hasani-Ranjbar, S.; Larijani, B.; Abdollahi, M. A systematic review of the potential herbal sources of future drugs effective in oxidant-related diseases. Inflamm. Allergy Drug Targets 2009, 8, 2–10. [Google Scholar] [CrossRef]
- García-Lafuente, A.; Guillamón, E.; Villares, A.; Rostagno, M.A.; Martínez, J.A. Flavonoids as anti-inflammatory agents: Implications in cancer and cardiovascular disease. Inflamm. Res. 2009, 58, 537–552. [Google Scholar] [CrossRef]
- Terra, X.; Montagut, G.; Bustos, M.; Llopiz, N.; Ardèvol, A.; Bladé, C.; Fernández-Larrea, J.; Pujadas, G.; Salvadó, J.; Arola, L. Grape-seed procyanidins prevent low-grade inflammation by modulating cytokine expression in rats fed a high-fat diet. J. Nutr. Biochem. 2009, 20, 210–218. [Google Scholar] [CrossRef]
- Slanc, P.; Doljak, B.; Kreft, S.; Lunder, M.; Janeš, D.; Štrukelj, B. Screening of selected food and medicinal plant extracts for pancreatic lipase inhibition. Phytother. Res. 2009, 23, 874–877. [Google Scholar] [CrossRef]
- Birari, R.B.; Bhutani, K.K. Pancreatic lipase inhibitors from natural sources: Unexplored potential. Drug Discov. Today 2007, 12, 879–889. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, H.; Tian, X.; Zhao, C.; Cai, L.; Liu, Y.; Jia, L.; Yin, H.-X.; Chen, C. Antioxidant potential of crocins and ethanol extracts of Gardenia jasminoides ellis and Crocus sativus L.: A relationship investigation between antioxidant activity and crocin contents. Food Chem. 2008, 109, 484–492. [Google Scholar] [CrossRef]
- Rios, J.; Recio, M.; Giner, R.; Manez, S. An update review of saffron and its active constituents. Phytother. Res. 1996, 10, 189–193. [Google Scholar] [CrossRef]
- Abdullaev, F.I. Cancer chemopreventive and tumoricidal properties of saffron (Crocus sativus L.). Exp. Biol. Med. 2002, 227, 20–25. [Google Scholar]
- Nair, S.C.; Kurumboor, S.; Hasegawa, J. Saffron chemoprevention in biology and medicine: A review. Cancer Biother. Radiopharm. 1995, 10, 257–264. [Google Scholar] [CrossRef]
- Verma, S.; Bordia, A. Antioxidant property of saffron in man. Indian J. Med. Sci. 1998, 52, 205–207. [Google Scholar] [PubMed]
- Giaccio, M. Crocetin from saffron: An active component of an ancient spice. Crit. Rev. Food Sci. Nutr. 2004, 44, 155–172. [Google Scholar] [CrossRef]
- Kamalipour, M.; Akhondzadeh, S. Cardiovascular effects of saffron: An evidence-based review. J. Tehran Univ. Heart Cent. 2011, 6, 59–61. [Google Scholar]
- Assimopoulou, A.; Sinakos, Z.; Papageorgiou, V. Radical scavenging activity of Crocus sativus L. Extract and its bioactive constituents. Phytother. Res. 2005, 19, 997–1000. [Google Scholar] [CrossRef]
- He, S.-Y.; Qian, Z.-Y.; Tang, F.-T.; Wen, N.; Xu, G.-L.; Sheng, L. Effect of crocin on experimental atherosclerosis in quails and its mechanisms. Life Sci. 2005, 77, 907–921. [Google Scholar] [CrossRef]
- Winterhalter, P.; Straubinger, M. Saffron—Renewed interest in an ancient spice. Food Rev. Int. 2000, 16, 39–59. [Google Scholar] [CrossRef]
- Padwal, R.; Li, S.; Lau, D. Long-term pharmacotherapy for overweight and obesity: A systematic review and meta-analysis of randomized controlled trials. Int. J. Obes. 2003, 27, 1437–1446. [Google Scholar] [CrossRef]
- Rothman, R.B. Treatment of obesity with “combination” pharmacotherapy. Am. J. Ther. 2010, 17, 596–603. [Google Scholar] [CrossRef]
- Singla, R.K.; Bhat, V.G. Crocin: An overview. Indo Glob. J. Pharm. Sci. 2011, 1, 281–286. [Google Scholar]
- Akhondzadeh, B.A.; Ghoreishi, S.A.; Noorbala, A.A.; Akhondzadeh, S.H.; Rezazadeh, S.H. Petal and stigma of Crocus sativus L. in the treatment of depression: A pilot double-blind randomized trial. J. Med. Plants 2008, 7, 29–36. [Google Scholar]
- Asai, A.; Nakano, T.; Takahashi, M.; Nagao, A. Orally administered crocetin and crocins are absorbed into blood plasma as crocetin and its glucuronide conjugates in mice. J. Agric. Food Chem. 2005, 53, 7302–7306. [Google Scholar] [CrossRef]
- Xi, L.; Qian, Z.; Du, P.; Fu, J. Pharmacokinetic properties of crocin (crocetin digentiobiose ester) following oral administration in rats. Phytomedicine 2007, 14, 633–636. [Google Scholar] [CrossRef]
- Abdullaev, F.; Espinosa-Aguirre, J. Biomedical properties of saffron and its potential use in cancer therapy and chemoprevention trials. Cancer Detect. Prev. 2004, 28, 426–432. [Google Scholar] [CrossRef]
- Abdullaev, F.I. Antitumor Effect of Saffron (Crocus sativus L.): Overview and Perspectives. In Proceedings of I International Symposium on Saffron Biology and Biotechnology 650, Albacete, Spain, 22–25 October 200; pp. 491–499.
- Gutheil, W.G.; Reed, G.; Ray, A.; Anant, S.; Dhar, A. Crocetin: An agent derived from saffron for prevention and therapy for cancer. Curr. Pharm. Biotechnol. 2012, 13, 173–179. [Google Scholar] [CrossRef]
- Abdullaev, F.; Riveron-Negrete, L.; Caballero-Ortega, H.; Manuel Hernandez, J.; Perez-Lopez, I.; Pereda-Miranda, R.; Espinosa-Aguirre, J. Use of in vitro assays to assess the potential antigenotoxic and cytotoxic effects of saffron (Crocus sativus L.). Toxicol. In Vitro 2003, 17, 731–736. [Google Scholar] [CrossRef]
- Kanakis, C.D.; Tarantilis, P.A.; Tajmir-Riahi, H.A.; Polissiou, M.G. Crocetin, dimethylcrocetin, and safranal bind human serum albumin: Stability and antioxidative properties. J. Agric. Food Chem. 2007, 55, 970–977. [Google Scholar] [CrossRef]
- Papandreou, M.A.; Kanakis, C.D.; Polissiou, M.G.; Efthimiopoulos, S.; Cordopatis, P.; Margarity, M.; Lamari, F.N. Inhibitory activity on amyloid-β aggregation and antioxidant properties of Crocus sativus stigmas extract and its crocin constituents. J. Agric. Food Chem. 2006, 54, 8762–8768. [Google Scholar] [CrossRef]
- Charles, D.J. Saffron. In Antioxidant Properties of Spices, Herbs and Other Sources; Springer: New York, NY, USA, 2013; pp. 509–520. [Google Scholar]
- Hosseinzadeh, H.; Younesi, H.M. Antinociceptive and anti-inflammatory effects of Crocus sativus L. Stigma and petal extracts in mice. BMC Pharmacol. 2002, 2, 7. [Google Scholar] [CrossRef] [Green Version]
- Poma, A.; Fontecchio, G.; Carlucci, G.; Chichiricco, G. Anti-inflammatory properties of drugs from saffron crocus. Antiinflamm. Antiallergy Agents Med. Chem. 2012, 11, 37–51. [Google Scholar] [CrossRef] [PubMed]
- He, S.-Y.; Qian, Z.-Y.; Wen, N.; Tang, F.-T.; Xu, G.-L.; Zhou, C.-H. Influence of crocetin on experimental atherosclerosis in hyperlipidamic-diet quails. Eur. J. Pharmacol. 2007, 554, 191–195. [Google Scholar] [CrossRef]
- Xi, L.; Qian, Z.; Shen, X.; Wen, N.; Zhang, Y. Crocetin prevents dexamethasone-induced insulin resistance in rats. Planta Med. 2005, 71, 917–922. [Google Scholar] [CrossRef]
- Plants, A.; Karaj, I. Effects of saffron and its active constituents, crocin and safranal, on prevention of indomethacin induced gastric ulcers in diabetic and nondiabetic rats. J. Med. Plants 2009, 8, 30–38. [Google Scholar]
- Shirali, S.; Zahra Bathaie, S.; Nakhjavani, M. Effect of crocin on the insulin resistance and lipid profile of streptozotocin-induced diabetic rats. Phytother. Res. 2012, 27, 1042–1047. [Google Scholar] [PubMed]
- Imenshahidi, M.; Hosseinzadeh, H.; Javadpour, Y. Hypotensive effect of aqueous saffron extract (Crocus sativus L.) and its constituents, safranal and crocin, in normotensive and hypertensive rats. Phytother. Res. 2010, 24, 990–994. [Google Scholar] [PubMed]
- Sheng, L.; Qian, Z.; Zheng, S.; Xi, L. Mechanism of hypolipidemic effect of crocin in rats: Crocin inhibits pancreatic lipase. Eur. J. Pharmacol. 2006, 543, 116–122. [Google Scholar] [CrossRef]
- Mohajeri, D.; Mousavi, G.; Doustar, Y. Antihyperglycemic and pancreas-protective effects of Crocus sativus L. (saffron) stigma ethanolic extract on rats with alloxan-induced diabetes. J. Biol. Sci. 2009, 9, 302–310. [Google Scholar] [CrossRef]
- Plants, A.; Karaj, I. Anti-hyperglycemic effects of saffron and its active constituents, crocin and safranal, in alloxan-induced diabetic rats. J. Med. Plants 2011, 10, 82–89. [Google Scholar]
- Mostafa, S.; Ebrahiem, M.; Hasan, H. Studies of Effect of Useing Saffron, Cyperus, Manuka Honey and their Combination on Rats Suffering from Hyperglycemia.(i). In Proceedings of the 6th Arab and 3rd International Annual Scientific Conference on Development of Higher Specific Education Programs in Egypt and the Arab World in the Light of Knowledge Era Requirements, Cairo, Egype, 13–14 April 2011; pp. 2285–2308.
- Hosseinzadeh, H.; Karimi, G.; Niapoor, M. Antidepressant Effect of Crocus sativus L. Stigma Extracts and their Constituents, Crocin and Safranal, in Mice. In Proceedings of I International Symposium on Saffron Biology and Biotechnology 650, Albacete, Spain, 22–25 October 2003; pp. 435–445.
- Akhondzadeh, S.; Tahmacebi-Pour, N.; Noorbala, A.A.; Amini, H.; Fallah-Pour, H.; Jamshidi, A.H.; Khani, M. Crocus sativus L. in the treatment of mild to moderate depression: A double-blind, randomized and placebo-controlled trial. Phytother. Res. 2005, 19, 148–151. [Google Scholar] [CrossRef]
- Basti, A.A.; Moshiri, E.; Noorbala, A.-A.; Jamshidi, A.-H.; Abbasi, S.H.; Akhondzadeh, S. Comparison of petal of Crocus sativus L. and fluoxetine in the treatment of depressed outpatients: A pilot double-blind randomized trial. Prog. Neuropsychopharmacol. Biol. Psychiatry 2007, 31, 439–442. [Google Scholar] [CrossRef]
- Noorbala, A.; Akhondzadeh, S.; Tahmacebi-Pour, N.; Jamshidi, A. Hydro-alcoholic extract of Crocus sativus L. versus fluoxetine in the treatment of mild to moderate depression: A double-blind, randomized pilot trial. Ethnopharmacol. 2005, 97, 281–284. [Google Scholar] [CrossRef]
- Hosseinzadeh, H.; Sadeghnia, H.R.; Ghaeni, F.A.; Motamedshariaty, V.S.; Mohajeri, S.A. Effects of saffron (Crocus sativus L.) and its active constituent, crocin, on recognition and spatial memory after chronic cerebral hypoperfusion in rats. Phytother. Res. 2012, 26, 381–386. [Google Scholar] [PubMed]
- Hosseinzadeh, H.; Noraei, N.B. Anxiolytic and hypnotic effect of Crocus sativus aqueous extract and its constituents, crocin and safranal, in mice. Phytother. Res. 2009, 23, 768–774. [Google Scholar] [CrossRef]
- Schmidt, M.; Betti, G.; Hensel, A. Saffron in phytotherapy: Pharmacology and clinical uses. Wien. Med. Wochenschr. 2007, 157, 315–319. [Google Scholar] [CrossRef]
- Liu, N.; Yang, Y.; Mo, S.; Liao, J.; Jin, J. Calcium antagonistic effects of chinese crude drugs: Preliminary investigation and evaluation by 45ca. Appl. Radiat. Isot. 2005, 63, 151–155. [Google Scholar] [CrossRef]
- Arasteh, A.; Aliyev, A.; Khamnei, S.; Delazar, A.; Mesgari, M.; Mehmannavaz, Y. Effects of hydromethanolic extract of saffron (Crocus sativus) on serum glucose, insulin and cholesterol levels in healthy male rats. J. Med. Plants Res. 2010, 4, 397–402. [Google Scholar]
- Xi, L.; Qian, Z.; Xu, G.; Zheng, S.; Sun, S.; Wen, N.; Sheng, L.; Shi, Y.; Zhang, Y. Beneficial impact of crocetin, a carotenoid from saffron, on insulin sensitivity in fructose-fed rats. J. Nutr. Biochem. 2007, 18, 64–72. [Google Scholar] [CrossRef]
- Mohammad, R.; Daryoush, M.; Ali, R.; Yousef, D.; Mehrdad, N. Attenuation of oxidative stress of hepatic tissue by ethanolic extract of saffron (dried stigmas of Crocus sativus L.) in streptozotocin (stz)-induced diabetic rats. Afr. J. Pharm. Pharmacol. 2011, 5, 2166–2173. [Google Scholar]
- Thushara, R.; Hemshekhar, M.; Santhosh, M.S.; Jnaneshwari, S.; Nayaka, S.; Naveen, S.; Kemparaju, K.; Girish, K. Crocin, a dietary additive protects platelets from oxidative stress-induced apoptosis and inhibits platelet aggregation. Mol. Cell. Biochem. 2013, 373, 73–83. [Google Scholar] [CrossRef]
- Gout, B.; Bourges, C.; Paineau-Dubreuil, S. Satiereal, a Crocus sativus L. extract, reduces snacking and increases satiety in a randomized placebo-controlled study of mildly overweight, healthy women. Nutr. Res. 2010, 30, 305–313. [Google Scholar] [CrossRef]
- Anunciato, T.P.; da Rocha Filho, P.A. Carotenoids and polyphenols in nutricosmetics, nutraceuticals, and cosmeceuticals. J. Cosmet. Dermatol. 2012, 11, 51–54. [Google Scholar] [CrossRef]
- Kolotkin, R.L.; Meter, K.; Williams, G.R. Quality of life and obesity. Obes. Rev. 2001, 2, 219–229. [Google Scholar] [CrossRef]
- Sumithran, P.; Prendergast, L.A.; Delbridge, E.; Purcell, K.; Shulkes, A.; Kriketos, A.; Proietto, J. Long-term persistence of hormonal adaptations to weight loss. N. Engl. J. Med. 2011, 365, 1597–1604. [Google Scholar] [CrossRef]
- Premkumar, K.; Abraham, S.K.; Santhiya, S.; Ramesh, A. Protective effects of saffron (Crocus sativus Linn.) on genotoxins-induced oxidative stress in swiss albino mice. Phytother. Res. 2003, 17, 614–617. [Google Scholar] [CrossRef]
- Bray, G.A. Medical consequences of obesity. J. Clin. Endocrinol. Metab. 2004, 89, 2583–2589. [Google Scholar] [CrossRef]
- Guh, D.P.; Zhang, W.; Bansback, N.; Amarsi, Z.; Birmingham, C.L.; Anis, A.H. The incidence of co-morbidities related to obesity and overweight: A systematic review and meta-analysis. BMC Public Health 2009, 9. [Google Scholar] [CrossRef]
- Muls, E.; Kolanowski, J.; Scheen, A.; van Gaal, L. The effects of orlistat on weight and on serum lipids in obese patients with hypercholesterolemia: A randomized, double-blind, placebo-controlled, multicentre study. Int. J. Obes. Relat. Metab. Disord. 2001, 25, 1713–1721. [Google Scholar] [CrossRef]
- Yoshino, F.; Yoshida, A.; Umigai, N.; Kubo, K.; Lee, M.-C. Crocetin reduces the oxidative stress induced reactive oxygen species in the stroke-prone spontaneously hypertensive rats (shrsps) brain. J. Clin. Biochem. Nutr. 2011, 49, 182–187. [Google Scholar] [CrossRef]
- El Daly, E. Protective effect of cysteine and vitamin E, Crocus sativus and nigella sativa extracts on cisplatin-induced toxicity in rats. J. Pharm. Belg. 1998, 53, 87–93. [Google Scholar] [PubMed]
- Fernández-Sánchez, A.; Madrigal-Santillán, E.; Bautista, M.; Esquivel-Soto, J.; Morales-González, Á.; Esquivel-Chirino, C.; Durante-Montiel, I.; Sánchez-Rivera, G.; Valadez-Vega, C.; Morales-González, J.A. Inflammation, oxidative stress, and obesity. Int. J. Mol. Sci. 2011, 12, 3117–3132. [Google Scholar] [CrossRef]
- Zulet, M.; Puchau, B.; Navarro, C.; Marti, A.; Martínez, J. Inflammatory biomarkers: The link between obesity and associated pathologies. Nutr. Hosp. 2007, 22, 511–527. (in Spanish). [Google Scholar] [PubMed]
- Bastard, J.-P.; Maachi, M.; Lagathu, C.; Kim, M.J.; Caron, M.; Vidal, H.; Capeau, J.; Feve, B. Recent advances in the relationship between obesity, inflammation, and insulin resistance. Eur. Cytokine Netw. 2006, 17, 4–12. [Google Scholar] [PubMed]
- Das, U. Is obesity an inflammatory condition? Nutrition 2001, 17, 953–966. [Google Scholar] [CrossRef]
- Dandona, P.; Aljada, A.; Bandyopadhyay, A. Inflammation: The link between insulin resistance, obesity and diabetes. Trends Immunol. 2004, 25, 4–7. [Google Scholar] [CrossRef]
- Codoñer-Franch, P.; Valls-Bellés, V.; Arilla-Codoñer, A.; Alonso-Iglesias, E. Oxidant mechanisms in childhood obesity: The link between inflammation and oxidative stress. Transl. Res. 2011, 158, 369–384. [Google Scholar] [CrossRef]
- Vincent, H.K.; Innes, K.E.; Vincent, K.R. Oxidative stress and potential interventions to reduce oxidative stress in overweight and obesity. Diabetes Obes. Metab. 2007, 9, 813–839. [Google Scholar] [CrossRef]
- Abete, I.; Goyenechea, E.; Zulet, M.; Martinez, J. Obesity and metabolic syndrome: Potential benefit from specific nutritional components. Nutr. Metab. Cardiovasc. Dis. 2011, 21, B1–B15. [Google Scholar] [CrossRef]
- Hermsdorff, H.; Puchau, B.; Volp, A.; Barbosa, K.; Bressan, J.; Zulet, M.Á.; Martínez, J.A. Dietary total antioxidant capacity is inversely related to central adiposity as well as to metabolic and oxidative stress markers in healthy young adults. Nutr. Metab. (Lond.) 2011, 8. [Google Scholar] [CrossRef]
- Nam, K.N.; Park, Y.-M.; Jung, H.-J.; Lee, J.Y.; Min, B.D.; Park, S.-U.; Jung, W.-S.; Cho, K.-H.; Park, J.-H.; Kang, I.; et al. Anti-inflammatory effects of crocin and crocetin in rat brain microglial cells. Eur. J. Pharmacol. 2010, 648, 110–116. [Google Scholar] [CrossRef]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Mashmoul, M.; Azlan, A.; Khaza'ai, H.; Yusof, B.N.M.; Noor, S.M. Saffron: A Natural Potent Antioxidant as a Promising Anti-Obesity Drug. Antioxidants 2013, 2, 293-308. https://doi.org/10.3390/antiox2040293
Mashmoul M, Azlan A, Khaza'ai H, Yusof BNM, Noor SM. Saffron: A Natural Potent Antioxidant as a Promising Anti-Obesity Drug. Antioxidants. 2013; 2(4):293-308. https://doi.org/10.3390/antiox2040293
Chicago/Turabian StyleMashmoul, Maryam, Azrina Azlan, Huzwah Khaza'ai, Barakatun Nisak Mohd Yusof, and Sabariah Mohd Noor. 2013. "Saffron: A Natural Potent Antioxidant as a Promising Anti-Obesity Drug" Antioxidants 2, no. 4: 293-308. https://doi.org/10.3390/antiox2040293
APA StyleMashmoul, M., Azlan, A., Khaza'ai, H., Yusof, B. N. M., & Noor, S. M. (2013). Saffron: A Natural Potent Antioxidant as a Promising Anti-Obesity Drug. Antioxidants, 2(4), 293-308. https://doi.org/10.3390/antiox2040293