Optimization of Bioactive Compound Extraction from Prunus spinosa L. Fruits Using Ultrasound-Assisted Extraction with Food-Grade Glycerin: A Combined RSM–ANN Approach
Abstract
1. Introduction
2. Materials and Methods
2.1. Fruit Samples
2.2. Ultrasound-Assisted Extraction (UAE)
2.3. Data Collection for the Box–Behnken Design (BBD)
2.4. Data Collection for ANN Model Setup
2.5. Analytical Determinations
2.5.1. Total Phenolic Content (TPC)
2.5.2. Total Flavonoid Content (TFC)
2.5.3. DPPH Free Radical Scavenging Activity
2.5.4. UHPLC-DAD-HRMS/MS Characterization of Prunus spinosa Extracts
2.6. Statistical Analysis
3. Results
3.1. UHPLC-DAD-HRMS/MS Profiling of Prunus spinosa Extracts
3.2. Performance of RSM and ANN Model
3.2.1. The RSM and ANN Modeling for (TPC)
3.2.2. The RSM and ANN Models for TFC
3.2.3. The RSM and ANN Models for DPPH Radical Scavenging Activity
3.3. ANN Modeling and Comparison with RSM
3.4. Analysis of Response Surface Plots for ANN and RSM Models
3.5. Comparison of RSM and ANN Models
3.6. Validation and Generalization of Optimal Extraction Conditions
3.7. Validation of Glycerin Effectiveness for Bioactive Compound Extraction
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| ANOVA | Analysis of Variance |
| ANN | Artificial Neural Network |
| BBD | Box–Behnken Design |
| CE | Catechin Equivalents |
| DAD | Diode Array Detector |
| DF | Degrees of Freedom |
| DPPH | 2,2-Diphenyl-1-picrylhydrazyl |
| DW | Dry Weight |
| GAE | Gallic Acid Equivalents |
| MAE | Mean Absolute Error |
| MAPE | Mean Absolute Percentage Error |
| MSE | Mean Square Error |
| MS/MS | Tandem Mass Spectrometry |
| MSI | Metabolomics Standards Initiative |
| RMSE | Root Mean Square Error |
| RSA | Radical Scavenging Activity |
| RSM | Response Surface Methodology |
| SSE | Sum of Squared Errors |
| TFC | Total Flavonoid Content |
| TPC | Total Phenolic Content |
| UAE | Ultrasound-Assisted Extraction |
| UHPLC–HRMS | Ultra-High-Performance Liquid Chromatography–High-Resolution Mass Spectrometry |
| UV–Vis | Ultraviolet–Visible Spectrophotometer |
References
- Irizar, A.C.; Fernandez, M.F.; González, A.G.; Ravelo, A.G. Constituents of Prunus spinosa. J. Nat. Prod. 1992, 55, 450–454. [Google Scholar] [CrossRef]
- Negrean, O.R.; Farcas, A.C.; Pop, O.L.; Socaci, S.A. Blackthorn—A valuable source of phenolic antioxidants with potential health benefits. Molecules 2023, 28, 3456. [Google Scholar] [CrossRef]
- Aliyazicioglu, R.; Yildiz, O.; Sahin, H.; Eyupoglu, O.E.; Ozkan, M.T.; Karaoglu, S.A.; Kolayli, S. Phenolic components and antioxidant activity of Prunus spinosa from Gumushane, Turkey. Chem. Nat. Comp. 2015, 51, 346–349. [Google Scholar] [CrossRef]
- Marčetić, M.; Samardžić, S.; Ilić, T.; Božić, D.D.; Vidović, B. Phenolic Composition, Antioxidant, Anti-Enzymatic, Antimicrobial and Prebiotic Properties of Prunus spinosa L. Fruits. Foods 2022, 11, 20. [Google Scholar] [CrossRef] [PubMed]
- Palos-Hernández, A.; González-Paramás, A.M.; Santos-Buelga, C. Latest advances in green extraction of polyphenols from plants, foods and food by-products. Molecules 2024, 30, 55. [Google Scholar] [CrossRef] [PubMed]
- da Silva, R.F.; Carneiro, C.N.; de Sousa, C.B.D.C.; Gomez, F.J.V.; Espino, M.; Boiteux, J.; Fernández, M.d.L.; Silva, M.F.; Dias, F.d.S. Sustainable extraction bioactive compounds procedures in medicinal plants based on the principles of green analytical chemistry: A review. Microchem. J. 2022, 175, 107184. [Google Scholar] [CrossRef]
- Panja, P. Green extraction methods of food polyphenols from vegetable materials. Curr. Opin. Food Sci. 2018, 23, 173–182. [Google Scholar] [CrossRef]
- Makris, D.P.; Lalas, S. Glycerol and Glycerol-Based Deep Eutectic Mixtures as Emerging Green Solvents for Polyphenol Extraction: The Evidence So Far. Molecules 2020, 25, 5842. [Google Scholar] [CrossRef] [PubMed]
- Weremfo, A.; Abassah-Oppong, S.; Adulley, F.; Dabie, K.; Seidu-Larry, S. Response surface methodology as a tool to optimize the extraction of bioactive compounds from plant sources. J. Sci. Food Agric. 2023, 103, 26–36. [Google Scholar] [CrossRef]
- Campone, L.; Celano, R.; Piccinelli, A.L.; Pagano, I.; Carabetta, S.; Di Sanzo, R.; Russo, M.; Ibañez, E.; Cifuentes, A.; Rastrelli, L. Response surface methodology to optimize supercritical carbon dioxide/co-solvent extraction of brown onion skin by-product as source of nutraceutical compounds. Food Chem. 2018, 269, 495–502. [Google Scholar] [CrossRef]
- Lubis, M.F.; Sumaiyah, S.; Lubis, L.D.; Fitri, K.; Astyka, R. Application of Box-Behnken design for optimization of Vernonia amygdalina stem bark extract in relation to its antioxidant and anti-colon cancer activity. Arab. J. Chem. 2024, 17, 105702. [Google Scholar] [CrossRef]
- Kribeche, A.; Ben Hamiche, N.; Ladjouze, B.; Arbaoui, S. Optimization of coagulation-flocculation process with dehulled and unhulled Moringa oleifera cake powder by 25 full factorial design and artificial neural networks: Effect on dam water quality. Urban Water J. 2023, 20, 910–924. [Google Scholar] [CrossRef]
- Mihaylova, D.; Terziyska, M.; Desseva, I.; Popova, A.; Lante, A. Optimization of ultrasound-assisted extraction of free phenolic compounds and in vitro biological activity from peach fruit using response surface methodology. Appl. Sci. 2024, 14, 4286. [Google Scholar] [CrossRef]
- Sánchez, R.J.; Fernández, M.B.; Nolasco, S.M. Artificial neural network model for the kinetics of canola oil extraction for different seed samples and pretreatments. J. Food Process. Eng. 2018, 41, e12608. [Google Scholar] [CrossRef]
- Du, X.; Yuan, Q.; Zhao, J.; Li, Y. Comparison of general rate model with a new model—Artificial neural network model in describing chromatographic kinetics of solanesol adsorption in packed column by macroporous resins. J. Chromatogr. A 2007, 1145, 165–174. [Google Scholar] [CrossRef] [PubMed]
- Hammoudi, A.; Moussaceb, K.; Belebchouche, C.; Dahmoune, F. Comparison of artificial neural network (ANN) and response surface methodology (RSM) prediction in compressive strength of recycled concrete aggregates. Constr. Build. Mater. 2019, 209, 425–436. [Google Scholar] [CrossRef]
- Jha, A.K.; Sit, N. Comparison of response surface methodology (RSM) and artificial neural network (ANN) modelling for supercritical fluid extraction of phytochemicals from Terminalia chebula pulp and optimization using RSM coupled with desirability function (DF) and genetic algorithm (GA) and ANN with GA. Ind. Crop. Prod. 2021, 170, 113769. [Google Scholar] [CrossRef]
- Kashyap, P.; Riar, C.S.; Jindal, N. Optimization of ultrasound assisted extraction of polyphenols from Meghalayan cherry fruit (Prunus nepalensis) using response surface methodology (RSM) and artificial neural network (ANN) approach. J. Food Meas. Charact. 2001, 15, 119–133. [Google Scholar] [CrossRef]
- Javed, A.; Alam, M.B.; Naznin, M.; Ahmad, R.; Lee, C.H.; Kim, S.; Lee, S.H. RSM- and ANN-Based Multifrequency Ultrasonic Extraction of Polyphenol-Rich Sargassum horneri Extracts Exerting Antioxidative Activity via the Regulation of MAPK/Nrf2/HO-1 Machinery. Antioxidants 2024, 13, 690. [Google Scholar] [CrossRef]
- Benmanseur, A.; Tacherfiout, M.; Benguerba, Y.; Hab, F.Z.; Tachour, R.A.; Khettal, B.; Derguine, R.; Bachir-Bey, M.; Rezgui, A.; Sobhi, W. Optimization of ultrasound phenolic extraction from Erica multiflora leaves using response surface methodology and artificial neural networks. J. Appl. Res. Med. Aromat. Plants. 2025, 45, 100627. [Google Scholar] [CrossRef]
- Chen, X.; Ding, J.; Ji, D.; He, S.; Ma, H. Optimization of ultrasonic-assisted extraction conditions for bioactive components from coffee leaves using the Taguchi design and response surface methodology. J. Food Sci. 2020, 85, 1742–1751. [Google Scholar] [CrossRef]
- Zhou, G.; Ma, J.; Tang, Y.; Wang, X.; Zhang, J.; Yao, X.; Jiang, W.; Duan, J.A. Optimization of Ultrasound-Assisted Extraction Followed by Macroporous Resin Purification for Maximal Recovery of Functional Components and Removal of Toxic Components from Ginkgo biloba Leaves. Biomed. Res. Int. 2018, 2018, 4598067. [Google Scholar] [CrossRef]
- Akpabli-Tsigbe, N.D.K.; Ma, Y.; Ekumah, J.N.; Osabutey, J.; Hu, J.; Xu, M.; Johnson, N.A.N. Novel solid-state fermentation extraction of 5-O-caffeoylquinic acid from heilong48 soybean using Lactobacillus helviticus: Parametric screening and optimization. LWT 2021, 149, 111809. [Google Scholar] [CrossRef]
- Fakayode, O.A.; Aboagarib, E.A.A.; Yan, D.; Li, M.; Wahia, H.; Mustapha, A.T.; Zhou, C.; Ma, H. Novel two-pot approach ultrasonication and deep eutectic solvent pretreatments for watermelon rind delignification: Parametric screening and optimization via response surface methodology. Energy 2020, 203, 117872. [Google Scholar] [CrossRef]
- Serio, S.; Santoro, V.; Celano, R.; Fiore, D.; Proto, M.C.; Corbo, F.; Clodoveo, M.L.; Tardugno, R.; Piccinelli, A.L.; Rastrelli, L. Carob (Ceratonia siliqua) leaves: A comprehensive analysis of bioactive profile and health-promoting potential of an untapped resource. Food Chem. 2025, 468, 142392. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.-O.; Chun, O.K.; Kim, Y.J.; Moon, H.-Y.; Lee, C.Y. Quantification of Polyphenolics and Their Antioxidant Capacity in Fresh Plums. J. Agric. Food Chem. 2003, 51, 6509–6515. [Google Scholar] [CrossRef]
- Sharma, O.P.; Bhat, T.K. DPPH Antioxidant assay revisited. Food Chem. 2009, 113, 1202–1205. [Google Scholar] [CrossRef]
- Kotsou, K.; Stoikou, M.; Athanasiadis, V.; Chatzimitakos, T.; Mantiniotou, M.; Sfougaris, A.I.; Lalas, S.I. Enhancing Antioxidant Properties of Prunus spinosa Fruit Extracts via Extraction Optimization. Horticulturae 2023, 9, 942. [Google Scholar] [CrossRef]
- Xu, L.; Qi, T.; Xu, L.; Lu, L.; Xiao, M. Recent progress in the enzymatic glycosylation of phenolic compounds. J. Carbohydr. Chem. 2016, 35, 1–23. [Google Scholar] [CrossRef]
- Bezerra, M.A.; Ferreira, S.L.C.; Novaes, C.G.; Dos Santos, A.M.P.; Valasques, G.S.; da Mata Cerqueira, U.M.F.; dos Santos Alves, J.P. Simultaneous optimization of multiple responses and its application in Analytical Chemistry–A review. Talanta 2019, 194, 941–959. [Google Scholar] [CrossRef]
- Guan, X.; Yao, H. Optimization of Viscozyme L-assisted extraction of oat bran protein using response surface methodology. Food Chem. 2008, 106, 345–351. [Google Scholar] [CrossRef]
- Karazhiyan, H.; Razavi, S.; Phillips, G. Extraction optimization of a hydrocolloid extract from cress seed (Lepidium sativum) using response surface methodology. Food Hydrocoll. 2011, 25, 915–920. [Google Scholar] [CrossRef]
- Loganathan, V.; Vijayan, L.; Rengaraju, B. Optimisation of Microwave-Assisted Extraction of Phenolic Compounds from Pithecellobium dulce Fruit Peels: Comparative Process Modelling Using RSM and ANN with Bioactivity Evaluation. Processes 2025, 13, 3554. [Google Scholar] [CrossRef]
- Subramani, V.; Tomer, V.; Balamurali, G.; Mansingh, P. Artificial neural network in optimization of bioactive compound extraction: Recent trends and performance comparison with response surface methodology. Anal. Sci. 2025, 41, 101–117. [Google Scholar] [CrossRef]
- Ramírez-Brewer, D.; Quintana, S.E.; García-Zapateiro, L.A. Modeling and optimization of microwave-assisted extraction of total phenolics content from mango (Mangifera indica) peel using response surface methodology (RSM) and artificial neural networks (ANN). Food Chem. X 2024, 22, 101420. [Google Scholar] [CrossRef]
- Dimitrov, K.; Pradal, D.; Vauchel, P.; Fabiano-Tixier, A.S.; Chemat, F. Ultrasounds technology to recover polyphenols. In Technologies to Recover Polyphenols from AgroFood By-Products and Wastes; Academic Press: Cambridge, MA, USA, 2022; pp. 201–223. [Google Scholar] [CrossRef]
- Akpabli-Tsigbe, N.D.K.; Osabutey, J.; Mintah, B.K.; Tano-Debrah, K.; Ma, Y. Cleavage of macromolecule (protein/polysaccharide)-phenolic bond in soybean cell wall through Lactobacillus casei and Lactobacillus helviticus mixed culture solid-state fermentation for chlorogenic acid extraction. Food Biosci. 2023, 55, 102903. [Google Scholar] [CrossRef]
- Li, J.; Wang, W.; Xu, W.; Deng, Y.; Lv, R.; Zhou, J.; Liu, D. Evaluation of multiscale mechanisms of ultrasound-assisted extraction from porous plant materials: Experiment and modeling on this intensified process. Food Res. Int. 2024, 182, 114034. [Google Scholar] [CrossRef]
- Tang, J.; Zhu, X.; Režek Jambrak, A.; Sun, D.-W.; Tiwari, B. Mechanistic and synergistic aspects of ultrasonics and hydrodynamic cavitation for food processing. Crit. Rev. Food Sci. Nutr. 2023, 64, 8587–8608. [Google Scholar] [CrossRef] [PubMed]
- Ejimofor, M.I.; Ezemagu, I.G.; Menkiti, M.C. RSM and ANN-GA modeling of colloidal particles removal from paint wastewater via coagulation method using modified Aguleri montmorillonite clay. Curr. Res. Green Sustain. Chem. 2021, 4, 100164. [Google Scholar] [CrossRef]
- Sun, Z.; Liu, W.; Zhang, S.; Tian, S.; Aikemu, A. Optimization of Flavonoid Extraction from Abelmoschus manihot Flowers Using Ultrasonic Techniques: Predictive Modeling through Response Surface Methodology and Deep Neural Network and Biological Activity Assessment. Molecules 2024, 29, 2610. [Google Scholar] [CrossRef]
- Hasani Baferani, A.; Katbab, A.A.; Ohadi, A.R. The Role of Sonication Time upon Acoustic wave Absorption efficiency, Microstructure, and Viscoelastic Behavior of Flexible Polyurethane/CNT Nanocomposite Foam. Eur. Polym. J. 2017, 90, 383–391. [Google Scholar] [CrossRef]
- Lavilla, I.; Bendicho, C. Fundamentals of Ultrasound-Assisted Extraction. In Water Extraction of Bioactive Compounds; Elsevier: Amsterdam, The Netherlands, 2017; pp. 291–316. [Google Scholar] [CrossRef]
- Chávez-González, M.L.; Sepúlveda, L.; Verma, D.K.; Luna-García, H.A.; Rodríguez-Durán, L.V.; Ilina, A.; Aguilar, C.N. Conventional and Emerging Extraction Processes of Flavonoids. Processes 2020, 8, 434. [Google Scholar] [CrossRef]
- Khedher, O.; Ghayth, R.; Salem, R.; Moussaoui, Y. Optimization of Polyphenols Recovery from Schinus molle L. Peel Using Response Surface Methodology (RSM). Chem. Afr. 2020, 3, 813–820. [Google Scholar] [CrossRef]
- Wang, T.; Guo, N.; Wang, S.-X.; Kou, P.; Zhao, C.; Fu, Y.-J. Ultrasound-negative pressure cavitation extraction of phenolic compounds from blueberry leaves and evaluation of its DPPH radical scavenging activity. Food Bioprod. Process. 2018, 108, 69–80. [Google Scholar] [CrossRef]
- Veličković, I.; Žižak, Ž.; Rajčević, N.; Ivanov, M.; Soković, M.; Marin, P.D.; Grujić, S. Examination of the polyphenol content and bioactivities of Prunus spinosa L. fruit extracts. Arch. Biol. Sci. 2020, 72, 105–115. Available online: https://www.serbiosoc.org.rs/arch/index.php/abs/article/view/4932 (accessed on 12 November 2025). [CrossRef]
- Abdussalam-Mohammed, W.; Ali, A.Q.; Errayes, A.O. Green chemistry: Principles, applications, and disadvantages. Chem. Methodol. 2020, 4, 408–423. [Google Scholar] [CrossRef]
- Nistor, O.V.; Milea, Ș.A.; Păcularu-Burada, B.; Andronoiu, D.G.; Râpeanu, G.; Stănciuc, N. Technologically driven approaches for the integrative use of wild blackthorn (Prunus spinosa L.) fruits in foods and nutraceuticals. Antioxidants 2023, 12, 1637. [Google Scholar] [CrossRef]
- Drăghici-Popa, A.-M.; Pârvulescu, O.C.; Stan, R.; Brezoiu, A.-M. Optimization of Ultrasound-Assisted Extraction of Phenolic Compounds from Romanian Blackthorn (Prunus spinosa L.) Fruits. Antioxidants 2025, 14, 680. [Google Scholar] [CrossRef]
- Damar, I.; Yilmaz, E. Ultrasound-assisted extraction of phenolic compounds in blackthorn (Prunus spinosa L.): Characterization, antioxidant activity and optimization by response surface methodology. J. Food Meas. Charact. 2023, 17, 1467–1479. [Google Scholar] [CrossRef]
- Di Nicolantonio, L.; Trebbi, G.; Peregrina, D.V.; Rashad, M.; Censi, R.; Zara, S.; Di Martino, P.; Gigliobianco, M.R. Development and characterization of a new cosmetic formulation enriched with optimized Thanaka bark extract (H. crenulata). J. Drug Deliv. Sci. Technol. 2025, 113, 107343. [Google Scholar] [CrossRef]
- Bao, N.; Wang, D.; Fu, X.; Xie, H.; Gao, G.; Luo, Z. Green extraction of phenolic compounds from lotus seedpod (Receptaculum Nelumbinis) assisted by ultrasound coupled with glycerol. Foods 2021, 10, 239. [Google Scholar] [CrossRef]
- Anis, N.; Ahmed, D. Modelling and optimization of polyphenol and antioxidant extraction from Rumex hastatus by green glycerol-water solvent according to response surface methodology. Heliyon 2022, 8, e11992. [Google Scholar] [CrossRef] [PubMed]
- Makris, D.P.; Passalidi, V.; Kallithraka, S.; Mourtzinos, I. Optimization of polyphenol extraction from red grape pomace using aqueous glycerol/tartaric acid mixtures and response surface methodology. Prep. Biochem. Biotechnol. 2016, 46, 176–182. [Google Scholar] [CrossRef] [PubMed]
- Kaur, D.; Qadri, O.S. Green extraction of anthocyanins from Syzygium cumini fruit pulp using aqueous glycerol through ultrasound-assisted extraction. J. Umm Al-Qura Univ. Appl. Sci. 2025, 11, 124–132. [Google Scholar] [CrossRef]










| Factor | Variable | −1 (Low) | 0 (Center) | +1 (High) |
|---|---|---|---|---|
| X1 | Extraction time (min) | 1 | 5 | 9 |
| X2 | Ultrasound amplitude (%) | 20 | 60 | 100 |
| X3 | Water concentration (%) | 20 | 40 | 60 |
| N° | Rt | Compound | Formula | Adduct m/z | [M-H]− | Product Ion (m/z) | MSI Level a |
|---|---|---|---|---|---|---|---|
| 1 | 2.07 | Isotachoside | C13H18O8 | 347.0980 | 301.0932 | 138, 123 | 2 |
| 2 | 3.24 | Protocatechuic acid-hexoside | C13H16O9 | 315.0725 | 153, 109 | 2 | |
| 3 | 4.09 | unknown | C16H19O9N | 368.0984 | |||
| 4 | 4.63 | Protocatechuic acid-hexoside | C13H16O9 | 361.11362 | 315.0725 | 153, 109 | 2 |
| 5 | 5.17 | Cornoside | C14H20O8 | 315.1089 | 153, 123 | 2 | |
| 6 | 5.26 | Vanillic acid-hexoside | C14H18O9 | 329.0881 | 167, 152, 108 | 2 | |
| 7 | 5.52 | Glucovanillin | C14H18O8 | 313.0932 | 161 | 2 | |
| 8 | 5.76 | Chlorogenic acid | C16H18O9 | 353.0873 | 191, 179 | 1 | |
| 9 | 5.94 | Caffeoylquinic hexoside | C22H28O14 | 515.1408 | 191, 161 | 2 | |
| 10 | 6.61 | Coumaroylquinic acid | C16H18O8 | 337.0933 | 191, 163 | 2 | |
| 11 | 6.98 | Ionone-hexoside | C19H28O11 | 477.1614 | 431.1567 | 269, 161 | 3 |
| 12 | 7.81 | Caffeoylquinic acid | C16H18O9 | 399.0931 | 353.0873 | 191 | 2 |
| 13 | 8.24 | Caffeoylquinic acid | C16H18O9 | 353.0875 | 191, 170 | 2 | |
| 14 | 8.38 | Acylated hexose-pentose | C18H24O11 | 461.1301 | 415.125 | 121 | 3 |
| 15 | 8.76 | Benzyl beta-primeveroside | C19H28O12 | 447.1507 | 401.1458 | 269, 161 | 2 |
| 16 | 9.4 | Benzyl beta-primeveroside isomer | C19H28O12 | 447.1507 | 401.1458 | 269, 161 | 2 |
| 17 | 16.00 | Quercetin O-hexose deoxyhexose | C27H29O16 | 609.1463 | 300, 301 | 2 | |
| 18 | 16.29 | Quercetin O-hexose deoxyhexose | C27H29O16 | 609.1463 | 300, 301 | 2 | |
| 19 | 16.53 | Quercetin O-hexose | C21H20O12 | 463.0885 | 300, 301 | 2 | |
| 20 | 16.64 | Quercetin O-pentose hexose | C26H28O16 | 595.1310 | 300, 301 | 2 | |
| 21 | 17.08 | Quercetin O-pentose | C20H18O11 | 433.0777 | 300, 301, 271 | 2 | |
| 22 | 17.32 | unknown | C23H33O13 | 517.1929 | 300, 301, 271 | ||
| 23 | 17.79 | Quercetin O-pentose | C20H17O11 | 433.0777 | 300, 301, 271 | 2 | |
| 24 | 18.05 | Quercetin O-hexose deoxyhexose | C27H29O16 | 609.1463 | 300, 301 | 2 | |
| 25 | 18.21 | Isorhamnetin O-hexose deoxyhexose | C28H32O16 | 623.1619 | 315, 300 | 2 | |
| 26 | 18.27 | Quercetin O-deoxyhexose | C21H20O11 | 447.0983 | 301, 300 | 2 | |
| 27 | 19.46 | Luteolin O-hexose deoxyhexose | C27H30O15 | 595.1519 | 285 | 2 | |
| 28 | 22.16 | Trihydroxy-octadecadienoic acid | C18H32O5 | 327.2183 | 229, 211 | 2 | |
| 29 | 22.4 | Trihydroxy-octadecenoic acid | C18H34O5 | 329.2338 | 229, 212 | 2 |
| Run | Factors | Experimental Values | RSM Predicted Values | ANN Predicted Values | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| X1 | X2 | X3 | TPC | TFC | DPPH | TPC | TFC | DPPH | TPC | TFC | DPPH | |
| 1 | 1 | 60 | 60 | 11.47 ± 0.05 | 9.37 ± 0.05 | 58.51 ± 0.02 | 11.25 | 8.79 | 61.23 | 11.48 | 8.84 | 57.83 |
| 2 | 5 | 100 | 60 | 18.21 ± 0.17 | 15.56 ± 0.16 | 80.05 ± 0.01 | 18.54 | 15.76 | 79.30 | 18.96 | 15.30 | 79.95 |
| 3 | 5 | 100 | 20 | 19.26 ± 0.06 | 13.30 ± 0.20 | 71.76 ± 0.01 | 20.48 | 15.43 | 74.26 | 19.56 | 13.29 | 72.72 |
| 4 | 9 | 60 | 60 | 13.91 ± 0.15 | 11.21 ± 0.09 | 68.79 ± 0.01 | 14.38 | 10.59 | 69.32 | 14.74 | 11.23 | 70.54 |
| 5 | 5 | 60 | 40 | 13.98 ± 0.27 | 10.57 ± 0.18 | 57.04 ± 0.01 | 13.74 | 14.11 | 58.76 | 13.25 | 10.14 | 61.19 |
| 6 | 5 | 20 | 60 | 15.09 ± 0.06 | 7.27 ± 0.29 | 71.94 ± 0.02 | 14.49 | 7.16 | 69.45 | 15.78 | 7.91 | 76.85 |
| 7 | 1 | 60 | 20 | 9.46 ± 0.27 | 7.32 ± 0.12 | 65.96 ± 0.01 | 8.05 | 6.82 | 65.43 | 9.96 | 7.29 | 68.72 |
| 8 | 9 | 60 | 20 | 14.43 ± 0.03 | 13.27 ± 0.32 | 59.75 ± 0.01 | 14.64 | 13.86 | 57.03 | 14.96 | 13.29 | 59.72 |
| 9 | 1 | 20 | 40 | 9.28 ± 0.09 | 6.53 ± 0.19 | 78.10 ± 0.03 | 10.09 | 8.18 | 77.88 | 10.93 | 7.13 | 78.08 |
| 10 | 5 | 20 | 20 | 9.93 ± 0.13 | 7.18 ± 0.10 | 65.64 ± 0.02 | 9.60 | 8.78 | 66.40 | 8.69 | 7.69 | 66.34 |
| 11 | 9 | 20 | 40 | 11.19 ± 0.09 | 9.66 ± 0.07 | 67.33 ± 0.02 | 11.31 | 9.28 | 69.30 | 10.91 | 9.48 | 67.96 |
| 12 | 9 | 100 | 40 | 23.22 ± 0.16 | 21.65 ± 0.15 | 86.34 ± 0.01 | 22.42 | 20.22 | 86.57 | 23.64 | 21.21 | 86.75 |
| 13 | 1 | 100 | 40 | 14.03 ± 0.08 | 12.09 ± 0.04 | 80.27 ± 0.01 | 13.92 | 12.48 | 78.31 | 13.59 | 12.53 | 80.35 |
| 14 | 5 | 60 | 40 | 16.24 ± 0.25 | 14.18 ± 0.28 | 57.93 ± 0.02 | 13.74 | 14.11 | 58.76 | 16.66 | 14.89 | 58.47 |
| 15 | 5 | 60 | 40 | 14.18 ± 0.07 | 12.11 ± 0.12 | 61.30 ± 0.02 | 13.74 | 14.11 | 58.76 | 14.58 | 12.46 | 61.53 |
| Source | DF | Sum of Squares | Mean Square | F Ratio | p-Value |
|---|---|---|---|---|---|
| TPC | |||||
| RMSE | 1.27 | ||||
| R2 | 0.96 | ||||
| Adj. R2 | 0.89 | ||||
| Model | 9 | 201.62 | 22.40 | 13.96 | 0.0048 |
| Error | 5 | 8.02 | 1.60 | ||
| Total model | 14 | 209.65 | |||
| Lack of Fit | 3 | 4.90 | 1.63 | 1.05 | 0.5223 |
| Pure error | 2 | 3.12 | 1.56 | ||
| Total error | 5 | 8.02 | |||
| TFC | |||||
| RMSE | 1.52 | ||||
| R2 | 0.95 | ||||
| Adj. R2 | 0.85 | ||||
| Model | 9 | 209.80 | 23.31 | 10.13 | 0.0101 |
| Error | 5 | 11.51 | 2.30 | ||
| Total model | 14 | 221.32 | |||
| Lack of Fit | 3 | 4.92 | 1.64 | 0.50 | 0.7205 |
| Pure error | 2 | 6.59 | 3.29 | ||
| Total error | 5 | 11.51 | |||
| DPPH | |||||
| RMSE | 3.06 | ||||
| R2 | 0.96 | ||||
| Adj. R2 | 0.89 | ||||
| Model | 9 | 1144.76 | 127.20 | 13.58 | 0.0052 |
| Error | 5 | 46.85 | 9.37 | ||
| Total model | 14 | 1191.61 | |||
| Lack of Fit | 3 | 36.77 | 12.26 | 2.43 | 0.3047 |
| Pure error | 2 | 10.10 | 5.04 | ||
| Total error | 5 | 46.85 |
| Source | Estimate | Std Error | t-Ratio | Prob > |t| |
|---|---|---|---|---|
| TPC | ||||
| Intercept | 13.74 | 0.71 | 19.40 | <0.0001 * |
| Linear | ||||
| X1 | 2.43 | 0.43 | 5.62 | 0.0025 * |
| X2 | 3.73 | 0.43 | 8.63 | 0.0003 * |
| X3 | 0.74 | 0.43 | 1.71 | 0.1484 |
| Interaction | ||||
| X1X2 | 1.82 | 0.61 | 2.97 | 0.0311 * |
| X1X3 | −0.87 | 0.61 | −1.41 | 0.2165 |
| X2X3 | −1.71 | 0.61 | −2.79 | 0.0384 * |
| Quadratic | ||||
| X12 | −1.50 | 0.64 | −2.35 | 0.0652 |
| X22 | 2.20 | 0.64 | 3.45 | 0.0182 * |
| X32 | −0.16 | 0.64 | −0.24 | 0.8167 |
| TFC | ||||
| Intercept | 14.11 | 0.59 | 23.79 | <0.0001 * |
| Linear | ||||
| X1 | 2.21 | 0.36 | 6.09 | 0.0017 * |
| X2 | 3.81 | 0.36 | 10.50 | 0.0001 * |
| X3 | −0.32 | 0.36 | −0.89 | 0.4148 |
| Interaction | ||||
| X1X2 | 1.66 | 0.51 | 3.24 | 0.0231 * |
| X1X3 | −1.31 | 0.51 | −2.55 | 0.0515 |
| X2X3 | 0.49 | 0.51 | 0.95 | 0.3875 |
| Quadratic | ||||
| X12 | −1.67 | 0.53 | −3.12 | 0.0262 * |
| X22 | 0.10 | 0.53 | 0.19 | 0.8603 |
| X32 | −2.43 | 0.53 | −4.54 | 0.0062 * |
| DPPH (RSA) | ||||
| Intercept | 58.76 | 1.77 | 33.25 | <0.0001 * |
| Linear | ||||
| X1 | −0.08 | 1.08 | −0.07 | 0.9456 |
| X2 | 4.43 | 1.08 | 4.09 | 0.0094 * |
| X3 | 2.02 | 1.08 | 1.87 | 0.1206 |
| Interaction | ||||
| X1X2 | 4.21 | 1.53 | 2.75 | 0.0402 * |
| X1X3 | 4.12 | 1.53 | 2.69 | 0.0431 * |
| X2X3 | 0.50 | 1.53 | 0.33 | 0.7578 |
| Quadratic | ||||
| X12 | 5.08 | 1.59 | 3.19 | 0.0243 * |
| X22 | 14.17 | 1.59 | 8.90 | 0.0003 * |
| X32 | −0.59 | 1.59 | −0.37 | 0.7283 |
| Parameter | TPC (Training) | TPC (Validation) | TFC (Training) | TFC (Validation) | DPPH (Training) | DPPH (Validation) |
|---|---|---|---|---|---|---|
| R2 | 0.95 | 0.99 | 0.93 | 0.98 | 0.98 | 0.85 |
| RMSE | 0.56 | 0.12 | 0.73 | 0.52 | 0.88 | 2.83 |
| MSE | 0.31 | 0.01 | 0.53 | 0.27 | 0.77 | 8.01 |
| SSE | 4.09 | 0.03 | 6.85 | 0.53 | 10.08 | 15.99 |
| MAE | 0.02 | 0.01 | 0.01 | |||
| MAPE (%) | 1.79 | 1.39 | 1.64 | |||
| Group | Mean ± SD | t-Ratio | Difference | Prob ˃ |t| | Interpretation | |
|---|---|---|---|---|---|---|
| TPC | Glycerin | 21.16 ± 0.52 (mg GAE/g DW) | 61.12315 | 11.66 | <0.0001 * | Significant difference |
| 70% Ethanol | 9.49 ± 0.21 (mg GAE/g DW) | |||||
| TFC | Glycerin | 19.77 ± 0.45 (mg CE/g DW) | 179.1117 | 1.93 | <0.0001 * | Significant difference |
| 70% Ethanol | 7.84 ± 0.02 (mg CE/g DW) | |||||
| DPPH RSA | Glycerin | 81.03 ± 1.07 (%) | 2.382807 | 2.16 | <0.0381 * | Significant difference |
| 70% Ethanol | 78.86 ± 0.82 (%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Berkati, A.; Ben Hamiche, N.; Kribeche, A.; Himed, L.; Merniz, S.; D’Elia, M.; Celano, R.; Rastrelli, L. Optimization of Bioactive Compound Extraction from Prunus spinosa L. Fruits Using Ultrasound-Assisted Extraction with Food-Grade Glycerin: A Combined RSM–ANN Approach. Antioxidants 2026, 15, 202. https://doi.org/10.3390/antiox15020202
Berkati A, Ben Hamiche N, Kribeche A, Himed L, Merniz S, D’Elia M, Celano R, Rastrelli L. Optimization of Bioactive Compound Extraction from Prunus spinosa L. Fruits Using Ultrasound-Assisted Extraction with Food-Grade Glycerin: A Combined RSM–ANN Approach. Antioxidants. 2026; 15(2):202. https://doi.org/10.3390/antiox15020202
Chicago/Turabian StyleBerkati, Asmaa, Nadir Ben Hamiche, Amina Kribeche, Louiza Himed, Salah Merniz, Maria D’Elia, Rita Celano, and Luca Rastrelli. 2026. "Optimization of Bioactive Compound Extraction from Prunus spinosa L. Fruits Using Ultrasound-Assisted Extraction with Food-Grade Glycerin: A Combined RSM–ANN Approach" Antioxidants 15, no. 2: 202. https://doi.org/10.3390/antiox15020202
APA StyleBerkati, A., Ben Hamiche, N., Kribeche, A., Himed, L., Merniz, S., D’Elia, M., Celano, R., & Rastrelli, L. (2026). Optimization of Bioactive Compound Extraction from Prunus spinosa L. Fruits Using Ultrasound-Assisted Extraction with Food-Grade Glycerin: A Combined RSM–ANN Approach. Antioxidants, 15(2), 202. https://doi.org/10.3390/antiox15020202

