Integrated Transcriptomic and Metabolomic Analysis Reveals Regulatory Effects of Fermented Chinese Chive on Early Testicular Development in Piglets
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Animal Housing, Sex, and Feeding Management
2.3. Slaughtering Age, Method, and Sample Collection
2.4. Growth Performance, Serum Biochemical Indices, Serum Antioxidant Indices, and Serum Immune Indices
2.5. Preparation of Testicular Tissue Section
2.6. Library Construction and Sequencing
2.7. Transcriptomic Data Analysis
2.8. Metabolite Extraction and Detection
2.9. Metabolite Data Analysis
2.10. Integrated Analysis of Transcriptome and Metabolome Data
2.11. Molecular Docking and Molecular Dynamics Simulation
2.12. Validation of DEGs
2.13. Statistical Analysis
3. Results
3.1. Histological Observation of Testis
3.2. Growth Performance
3.3. Serum Biochemical Indices
3.4. Serum Antioxidant Indices
3.5. Serum Immune Indices
3.6. Transcriptomic Profiling of Testis
3.6.1. Summary of RNA-Seq Analysis
3.6.2. Comparison of RNA Seq Data
3.6.3. Functional Analysis of DEGs
3.6.4. Identification of Hub Genes Between LK and OD Groups
3.7. Untargeted Metabolomics Sequencing of Testicular Tissue
3.7.1. Classification of Metabolites
3.7.2. DEMs Analysis of Testicular Tissues
3.7.3. KEGG Enrichment Analysis of Differential Metabolites
3.8. Combined Analysis of Transcriptome and Metabolome of Testicular Tissue
3.9. Gene–Metabolite Correlation Analysis in Testicular Tissues
3.10. Molecular Docking and MDS Between Flavonoland and Target Proteins
3.11. DEG qRT-PCR
4. Discussion
4.1. Immune and Erythropoiesis-Related Hub Genes in the LK Group
4.2. Integration of Transcriptomic and Metabolomic Findings
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wanjala, G.; Kusuma Astuti, P.; Bagi, Z.; Kichamu, N.; Strausz, P.; Kusza, S. A review on the potential effects of environmental and economic factors on sheep genetic diversity: Consequences of climate change. Saudi J. Biol. Sci. 2023, 30, 103505. [Google Scholar] [CrossRef]
- Zečević, N.; Kocić, J.; Perović, M.; Stojsavljević, A. Detrimental effects of cadmium on male infertility: A review. Ecotoxicol. Environ. Saf. 2025, 290, 117623. [Google Scholar] [CrossRef]
- Xu, H.; Sun, W.; Pei, S.; Li, W.; Li, F.; Yue, X. Identification of Key Genes Related to Postnatal Testicular Development Based on Transcriptomic Data of Testis in Hu Sheep. Front. Genet. 2021, 12, 773695. [Google Scholar] [CrossRef]
- Qin, Z.; Zhang, G.; Jiang, S.; Ning, F.; Zhao, Z.; Huang, M.; Jin, J. Integration of metabolomics and transcriptomics to reveal ferroptosis is involved in Tripterygium wilfordii polyglycoside tablet-induced testicular injury. J. Ethnopharmacol. 2023, 304, 116055. [Google Scholar] [CrossRef]
- Singh Jamwal, V.D. A systematic review identifying fertility biomarkers in semen: A clinical approach through Omics to diagnose male infertility. Fertil. Steril. 2023, 119, 158. [Google Scholar] [CrossRef]
- Montano, L.; Maugeri, A.; Volpe, M.G.; Micali, S.; Mirone, V.; Mantovani, A.; Navarra, M.; Piscopo, M. Mediterranean Diet as a Shield against Male Infertility and Cancer Risk Induced by Environmental Pollutants: A Focus on Flavonoids. Int. J. Mol. Sci. 2022, 23, 1568. [Google Scholar] [CrossRef] [PubMed]
- Aitken, R.J.; Gibb, Z.; Baker, M.A.; Drevet, J.; Gharagozloo, P. Causes and consequences of oxidative stress in spermatozoa. Reprod. Fertil. Dev. 2016, 28, 1–10. [Google Scholar] [CrossRef]
- Zhang, P.; Zhang, F.; Sui, H.; Yang, X.; Ji, Y.; Zheng, S.; Li, W.; Cheng, K.; Wang, C.; Jiao, J.; et al. Characterization of sexual maturity-associated N6-methyladenosine in boar testes. BMC Genom. 2024, 25, 447. [Google Scholar] [CrossRef] [PubMed]
- Lettieri, G.; Notariale, R.; Carusone, N.; Giarra, A.; Trifuoggi, M.; Manna, C.; Piscopo, M. New Insights into Alterations in PL Proteins Affecting Their Binding to DNA after Exposure of Mytilus galloprovincialis to Mercury-A Possible Risk to Sperm Chromatin Structure? Int. J. Mol. Sci. 2021, 22, 5893. [Google Scholar] [CrossRef]
- Lettieri, G.; Marinaro, C.; Brogna, C.; Montano, L.; Lombardi, M.; Trotta, A.; Troisi, J.; Piscopo, M. A Metabolomic Analysis to Assess the Responses of the Male Gonads of Mytilus galloprovincialis after Heavy Metal Exposure. Metabolites 2023, 13, 1168. [Google Scholar] [CrossRef] [PubMed]
- Lettieri, G.; Notariale, R.; Ambrosino, A.; Di Bonito, A.; Giarra, A.; Trifuoggi, M.; Manna, C.; Piscopo, M. Spermatozoa Transcriptional Response and Alterations in PL Proteins Properties after Exposure of Mytilus galloprovincialis to Mercury. Int. J. Mol. Sci. 2021, 22, 1618. [Google Scholar] [CrossRef]
- De Guglielmo, V.; Puoti, R.; Notariale, R.; Maresca, V.; Ausió, J.; Troisi, J.; Verrillo, M.; Basile, A.; Febbraio, F.; Piscopo, M. Alterations in the properties of sperm protamine-like II protein after exposure of Mytilus galloprovincialis (Lamarck 1819) to sub-toxic doses of cadmium. Ecotoxicol. Env. Saf. 2019, 169, 600–606. [Google Scholar] [CrossRef]
- Huang, B.; Li, F.; You, D.; Deng, L.; Xu, T.; Lai, S.; Ai, Y.; Huang, J.; Zhou, Y.; Ge, L.; et al. Porcine reproductive and respiratory syndrome virus infects the reproductive system of male piglets and impairs development of the blood-testis barrier. Virulence 2024, 15, 2384564. [Google Scholar] [CrossRef]
- Park, C.; Soto-Heras, S.; Reinacher, L.; Chai, K.; Zhou, S.; Lin, P.C.; Oh, J.E.; Bunnell, M.; Hess, R.A.; de França, L.R.; et al. Inhibition of testicular development by suppressing neonatal LH rise in male domestic pigs. Anim. Reprod. Sci. 2024, 270, 107606. [Google Scholar] [CrossRef]
- Wu, C.; Song, J.; Liu, X.; Zhang, Y.; Zhou, Z.; Thomas, D.G.; Wu, B.; Yan, X.; Li, J.; Zhang, R.; et al. Effect of iron-manganese oxide on the degradation of deoxynivalenol in feed and enhancement of growth performance and intestinal health in weaned piglets. Ecotoxicol. Env. Saf. 2024, 286, 117246. [Google Scholar] [CrossRef]
- Kelly, F.J. Dietary antioxidants and environmental stress. Proc. Nutr. Soc. 2004, 63, 579–585. [Google Scholar] [CrossRef]
- Jamalan, M.; Ghaffari, M.A.; Hoseinzadeh, P.; Hashemitabar, M.; Zeinali, M. Human Sperm Quality and Metal Toxicants: Protective Effects of some Flavonoids on Male Reproductive Function. Int. J. Fertil. Steril. 2016, 10, 215–223. [Google Scholar] [CrossRef]
- Chung, R.T. Detoxification effects of phytonutrients against environmental toxicants and sharing of clinical experience on practical applications. Envorn. Sci. Pollut. Res. Int. 2017, 24, 8946–8956. [Google Scholar] [CrossRef]
- Soininen, T.H.; Jukarainen, N.; Auriola, S.O.; Julkunen-Tiitto, R.; Karjalainen, R.; Vepsäläinen, J.J. Quantitative metabolite profiling of edible onion species by NMR and HPLC-MS. Food Chem. 2014, 165, 499–505. [Google Scholar] [CrossRef]
- Tang, X.; Olatunji, O.J.; Zhou, Y.; Hou, X. Allium tuberosum: Antidiabetic and hepatoprotective activities. Food Res. Int. 2017, 102, 681–689. [Google Scholar] [CrossRef]
- Niu, K.-M.; Kothari, D.; Lee, W.-D.; Cho, S.; Wu, X.; Kim, S.-K. Optimization of Chinese Chive Juice as a Functional Feed Additive. Appl. Sci. 2020, 10, 6194. [Google Scholar] [CrossRef]
- Hong, H.; Niu, K.-M.; Lee, J.-H.; Cho, S.; Han, S.-G.; Kim, S.-K. Characteristics of Chinese chives (Allium tuberosum) fermented by Leuconostoc mesenteroides. Appl. Biol. Chem. 2016, 59, 349–357. [Google Scholar] [CrossRef]
- Kothari, D.; Lee, W.-D.; Niu, K.-M.; Kim, S.-K. The Genus Allium as Poultry Feed Additive: A Review. Animals 2019, 9, 1032. [Google Scholar] [CrossRef]
- Kong, L.; Yue, Y.; Li, J.; Yang, B.; Chen, B.; Liu, J.; Lu, Z. Transcriptomics and metabolomics reveal improved performance of Hu sheep on hybridization with Southdown sheep. Food Res. Int. 2023, 173, 113240. [Google Scholar] [CrossRef]
- Chu, T.; Cui, J.; Sun, L.; Zhang, X.; Sun, L.; Tong, J.; Li, L.; Xiao, Y.; Xu, L.; Zhang, L.; et al. The disordered extracellular matrix landscape induced endometrial fibrosis of sheep: A multi-omics integrative analysis. Int. J. Biol. Macromol. 2024, 265, 130845. [Google Scholar] [CrossRef]
- Rabbani, M.; Zheng, X.; Manske, G.L.; Vargo, A.; Shami, A.N.; Li, J.Z.; Hammoud, S.S. Decoding the Spermatogenesis Program: New Insights from Transcriptomic Analyses. Annu. Rev. Genet. 2022, 56, 339–368. [Google Scholar] [CrossRef]
- Fu, X.; Yang, Y.; Yan, Z.; Liu, M.; Wang, X. Transcriptomic Study of Spermatogenesis in the Testis of Hu Sheep and Tibetan Sheep. Genes 2022, 13, 2212. [Google Scholar] [CrossRef]
- van Gelderen, T.A.; Ladisa, C.; Salazar-Moscoso, M.; Folgado, C.; Habibi, H.R.; Ribas, L. Metabolomic and transcriptomic profiles after immune stimulation in the zebrafish testes. Genomics 2023, 115, 110581. [Google Scholar] [CrossRef]
- Alonso, H.; Bliznyuk, A.A.; Gready, J.E. Combining docking and molecular dynamic simulations in drug design. Med. Res. Rev. 2006, 26, 531–568. [Google Scholar] [CrossRef]
- Xing, K.; Zhu, F.; Zhai, L.; Liu, H.; Wang, Z.; Hou, Z.; Wang, C. The liver transcriptome of two full-sibling Songliao black pigs with extreme differences in backfat thickness. J. Anim. Sci. Biotechnol. 2014, 5, 32. [Google Scholar] [CrossRef]
- Komiya, A.; Watanabe, A.; Kawauchi, Y.; Fuse, H. Testicular volume discrepancy is associated with decreased semen quality in infertile Japanese males with varicoceles. Reprod. Med. Biol. 2012, 11, 117–121. [Google Scholar] [CrossRef]
- Yang, Z.; Guo, Q.; Kong, X.; Li, Y.; Li, F. Effects of Flavonoids in Fructus Aurantii Immaturus on Carcass Traits, Meat Quality and Antioxidant Capacity in Finishing Pigs. Antioxidants 2024, 13, 1385. [Google Scholar] [CrossRef]
- Chen, S.; Zhou, Y.; Chen, Y.; Gu, J. fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018, 34, i884–i890. [Google Scholar] [CrossRef]
- Kim, D.; Langmead, B.; Salzberg, S.L. HISAT: A fast spliced aligner with low memory requirements. Nat. Methods 2015, 12, 357–360. [Google Scholar] [CrossRef]
- Anders, S.; Pyl, P.T.; Huber, W. HTSeq--a Python framework to work with high-throughput sequencing data. Bioinformatics 2015, 31, 166–169. [Google Scholar] [CrossRef]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef]
- Smedley, D.; Haider, S.; Ballester, B.; Holland, R.; London, D.; Thorisson, G.; Kasprzyk, A. BioMart—Biological queries made easy. BMC Genom. 2009, 10, 22. [Google Scholar] [CrossRef]
- The Gene Ontology Consortium. The Gene Ontology Resource: 20 years and still GOing strong. Nucleic Acids Res. 2019, 47, D330–D338. [Google Scholar] [CrossRef]
- Kanehisa, M.; Araki, M.; Goto, S.; Hattori, M.; Hirakawa, M.; Itoh, M.; Katayama, T.; Kawashima, S.; Okuda, S.; Tokimatsu, T.; et al. KEGG for linking genomes to life and the environment. Nucleic Acids Res. 2008, 36, D480–D484. [Google Scholar] [CrossRef]
- Yu, G.; Wang, L.G.; Han, Y.; He, Q.Y. clusterProfiler: An R package for comparing biological themes among gene clusters. Omics 2012, 16, 284–287. [Google Scholar] [CrossRef]
- Szklarczyk, D.; Gable, A.L.; Lyon, D.; Junge, A.; Wyder, S.; Huerta-Cepas, J.; Simonovic, M.; Doncheva, N.T.; Morris, J.H.; Bork, P.; et al. STRING v11: Protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019, 47, D607–D613. [Google Scholar] [CrossRef]
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003, 13, 2498–2504. [Google Scholar] [CrossRef]
- Smith, C.A.; Want, E.J.; O’Maille, G.; Abagyan, R.; Siuzdak, G. XCMS: Processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal. Chem. 2006, 78, 779–787. [Google Scholar] [CrossRef]
- Dunn, W.B.; Erban, A.; Weber, R.J.M.; Creek, D.J.; Brown, M.; Breitling, R.; Hankemeier, T.; Goodacre, R.; Neumann, S.; Kopka, J.; et al. Mass appeal: Metabolite identification in mass spectrometry-focused untargeted metabolomics. Metabolomics 2013, 9, 44–66. [Google Scholar] [CrossRef]
- Kanehisa, M.; Furumichi, M.; Sato, Y.; Kawashima, M.; Ishiguro-Watanabe, M. KEGG for taxonomy-based analysis of pathways and genomes. Nucleic Acids Res. 2023, 51, D587–D592. [Google Scholar] [CrossRef]
- Mootha, V.K.; Lindgren, C.M.; Eriksson, K.-F.; Subramanian, A.; Sihag, S.; Lehar, J.; Puigserver, P.; Carlsson, E.; Ridderstråle, M.; Laurila, E.; et al. PGC-1α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat. Genet. 2003, 34, 267–273. [Google Scholar] [CrossRef]
- Subramanian, A.; Tamayo, P.; Mootha, V.K.; Mukherjee, S.; Ebert, B.L.; Gillette, M.A.; Paulovich, A.; Pomeroy, S.L.; Golub, T.R.; Lander, E.S.; et al. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA 2005, 102, 15545–15550. [Google Scholar] [CrossRef]
- Yang, L.; Lai, X.; Lin, F.; Shi, N.; Xu, X.; Wang, H.; Li, X.; Shen, D.; Qian, H.; Jin, X. Revitalising Aging Oocytes: Echinacoside Restores Mitochondrial Function and Cellular Homeostasis Through Targeting GJA1/SIRT1 Pathway. Cell Prolif. 2025, e70044. [Google Scholar] [CrossRef]
- Jo, S.; Kim, T.; Iyer, V.G.; Im, W. CHARMM-GUI: A web-based graphical user interface for CHARMM. J. Comput. Chem. 2008, 29, 1859–1865. [Google Scholar] [CrossRef]
- Mark, P.; Nilsson, L. Structure and Dynamics of the TIP3P, SPC, and SPC/E Water Models at 298 K. J. Phys. Chem. A 2001, 105, 9954–9960. [Google Scholar] [CrossRef]
- Li, T.; Guo, R.; Zong, Q.; Ling, G. Application of molecular docking in elaborating molecular mechanisms and interactions of supramolecular cyclodextrin. Carbohydr. Polym. 2022, 276, 118644. [Google Scholar] [CrossRef]
- Wu, W.; Guo, X.; Li, J.; Yang, M.; Xiong, Y. Comparison of different processed products of Allium tuberosum Rottler for the treatment of mice asthenozoospermia. Transl. Androl. Urol. 2024, 13, 2209–2228. [Google Scholar] [CrossRef]
- O’BRYAN, M.K.; Grima, J.; Mruk, D.; Cheng, C.Y. Haptoglobin is a Sertoli cell product in the rat seminiferous epithelium: Its purification and regulation. J. Androl. 1997, 18, 637–645. [Google Scholar] [CrossRef]
- Li, Z.; Zhao, Y.; Zong, Q.; Hu, P.; Bao, W.; Liu, H.-Y.; Cai, D. Lactoferrin Restores the Deoxynivalenol-Impaired Spermatogenesis and Blood–Testis Barrier Integrity via Improving the Antioxidant Capacity and Modifying the Cell Adhesion and Inflammatory Response. Antioxidants 2023, 12, 152. [Google Scholar] [CrossRef]
- Dai, P.; Zou, M.; Cai, Z.; Zeng, X.; Zhang, X.; Liang, M. pH homeodynamics and male fertility: A coordinated regulation of acid-based balance during sperm journey to fertilization. Biomolecules 2024, 14, 685. [Google Scholar] [CrossRef]
- Jang, H.; Lee, S.; Yoo, I.; Choi, Y.; Han, J.; Cheon, Y.; Ka, H. Calcium-binding proteins S100A8, S100A9, and S100A12: Expression and regulation at the maternal-conceptus interface in pigs. Biol. Reprod. 2022, 106, 1098–1111. [Google Scholar] [CrossRef]
- Liu, L.; Li, F.; Deng, C. Short Communication: Molecular cloning and expression pattern of the porcine 5-aminolevulinate synthase 1 (ALAS1) gene and its association with reproductive traits. Genet. Mol. Res. 2016, 15, 1. [Google Scholar] [CrossRef]
- Ike, A.; Tokuhiro, K.; Hirose, M.; Nozaki, M.; Nishimune, Y.; Tanaka, H. Comprehensive analysis of gene expression in testes producing haploid germ cells using DNA microarray analysis. Int. J. Androl. 2007, 30, 462–475. [Google Scholar] [CrossRef]
- Ling, X.; Wang, Q.; Zhang, J.; Zhang, G. Genome-wide analysis of the KLF gene family in chicken: Characterization and expression profile. Animals 2023, 13, 1429. [Google Scholar] [CrossRef]
- Li, Y.; Chen, Y.; Wu, W.; Li, N.; Hua, J. MMPs, ADAMs and ADAMTSs are associated with mammalian sperm fate. Theriogenology 2023, 200, 147–154. [Google Scholar] [CrossRef]
- Ji, C.; Wang, Y.; Wang, Y.; Luan, J.; Yao, L.; Wang, Y.; Song, N. Immune-related genes play an important role in the prognosis of patients with testicular germ cell tumor. Ann. Transl. Med. 2020, 8, 866. [Google Scholar] [CrossRef]
- Luo, Z.; Zhu, J.; Fang, Z.; Xu, R.; Wan, R.; He, Y.; Chen, Y.; Chen, S.; Wang, Q.; Liu, Q. Exercise-augmented THSD7B exhibited a positive prognostic implication and tumor-suppressed functionality in pan-cancer. Front. Immunol. 2024, 15, 1440226. [Google Scholar] [CrossRef]
- Sahu, S.K.; Fritz, A.; Tiwari, N.; Kovacs, Z.; Pouya, A.; Wüllner, V.; Bora, P.; Schacht, T.; Baumgart, J.; Peron, S. TOX3 regulates neural progenitor identity. Biochim. Biophys. Acta-Gene Regul. Mech. 2016, 1859, 833–840. [Google Scholar] [CrossRef]
- Dittmer, S.; Kovacs, Z.; Yuan, S.H.; Siszler, G.; Kögl, M.; Summer, H.; Geerts, A.; Golz, S.; Shioda, T.; Methner, A. TOX3 is a neuronal survival factor that induces transcription depending on the presence of CITED1 or phosphorylated CREB in the transcriptionally active complex. J. Cell Sci. 2011, 124, 252–260. [Google Scholar] [CrossRef]
- Lee, A.S.; Rusch, J.; Lima, A.C.; Usmani, A.; Huang, N.; Lepamets, M.; Vigh-Conrad, K.A.; Worthington, R.E.; Mägi, R.; Wu, X. Rare mutations in the complement regulatory gene CSMD1 are associated with male and female infertility. Nat. Commun. 2019, 10, 4626. [Google Scholar] [CrossRef] [PubMed]
- Lervik, S.; Kristoffersen, A.B.; Conley, L.; Oskam, I.; Hedegaard, J.; Ropstad, E.; Olsaker, I. Gene expression during testis development in Duroc boars. Animal 2015, 9, 1832–1842. [Google Scholar] [CrossRef]
- Ji, X.; Wang, S.; Tang, H.; Zhang, Y.; Zhou, F.; Zhang, L.; Zhu, Q.; Zhu, K.; Liu, Q.; Liu, Y. PPP1R3C mediates metformin-inhibited hepatic gluconeogenesis. Metabolism 2019, 98, 62–75. [Google Scholar] [CrossRef]
- Liu, M.; Zhang, W.; Luo, W.; Nie, Q. Overexpression of TDRP1 gene in swine testis cell and its global transcriptome analysis. DNA Cell Biol. 2013, 32, 511–516. [Google Scholar] [CrossRef]
- Silva, R.; Carrageta, D.F.; Alves, M.G.; Oliveira, P.F. Testicular glycogen metabolism: An overlooked source of energy for spermatogenesis? BioChem 2022, 2, 198–214. [Google Scholar] [CrossRef]
- Lin, Y.; Wei, D.; Wang, K.; Wu, D.; Zhang, J.; Che, L.; Xu, S.; Fang, Z.; Feng, B.; Li, J. Proteomic analysis reveals key proteins involved in arginine promotion of testicular development in boars. Theriogenology 2020, 154, 181–189. [Google Scholar] [CrossRef]
- Zheng, Z.; Lyu, W.; Hong, Q.; Yang, H.; Li, Y.; Zhao, S.; Ren, Y.; Xiao, Y. Phylogenetic and expression analysis of the angiopoietin-like gene family and their role in lipid metabolism in pigs. Anim. Biosci. 2023, 36, 1517–1529. [Google Scholar] [CrossRef] [PubMed]
- Aksoy, P.; White, T.A.; Thompson, M.; Chini, E.N. Regulation of intracellular levels of NAD: A novel role for CD38. Biochem. Biophys. Res. Commun. 2006, 345, 1386–1392. [Google Scholar] [CrossRef]
- Li, Y.; Li, B.; Zhou, E.; Fu, S.; Wang, Y.; Wu, L.; Lei, Y.; Guo, Z.; Ye, J. CD38 play roles in T cell-dependent response and B cell differentiation in nile tilapia (Oreochromis niloticus). Dev. Comp. Immunol. 2020, 103, 103515. [Google Scholar] [CrossRef]
- De Filippo, K.; Dudeck, A.; Hasenberg, M.; Nye, E.; van Rooijen, N.; Hartmann, K.; Gunzer, M.; Roers, A.; Hogg, N. Mast cell and macrophage chemokines CXCL1/CXCL2 control the early stage of neutrophil recruitment during tissue inflammation. Blood J. Am. Soc. Hematol. 2013, 121, 4930–4937. [Google Scholar] [CrossRef]
- Chen, S.J.; Allam, J.P.; Duan, Y.G.; Haidl, G. Influence of reactive oxygen species on human sperm functions and fertilizing capacity including therapeutical approaches. Arch. Gynecol. Obs. 2013, 288, 191–199. [Google Scholar] [CrossRef]
- Li, X.; Lu, J.; Zhao, Y.; Guo, W. Identification and Characterization of Oxidative Stress and Endoplasmic Reticulum Stress-Related Genes in Esophageal Cancer. J. Cancer 2025, 16, 2103. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Xiong, Y.; Zhang, Y.; Wen, J.; Cai, N.; Cheng, K.; Liang, H.; Zhang, W. The molecular mechanisms of regulating oxidative stress-induced Ferroptosis and therapeutic strategy in tumors. Oxidative Med. Cell. Longev. 2020, 2020, 8810785. [Google Scholar] [CrossRef] [PubMed]
- Marini, H.R.; Micali, A.; Squadrito, G.; Puzzolo, D.; Freni, J.; Antonuccio, P.; Minutoli, L. Nutraceuticals: A New Challenge against Cadmium-Induced Testicular Injury. Nutrients 2022, 14, 663. [Google Scholar] [CrossRef]
- Habib, R.; Wahdan, S.A.; Gad, A.M.; Azab, S.S. Infliximab abrogates cadmium-induced testicular damage and spermiotoxicity via enhancement of steroidogenesis and suppression of inflammation and apoptosis mediators. Ecotoxicol. Env. Saf. 2019, 182, 109398. [Google Scholar] [CrossRef]
- Agarwal, R.; Salas-Salvadó, J.; Davila-Cordova, E.; Shyam, S.; Fernández de la Puente, M.; Azurmendi, M.P.; Babio, N.; Salas-Huetos, A. Mediterranean Diet, Semen Quality, and Medically Assisted Reproductive Outcomes in the Male Population: A Systematic Review and Meta-Analysis. Adv. Nutr. 2025, 16, 100454. [Google Scholar] [CrossRef]
- Montano, L.; Ceretti, E.; Donato, F.; Bergamo, P.; Zani, C.; Viola, G.C.V.; Notari, T.; Pappalardo, S.; Zani, D.; Ubaldi, S.; et al. Effects of a Lifestyle Change Intervention on Semen Quality in Healthy Young Men Living in Highly Polluted Areas in Italy: The FASt Randomized Controlled Trial. Eur. Urol. Focus. 2022, 8, 351–359. [Google Scholar] [CrossRef]
- Salas-Huetos, A.; Bulló, M.; Salas-Salvadó, J. Dietary patterns, foods and nutrients in male fertility parameters and fecundability: A systematic review of observational studies. Hum. Reprod. Update 2017, 23, 371–389. [Google Scholar] [CrossRef]
- Montano, L.; Porciello, G.; Crispo, A.; Lorenzetti, S.; Raimondo, S.; Ubaldi, S.; Caputo, M. The role of the Mediterranean diet on sperm morphology in healthy men living in polluted area (EcoFoodFertility project). Reprod. Toxicol. 2017, 72, 45. [Google Scholar] [CrossRef]
- Piera-Jordan, C.; Prieto Huecas, L.; Serrano De La Cruz Delgado, V.; Zaragoza Martí, A.; García Velert, M.B.; Tordera Terrades, C.; Sánchez-SanSegundo, M.; Hurtado-Sánchez, J.A.; Tuells, J.; Martín Manchado, L. Influence of the Mediterranean diet on seminal quality-a systematic review. Front. Nutr. 2024, 11, 1287864. [Google Scholar] [CrossRef] [PubMed]
- Zeraattalab-Motlagh, S.; Jayedi, A.; Shab-Bidar, S. Mediterranean dietary pattern and the risk of type 2 diabetes: A systematic review and dose-response meta-analysis of prospective cohort studies. Eur. J. Nutr. 2022, 61, 1735–1748. [Google Scholar] [CrossRef] [PubMed]
- Morze, J.; Danielewicz, A.; Przybyłowicz, K.; Zeng, H.; Hoffmann, G.; Schwingshackl, L. An updated systematic review and meta-analysis on adherence to mediterranean diet and risk of cancer. Eur. J. Nutr. 2021, 60, 1561–1586. [Google Scholar] [CrossRef] [PubMed]
- Saetan, U.; Chotigeat, W. Differentially expressed genes in the testes from early to mature development of banana shrimp (Fenneropenaeus merguiensis). PLoS ONE 2023, 18, e0292127. [Google Scholar] [CrossRef]
- Liu, P.; Li, Z.; Zhang, Q.; Qiao, J.; Zheng, C.; Zheng, W.; Zhang, H. Identification of testis development-related genes by combining Iso-Seq and RNA-Seq in Zeugodacus tau. Front. Cell Dev. Biol. 2024, 12, 1356151. [Google Scholar] [CrossRef]
- Ismail, V.; Zachariassen, L.G.; Godwin, A.; Sahakian, M.; Ellard, S.; Stals, K.L.; Baple, E.; Brown, K.T.; Foulds, N.; Wheway, G. Identification and functional evaluation of GRIA1 missense and truncation variants in individuals with ID: An emerging neurodevelopmental syndrome. Am. J. Hum. Genet. 2022, 109, 1217–1241. [Google Scholar] [CrossRef]
- Biondi, B.; De Pascale, L.; Mardirossian, M.; Di Stasi, A.; Favaro, M.; Scocchi, M.; Peggion, C. Structural and biological characterization of shortened derivatives of the cathelicidin PMAP-36. Sci. Rep. 2023, 13, 15132. [Google Scholar] [CrossRef]
- Scheenstra, M.R.; van den Belt, M.; Tjeerdsma-van Bokhoven, J.L.; Schneider, V.A.; Ordonez, S.R.; van Dijk, A.; Veldhuizen, E.J.; Haagsman, H.P. Cathelicidins PMAP-36, LL-37 and CATH-2 are similar peptides with different modes of action. Sci. Rep. 2019, 9, 4780. [Google Scholar] [CrossRef] [PubMed]
- Mosa, A.; Neunzig, J.; Gerber, A.; Zapp, J.; Hannemann, F.; Pilak, P.; Bernhardt, R. 2β- and 16β-hydroxylase activity of CYP11A1 and direct stimulatory effect of estrogens on pregnenolone formation. J. Steroid Biochem. Mol. Biol. 2015, 150, 1–10. [Google Scholar] [CrossRef]
- Kang, H.; Park, C.; Choi, Y.K.; Bae, J.; Kwon, S.; Kim, J.; Choi, C.; Seok, C.; Im, W.; Choi, H.-J. Structural basis for Y2 receptor-mediated neuropeptide Y and peptide YY signaling. Structure 2023, 31, 44–57.E46. [Google Scholar] [CrossRef]
- Yao, Y.; Yang, X.; Wang, Z. Gastrin-releasing peptide inhibits CA1 neurons via increasing inhibitory synaptic transmissions in hippocampal slices of rats. NeuroReport 2019, 30, 1048–1053. [Google Scholar] [CrossRef]
- Chen, Y.; Ning, J.; Shu, L.; Wen, L.; Yan, B.; Wang, Z.; Hu, J.; Zhou, X.; Tao, Y.; Xia, X. CPLX2 is a novel tumor suppressor and improves the prognosis in glioma. J. Neuro-Oncol. 2024, 167, 63–74. [Google Scholar] [CrossRef]
- Berding, K.; Vlckova, K.; Marx, W.; Schellekens, H.; Stanton, C.; Clarke, G.; Jacka, F.; Dinan, T.G.; Cryan, J.F. Diet and the microbiota–gut–brain axis: Sowing the seeds of good mental health. Adv. Nutr. 2021, 12, 1239–1285. [Google Scholar] [CrossRef]
- Nguyen, L.A.M.; Simons, C.W.; Thomas, R. Nootropic foods in neurodegenerative diseases: Mechanisms, challenges, and future. Transl. Neurodegener. 2025, 14, 17. [Google Scholar] [CrossRef]
- Robb, C.T.; Zhou, Y.; Felton, J.M.; Zhang, B.; Goepp, M.; Jheeta, P.; Smyth, D.J.; Duffin, R.; Vermeren, S.; Breyer, R.M. Metabolic regulation by prostaglandin E2 impairs lung group 2 innate lymphoid cell responses. Allergy 2023, 78, 714–730. [Google Scholar] [CrossRef] [PubMed]
- Romero-Ortuno, R.; Kenny, R.A.; McManus, R. Collagens and elastin genetic variations and their potential role in aging-related diseases and longevity in humans. Exp. Gerontol. 2020, 129, 110781. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Wu, Q.; Wu, F.; Zhong, Y. Differential expression of COL4A3 and collagen in upward and downward progressing types of nasopharyngeal carcinoma. Oncol. Lett. 2021, 21, 223. [Google Scholar] [CrossRef] [PubMed]
- Ipsa, E.; Cruzat, V.F.; Kagize, J.N.; Yovich, J.L.; Keane, K.N. Growth hormone and insulin-like growth factor action in reproductive tissues. Front. Endocrinol. 2019, 10, 777. [Google Scholar] [CrossRef] [PubMed]
Category | Control (OD) | Fermented Chinese Chive (LK) |
---|---|---|
Piglet birth weight (kg/head) | 1.23 ± 0.21 | 1.31 ± 0.29 |
Litter birth weight of piglets (kg) | 12.24 ± 2.29 | 13.57 ± 2.08 |
1-week survival rate (%) | 93.33 ± 3.21 | 95.65 ± 4.22 |
28 d weaning weight (kg) | 6.57 ± 1.12 b | 7.48 ± 1.74 a |
28 d litter weaning weight (kg) | 62.97 ± 4.92 b | 72.48 ± 11.01 a |
Category | Control (OD) | Fermented Chinese Chive (LK) |
---|---|---|
TP (g/L) | 62.75 ± 6.25 | 58.25 ± 6.95 |
ALB (g/L) | 31.20 ± 4.60 | 26.55 ± 1.45 |
GLUC (mmol/L) | 6.25 ± 1.19 | 5.25 ± 0.22 |
TG (mmol/L) | 1.10 ± 0.18 b | 2.07 ± 0.03 a |
TC (mmol/L) | 2.56 ± 0.36 b | 3.65 ± 0.05 a |
Category | Control (OD) | Fermented Chinese Chive (LK) |
---|---|---|
T-AOC (U/mL) | 0.40 ± 0.06 | 0.53 ± 0.08 |
CAT (U/mL) | 4.87 ± 0.48 | 4.54 ± 0.99 |
GSH-PX (U/mL) | 654.17 ± 42.69 | 664.13 ± 23.77 |
SOD (U/mL) | 49.97 ± 3.31 | 46.34 ± 3.37 |
Category | Control (OD) | Fermented Chinese Chive (LK) |
---|---|---|
IgA (μg/mL) | 271.67 ± 11.70 | 289.33 ± 17.13 |
IgM (mg/mL) | 3.87 ± 1.42 | 3.97 ± 0.12 |
IgG (mg/mL) | 15.03 ± 0.2 b | 19.87 ± 0.69 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, Y.; Kumar, S.T.; Zou, H.; Luo, T.-T.; Zhang, Y.; Zhang, Q.; Li, Y.; Niu, K.-M.; Zhai, Z.; Wang, C.; et al. Integrated Transcriptomic and Metabolomic Analysis Reveals Regulatory Effects of Fermented Chinese Chive on Early Testicular Development in Piglets. Antioxidants 2025, 14, 1056. https://doi.org/10.3390/antiox14091056
Xie Y, Kumar ST, Zou H, Luo T-T, Zhang Y, Zhang Q, Li Y, Niu K-M, Zhai Z, Wang C, et al. Integrated Transcriptomic and Metabolomic Analysis Reveals Regulatory Effects of Fermented Chinese Chive on Early Testicular Development in Piglets. Antioxidants. 2025; 14(9):1056. https://doi.org/10.3390/antiox14091056
Chicago/Turabian StyleXie, Yupeng, Suthar Teerath Kumar, Hong Zou, Ting-Ting Luo, Yunpeng Zhang, Qi Zhang, Yang Li, Kai-Min Niu, Zhenya Zhai, Chunfeng Wang, and et al. 2025. "Integrated Transcriptomic and Metabolomic Analysis Reveals Regulatory Effects of Fermented Chinese Chive on Early Testicular Development in Piglets" Antioxidants 14, no. 9: 1056. https://doi.org/10.3390/antiox14091056
APA StyleXie, Y., Kumar, S. T., Zou, H., Luo, T.-T., Zhang, Y., Zhang, Q., Li, Y., Niu, K.-M., Zhai, Z., Wang, C., Sun, W.-S., & Zhang, S.-M. (2025). Integrated Transcriptomic and Metabolomic Analysis Reveals Regulatory Effects of Fermented Chinese Chive on Early Testicular Development in Piglets. Antioxidants, 14(9), 1056. https://doi.org/10.3390/antiox14091056