Critical Review of Glyphosate-Induced Oxidative and Hormonal Testicular Disruption
Abstract
1. Introduction
2. Methodology
3. Historical Context and Emerging Concerns in Glyphosate Usage
3.1. Herbicidal Mechanism of Action and Metabolism of Glyphosate
3.2. From Fields to Bloodstreams: Toxicological Relevance of Glyphosate Exposure
3.3. Controversies, Risk Assessments, and Potential Health Impact of Glyphosate
4. The Male Reproductive System as a Target of Glyphosate
5. Effects of Glyphosate on Male Reproductive System
5.1. In Vitro Studies
5.2. In Vivo Evidence of Glyphosate-Induced Male Reproductive Toxicity
Study Model | Compound | Dose | Period | Administration Route/Administered Medium | Main Results | Ref. |
---|---|---|---|---|---|---|
Mature male Sprague–Dawley rats | Roundup Grand Travaux Plus® | 0.5% in drinking water (5000 mg/L) # | 8 days | Oral ingestion; Diluted in a deionized water suspension | Increased levels of aromatase mRNA; Increased percentage of sperm with abnormal morphology. | [83] |
Adult male Sprague–Dawley rats | Glyphosate | 5, 50, 500 mg/Kg/day * | 5 weeks | Oral gavage; Diluted in deionized water | At 500 mg/kg: ↓ total sperm count; ↓ seminal vesicle weight; No histological changes or significant effects on testosterone, estradiol, progesterone, oxidative stress markers (SOD, CAT, as well as MDA and H2O2 levels). | [85] |
Sprague–Dawley rats (sperm from F3 generation) | Glyphosate | 25 mg/Kg/day * | Gestational F0 exposure (From days 8 through 14 of gestation) | i.p. injection; Dissolved in PBS or DMSO | Sperm were collected from the lineage F3 generation males for epigenetic analysis; Identification of disease-specific differential DNA methylation regions (DMRs) and differential histone retention sites (DHRs) in sperm. | [91] |
BALB/c wild-type mice | Glyphosate | 0.5% (water) (5000 mg/L) # | 4 weeks | Oral ingestion; Diluted in drinking water | Inhibition of StAR and CYP17A1 expression. | [74] |
Prepubertal male Wistar rats | Roundup® | 5, 50 or 250 mg/Kg/day * | 30 days | Oral gavage; Diluted in water and administered once a day in a volume of 0.25 mL/100g BW | Morphological alterations in the testis; Delayed puberty onset; Decreased serum testosterone concentrations. | [68] |
Adult drakes (Anas platyrhynchos) | Roundup® | 5 or 100 mg/kg/day * | 15 days | Oral gavage; Diluted in distilled water | Morphological alterations in the seminiferous tubules, epididymal ducts, and proximal efferent; Decreased serum concentration of 17β-estradiol and testosterone; Alterations in AR expression. | [88] |
Male lizards (Podarcis siculus) | Glyphosate | 0.05 and 0.5 µg/kg body weight | 3 weeks | Oral gavage; Diluted in tap water and administered once a day 50 µL in via oral administration | Alterations in seminiferous tubules morphology; Alterations in estrogen receptors expression. | [92] |
Adult male zebrafish (Danio renio) | Glyphosate | 5 and 10 mg/L | 24–48 h | Diluted in water | Decreased sperm motility; Decreased membrane and DNA integrity; Decreased mitochondrial function at the highest concentration. | [93] |
Adult male zebrafish (Danio rerio) | Glyphosate | Estimated dose: 0.5, 5, and 50 mg/kg BW/day | 21 days | Oral (dietary exposure) | At 0.5 mg/kg BW/day (EFSA ADI): impaired germ cell differentiation; histone acetylation changes. At 50 mg/kg BW/day (EFSA NOAEL): impaired steroidogenesis, DNA damage, reduced fertility. | [94] |
Adult killifish (Jenynsia multidentata) | Roundup Original® Roundup Transorb® Roundup WG® | 0.5, 1, or 5 mg/L of glyphosate | 24–96 h | Diluted in water | Roundup Original® increased ROS production; Decreased sperm motility at all studied concentrations. | [95] |
Male Japanese quails (Coturnix japonica) | Roundup Flex® | Estimated dose: 12–20 mg/kg/day | 50 weeks | Oral ingestion; Added in the organic feed at 160 mg/kg feed | Decreased plasma testosterone levels. | [90] |
Ross 308 male roosters | Roundup® | Estimated dose: 46.8 mg/Kg/BW/ day | 5 weeks | Oral ingestion; Added in fed: glyphosate 1250 mg/kg; AMPA 0.30 mg/kg | Increased levels of glyphosate and AMPA in seminal plasma compared to blood plasma; Decreased motility in spermatozoa; Increased testosterone and oestradiol levels. | [89] |
Pregnant outbred Swiss mouse | Roundup 3 Plus® | 0.5% (water) (5000 mg/L) Estimated doses: 0.5, 5, and 50 mg/kg/day | From E10.5 to 20 dpp | Diluted in drinking water | Alteration of testis morphology in 20 days old offspring; Decreased testosterone serum concentrations in 35 days old offspring and 8 months old mice. | [64] |
Female Wistar rats | Glyphosate | 50, 150 or 450 mg/kg | During pregnancy (21–23 days) and lactation (21 days) | Oral gavage; Diluted in distilled water and administered at 10 mL/Kg BW | Adverse reproductive effects on male offspring, such as decreased sperm counts; increased sperm abnormalities; decreased serum testosterone levels; signs of spermatid degeneration. | [96] |
Female C57Bl/6 mice | Roundup Original DI® | 0.5% (5000 mg/L); Estimated dose: 420 mg/kg BW/day | From the GD4 to the end of lactation period | Diluted in drinking water | Male offspring presented delayed testicular descent; Decreased number of spermatozoa. | [97] |
4-week-old Sprague–Dawley male rats | Glyphosate | Estimated doses: 0, 2, and 50 mg/kg BW/day | 4 months | Administered in chow (0, 10, and 250 mg glyphosate/kg chow) | Decreased sperm quality and quantity; Disrupted BTB integrity; Induced testicular oxidative stress; Increased ROS levels; NOX1 upregulation; ER-α activation. | [86] |
5.3. Mechanistic Convergence of In Vivo and In Vitro Evidence
5.4. Glyphosate and Male Reproductive Toxicity: Mechanistic Insights with Emphasis on Oxidative Stress
5.5. Redox Imbalance and Antioxidant-Based Protection in Glyphosate-Induced Testicular Toxicity
6. Conclusions
7. Limitations
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ADI | Acceptable daily intake |
ADME | Absorption, distribution, metabolism, and excretion |
AMPA | Aminomethylphosphonic acid |
BAD | Associated agonist of cell death |
BAX | Pro-apoptotic Bcl-2 associated X-protein |
Bcl-2 | Protein B cell lymphoma 2 |
BTB | Blood–testis barrier |
BW | Body weight |
CAT | Catalase |
CYP11A1 | Cytochrome P450 family 11 subfamily A member 1 |
CYP17A1 | Cytochrome P450 family 17 subfamily A member 1 |
DMSO | Dimethyl sulfoxide |
EDC | Endocrine-disrupting chemical |
EFSA | European Food Safety Authority |
EPA | U.S. Environmental Protection Agency |
eIF2α | Eukaryotic Initiation Factor 2 alpha |
EPSPS | 5-enolpyruvylshikimate-3-phosphate synthase |
ER-α | Estrogen receptor alpha |
FSH | Follicle-stimulating hormone |
G6PD | Glucose-6-Phosphate Dehydrogenase |
GBH | Glyphosate-based herbicide |
γGT | Gamma-Glutamyl Transferase |
GnRH | Gonadotropin-releasing hormone |
GPx | Glutathione Peroxidase |
GR | Glutathione Reductase |
GSH | Reduced Glutathione |
GST | Glutathione S-Transferase |
HK-2 | Human renal proximal tubule cell line |
LC | Leydig cells |
LH | Luteinizing hormone |
LOH | Late-onset hypogonadism |
MPT | Mitochondrial permeability transition |
NMDA | N-methyl-D-aspartate |
NOX1 | NADPH oxidase 1 |
NR1D1 | Nuclear Receptor Subfamily 1 Group D Member 1 |
Nrf2 | Nuclear factor erythroid 2–related factor 2 |
OECD | Organization for Economic Co-operation and Development |
PBS | Phosphate buffered saline |
PERK | PKR-like Endoplasmic Reticulum Kinase |
POEA | Polyethoxylated alkylamines |
ROS | Reactive oxygen species |
SC | Sertoli cells |
SSCs | Spermatogonial stem cells |
SOD | Superoxide Dismutase |
StAR | Steroidogenic Acute Regulatory protein |
VDCC | Voltage-dependent calcium channels |
References
- Agarwal, A.; Baskaran, S.; Parekh, N.; Cho, C.-L.; Henkel, R.; Vij, S.; Arafa, M.; Selvam, M.K.P.; Shah, R. Male infertility. Lancet 2021, 397, 319–333. [Google Scholar] [CrossRef]
- Qin, L.; Jian, P.-A.; Yi, B.-J.; Ma, X.-Y.; Lu, W.-H.; Li, X.-N.; Li, J.-L. Effect of atrazine on testicular toxicity involves accommodative disorder of xenobiotic metabolizing enzymes system and testosterone synthesis in European quail (Coturnix coturnix). Ecotoxicol. Environ. Saf. 2023, 268, 115716. [Google Scholar] [CrossRef]
- El-Nagar, M.M.; Elsisi, A.E. Exposure to bromoxynil octanoate herbicide induces oxidative stress, inflammation, and apoptosis in testicular tissue via modulating NF-κB pathway. Food Chem. Toxicol. 2023, 180, 114008. [Google Scholar] [CrossRef]
- de Carvalho, R.K.; Rodrigues, T.C.; Júnior, W.D.; Mota, G.M.P.; Andersen, M.L.; Costa, R.M.E. Short-and long-term exposure to methamidophos impairs spermatogenesis in mice. Reprod. Biol. 2020, 20, 357–364. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, K.; Sani, M.A.; Safaei, P.; Rahmani, J.; Molaee-Aghaee, E.; Jafari, S.M. A systematic review and meta-analysis of the impacts of glyphosate on the reproductive hormones. Environ. Sci. Pollut. Res. 2022, 29, 62030–62041. [Google Scholar] [CrossRef]
- Benbrook, C.M. Trends in glyphosate herbicide use in the United States and globally. Environ. Sci. Eur. 2016, 28, 1–15. [Google Scholar] [CrossRef]
- Muñoz, J.P.; Bleak, T.C.; Calaf, G.M. Glyphosate and the key characteristics of an endocrine disruptor: A review. Chemosphere 2021, 270, 128619. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.; Kumar, S. Green Technologies and Environmental Sustainability, 1st ed.; Springer: Cham, Switzerland, 2017; p. 492. [Google Scholar]
- Kanissery, R.; Gairhe, B.; Kadyampakeni, D.; Batuman, O.; Alferez, F. Glyphosate: Its environmental persistence and impact on crop health and nutrition. Plants 2019, 8, 499. [Google Scholar] [CrossRef]
- Muñoz, J.P.; Silva-Pavez, E.; Carrillo-Beltrán, D.; Calaf, G.M. Occurrence and exposure assessment of glyphosate in the environment and its impact on human beings. Environ. Res. 2023, 231, 116201. [Google Scholar] [CrossRef] [PubMed]
- Richmond, M.E. Glyphosate: A review of its global use, environmental impact, and potential health effects on humans and other species. J. Environ. Stud. Sci. 2018, 8, 416–434. [Google Scholar] [CrossRef]
- Maggi, F.; Tang, F.H.; la Cecilia, D.; McBratney, A. PEST-CHEMGRIDS, global gridded maps of the top 20 crop-specific pesticide application rates from 2015 to 2025. Sci. Data 2019, 6, 170. [Google Scholar] [CrossRef]
- Herrmann, K.M.; Weaver, L.M. The shikimate pathway. Annu. Rev. Plant Biol. 1999, 50, 473–503. [Google Scholar] [CrossRef]
- Maeda, H.; Dudareva, N. The shikimate pathway and aromatic amino acid biosynthesis in plants. Annu. Rev. Plant Biol. 2012, 63, 73–105. [Google Scholar] [CrossRef]
- Schönbrunn, E.; Eschenburg, S.; Shuttleworth, W.A.; Schloss, J.V.; Amrhein, N.; Evans, J.N.; Kabsch, W. Interaction of the herbicide glyphosate with its target enzyme 5-enolpyruvylshikimate 3-phosphate synthase in atomic detail. Proc. Natl. Acad. Sci. USA 2001, 98, 1376–1380. [Google Scholar] [CrossRef] [PubMed]
- Costas-Ferreira, C.; Durán, R.; Faro, L.R. Toxic effects of glyphosate on the nervous system: A systematic review. Int. J. Mol. Sci. 2022, 23, 4605. [Google Scholar] [CrossRef] [PubMed]
- Fuchs, B.; Saikkonen, K.; Helander, M. Glyphosate-modulated biosynthesis driving plant defense and species interactions. Trends Plant Sci. 2021, 26, 312–323. [Google Scholar] [CrossRef] [PubMed]
- Van Bruggen, A.H.; Finckh, M.; He, M.; Ritsema, C.; Harkes, P.; Knuth, D.; Geissen, V. Indirect effects of the herbicide glyphosate on plant, animal and human health through its effects on microbial communities. Front. Environ. Sci. 2021, 9, 464. [Google Scholar] [CrossRef]
- Singh, S.; Kumar, V.; Gill, J.P.K.; Datta, S.; Singh, S.; Dhaka, V.; Kapoor, D.; Wani, A.B.; Dhanjal, D.S.; Kumar, M. Herbicide glyphosate: Toxicity and microbial degradation. Int. J. Environ. Res. Public Health 2020, 17, 7519. [Google Scholar] [CrossRef]
- Padilla, J.T.; Selim, H.M. Environmental behavior of glyphosate in soils. Adv. Agron. 2020, 159, 1–34. [Google Scholar]
- Mohanty, S.S.; Das, A.P. A systematic study on the microbial degradation of glyphosate: A review. Geomicrobiol. J. 2022, 39, 316–327. [Google Scholar] [CrossRef]
- Battaglin, W.A.; Meyer, M.T.; Kuivila, K.M.; Dietze, J.E. Glyphosate and its degradation product AMPA occur frequently and widely in US soils, surface water, groundwater, and precipitation. JAWRA J. Am. Water Resour. Assoc. 2014, 50, 275–290. [Google Scholar] [CrossRef]
- Maggi, F.; la Cecilia, D.; Tang, F.H.; McBratney, A. The global environmental hazard of glyphosate use. Sci. Total Environ. 2020, 717, 137167. [Google Scholar] [CrossRef]
- Viirlaid, E.; Ilisson, M.; Kopanchuk, S.; Mäeorg, U.; Rinken, A.; Rinken, T. Immunoassay for rapid on-site detection of glyphosate herbicide. Environ. Monit. Assess. 2019, 191, 507. [Google Scholar] [CrossRef]
- Rivas-Garcia, T.; Espinosa-Calderón, A.; Hernández-Vázquez, B.; Schwentesius-Rindermann, R. Overview of environmental and health effects related to glyphosate usage. Sustainability 2022, 14, 6868. [Google Scholar] [CrossRef]
- Gillezeau, C.; van Gerwen, M.; Shaffer, R.M.; Rana, I.; Zhang, L.; Sheppard, L.; Taioli, E. The evidence of human exposure to glyphosate: A review. Environ. Health 2019, 18, 2. [Google Scholar] [CrossRef]
- Geier, D.A.; Geier, M.R. Urine glyphosate exposure and serum sex hormone disruption within the 2013–2014 National Health and Nutrition Examination survey (NHANES). Chemosphere 2023, 316, 137796. [Google Scholar] [CrossRef] [PubMed]
- Connolly, A.; Leahy, M.; Jones, K.; Kenny, L.; Coggins, M.A. Glyphosate in Irish adults—A pilot study in 2017. Environ. Res. 2018, 165, 235–236. [Google Scholar] [CrossRef]
- Conrad, A.; Schröter-Kermani, C.; Hoppe, H.-W.; Rüther, M.; Pieper, S.; Kolossa-Gehring, M. Glyphosate in German adults—Time trend (2001 to 2015) of human exposure to a widely used herbicide. Int. J. Hyg. Environ. Health 2017, 220, 8–16. [Google Scholar] [CrossRef] [PubMed]
- Faniband, M.H.; Norén, E.; Littorin, M.; Lindh, C.H. Human experimental exposure to glyphosate and biomonitoring of young Swedish adults. Int. J. Hyg. Environ. Health 2021, 231, 113657. [Google Scholar] [CrossRef] [PubMed]
- Zoller, O.; Rhyn, P.; Zarn, J.A.; Dudler, V. Urine glyphosate level as a quantitative biomarker of oral exposure. Int. J. Hyg. Environ. Health 2020, 228, 113526. [Google Scholar] [CrossRef]
- IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Some Organophosphate Insecticides and Herbicides; IARC: Lyon, France, 2017. [Google Scholar]
- IARC. IARC Response to Criticisms of the Monographs and the Glyphosate Evaluation; IARC: Lyon, France, 2018. [Google Scholar]
- Weisenburger, D.D. A review and update with perspective of evidence that the herbicide glyphosate (Roundup) is a Cause of non-Hodgkin lymphoma. Clin. Lymphoma Myeloma Leuk. 2021, 21, 621–630. [Google Scholar] [CrossRef]
- Klingelhöfer, D.; Braun, M.; Brüggmann, D.; Groneberg, D.A. Glyphosate: How do ongoing controversies, market characteristics, and funding influence the global research landscape? Sci. Total Environ. 2021, 765, 144271. [Google Scholar] [CrossRef] [PubMed]
- De Batista, D.G.; De Batista, E.G.; Miragem, A.A.; Ludwig, M.S.; Heck, T.G. Disturbance of cellular calcium homeostasis plays a pivotal role in glyphosate-based herbicide-induced oxidative stress. Environ. Sci. Pollut. Res. 2023, 30, 9082–9102. [Google Scholar] [CrossRef]
- Maddalon, A.; Galbiati, V.; Colosio, C.; Mandić-Rajčević, S.; Corsini, E. Glyphosate-based herbicides: Evidence of immune-endocrine alteration. Toxicology 2021, 459, 152851. [Google Scholar] [CrossRef] [PubMed]
- Zanchi, M.M.; Marins, K.; Zamoner, A. Could pesticide exposure be implicated in the high incidence rates of depression, anxiety and suicide in farmers? A systematic review. Environ. Pollut. 2023, 331, 121888. [Google Scholar] [CrossRef] [PubMed]
- Zanchi, M.M.; Marafon, F.; Marins, K.; Bagatini, M.D.; Zamoner, A. Redox imbalance and inflammation: A link to depression risk in Brazilian pesticide-exposed farmers. Toxicology 2024, 501, 153706. [Google Scholar] [CrossRef]
- Hamdaoui, L.; Naifar, M.; Rahmouni, F.; Harrabi, B.; Ayadi, F.; Sahnoun, Z.; Rebai, T. Subchronic exposure to kalach 360 SL-induced endocrine disruption and ovary damage in female rats. Arch. Physiol. Biochem. 2018, 124, 27–34. [Google Scholar] [CrossRef]
- de Liz Oliveira Cavalli, V.L.; Cattani, D.; Heinz Rieg, C.E.; Pierozan, P.; Zanatta, L.; Parisotto, E.B.; Wilhelm Filho, D.; Mena Barreto Silva, F.R.; Pessoa-Pureur, R.; Zamoner, A. Roundup disrupts male reproductive functions by triggering calcium-mediated cell death in rat testis and Sertoli cells. Free Radic. Biol. Med. 2013, 65, 335–346. [Google Scholar] [CrossRef]
- Mesnage, R.; Defarge, N.; Spiroux de Vendômois, J.; Séralini, G.E. Potential toxic effects of glyphosate and its commercial formulations below regulatory limits. Food Chem. Toxicol. 2015, 84, 133–153. [Google Scholar] [CrossRef]
- Martins-Gomes, C.; Silva, T.L.; Andreani, T.; Silva, A.M. Glyphosate vs. glyphosate-based herbicides exposure: A review on their toxicity. J. Xenobiotics 2022, 12, 21–40. [Google Scholar] [CrossRef]
- Van Bruggen, A.H.C.; He, M.M.; Shin, K.; Mai, V.; Jeong, K.C.; Finckh, M.R.; Morris, J.G., Jr. Environmental and health effects of the herbicide glyphosate. Sci. Total Environ. 2018, 616–617, 255–268. [Google Scholar] [CrossRef]
- Tsui, M.T.; Chu, L.M. Aquatic toxicity of glyphosate-based formulations: Comparison between different organisms and the effects of environmental factors. Chemosphere 2003, 52, 1189–1197. [Google Scholar] [CrossRef]
- Makris, K.C.; Efthymiou, N.; Konstantinou, C.; Anastasi, E.; Schoeters, G.; Kolossa-Gehring, M.; Katsonouri, A. Oxidative stress of glyphosate, AMPA and metabolites of pyrethroids and chlorpyrifos pesticides among primary school children in Cyprus. Environ. Res. 2022, 212, 113316. [Google Scholar] [CrossRef]
- Nikolic, A.; Volarevic, V.; Armstrong, L.; Lako, M.; Stojkovic, M. Primordial germ cells: Current knowledge and perspectives. Stem Cells Int. 2016, 2016, 1741072. [Google Scholar] [CrossRef]
- Ravindranath, N.; Dettin, L.; Dym, M. Mammalian testes: Structure and function. In Introduction to Mammalian Reproduction, 1st ed.; Tulsiani, D., Ed.; Springer: Boston, MA, USA, 2003; pp. 1–19. [Google Scholar]
- Hedger, M.P. The immunophysiology of male reproduction. In Knobil and Neill’s Physiology of Reproduction; Academic Press: Cambridge, MA, USA, 2015; pp. 805–892. [Google Scholar]
- Rato, L.; Alves, M.G.; Socorro, S.; Duarte, A.I.; Cavaco, J.E.; Oliveira, P.F. Metabolic regulation is important for spermatogenesis. Nat. Rev. Urol. 2012, 9, 330–338. [Google Scholar] [CrossRef]
- Sofikitis, N.; Giotitsas, N.; Tsounapi, P.; Baltogiannis, D.; Giannakis, D.; Pardalidis, N. Hormonal regulation of spermatogenesis and spermiogenesis. J. Steroid Biochem. Mol. Biol. 2008, 109, 323–330. [Google Scholar] [CrossRef] [PubMed]
- Dutta, S.; Sengupta, P.; Muhamad, S. Male reproductive hormones and semen quality. Asian Pac. J. Reprod. 2019, 8, 189–194. [Google Scholar] [CrossRef]
- Alves, M.G.; Rato, L.; Carvalho, R.A.; Moreira, P.I.; Socorro, S.; Oliveira, P.F. Hormonal control of Sertoli cell metabolism regulates spermatogenesis. Cell. Mol. Life Sci. 2013, 70, 777–793. [Google Scholar] [CrossRef] [PubMed]
- Cheng, C.Y.; Mruk, D.D. A local autocrine axis in the testes that regulates spermatogenesis. Nat. Rev. Endocrinol. 2010, 6, 380–395. [Google Scholar] [CrossRef]
- Shah, W.; Khan, R.; Shah, B.; Khan, A.; Dil, S.; Liu, W.; Wen, J.; Jiang, X. The molecular mechanism of sex hormones on Sertoli cell development and proliferation. Front. Endocrinol. 2021, 12, 648141. [Google Scholar] [CrossRef]
- O’Donnell, L.; Stanton, P.; de Kretser, D.M. Endocrinology of the male reproductive system and spermatogenesis. In Endotext [Internet]; Feingold, K., Ahmed, S., Anawalt, B., Blackman, M., Boyce, A., Chrousos, G., Corpas, E., de Herder, W., Dhatariya, K., Dungan, K., et al., Eds.; MDText.com: South Dartmouth, MA, USA, 2015. [Google Scholar]
- Sokol, R.Z. Endocrinology of male infertility: Evaluation and treatment. Semin. Reprod. Med. 2009, 27, 149–158. [Google Scholar] [CrossRef]
- Romano, M.A.; Romano, R.M.; Santos, L.D.; Wisniewski, P.; Campos, D.A.; de Souza, P.B.; Viau, P.; Bernardi, M.M.; Nunes, M.T.; de Oliveira, C.A. Glyphosate impairs male offspring reproductive development by disrupting gonadotropin expression. Arch. Toxicol. 2012, 86, 663–673. [Google Scholar] [CrossRef]
- Xiao, X.; Mruk, D.D.; Wong, C.K.; Cheng, C.Y. Germ cell transport across the seminiferous epithelium during spermatogenesis. Physiology 2014, 29, 286–298. [Google Scholar] [CrossRef]
- Oatley, J.M.; Brinster, R.L. Regulation of spermatogonial stem cell self-renewal in mammals. Annu. Rev. Cell Dev. Biol. 2008, 24, 263–286. [Google Scholar] [CrossRef]
- Kubota, H.; Brinster, R.L. Spermatogonial stem cells. Biol. Reprod. 2018, 99, 52–74. [Google Scholar] [CrossRef] [PubMed]
- Hofmann, M.-C. Gdnf signaling pathways within the mammalian spermatogonial stem cell niche. Mol. Cell. Endocrinol. 2008, 288, 95–103. [Google Scholar] [CrossRef] [PubMed]
- Hai, Y.; Hou, J.; Liu, Y.; Liu, Y.; Yang, H.; Li, Z.; He, Z. The roles and regulation of Sertoli cells in fate determinations of spermatogonial stem cells and spermatogenesis. Semin. Cell Dev. Biol. 2014, 29, 66–75. [Google Scholar] [CrossRef] [PubMed]
- Pham, T.H.; Derian, L.; Kervarrec, C.; Kernanec, P.Y.; Jégou, B.; Smagulova, F.; Gely-Pernot, A. Perinatal Exposure to Glyphosate and a Glyphosate-Based Herbicide Affect Spermatogenesis in Mice. Toxicol. Sci. 2019, 169, 260–271. [Google Scholar] [CrossRef]
- Hariti, M.; Kamel, A.; Ghozlani, A.; Djennane, N.; Djenouhat, K.; Aksas, K.; Hamouli-Saïd, Z. Disruption of spermatogenesis in testicular adult Wistar rats after short-term exposure to high dose of glyphosate based-herbicide: Histopathological and biochemical changes. Reprod. Biol. 2024, 24, 100865. [Google Scholar] [CrossRef]
- Antonine, B.; Guillaume, M.; Philippe, D.; Marie-Hélène, P. Low concentrations of glyphosate alone affect the pubertal male rat meiotic step: An in vitro study. Toxicol. Vitr. 2022, 79, 105291. [Google Scholar] [CrossRef]
- Gorga, A.; Rindone, G.M.; Centola, C.L.; Sobarzo, C.; Pellizzari, E.H.; Camberos, M.d.C.; Cigorraga, S.B.; Riera, M.F.; Galardo, M.N.; Meroni, S.B. In vitro effects of glyphosate and Roundup on Sertoli cell physiology. Toxicol. Vitr. 2020, 62, 104682. [Google Scholar] [CrossRef]
- Romano, R.M.; Romano, M.A.; Bernardi, M.M.; Furtado, P.; Oliveira, C.A.d. Prepubertal exposure to commercial formulation of the herbicide glyphosate alters testosterone levels and testicular morphology. Arch. Toxicol. 2010, 84, 309–317. [Google Scholar] [CrossRef]
- Clair, É.; Mesnage, R.; Travert, C.; Séralini, G.-É. A glyphosate-based herbicide induces necrosis and apoptosis in mature rat testicular cells in vitro, and testosterone decrease at lower levels. Toxicol. Vitr. 2012, 26, 269–279. [Google Scholar] [CrossRef] [PubMed]
- Cai, W.; Ji, Y.; Song, X.; Guo, H.; Han, L.; Zhang, F.; Liu, X.; Zhang, H.; Zhu, B.; Xu, M. Effects of glyphosate exposure on sperm concentration in rodents: A systematic review and meta-analysis. Environ. Toxicol. Pharmacol. 2017, 55, 148–155. [Google Scholar] [CrossRef]
- Vanlaeys, A.; Dubuisson, F.; Seralini, G.-E.; Travert, C. Formulants of glyphosate-based herbicides have more deleterious impact than glyphosate on TM4 Sertoli cells. Toxicol. Vitr. 2018, 52, 14–22. [Google Scholar] [CrossRef]
- Lu, L.; Liu, J.-B.; Wang, J.-Q.; Lian, C.-Y.; Wang, Z.-Y.; Wang, L. Glyphosate-induced mitochondrial reactive oxygen species overproduction activates parkin-dependent mitophagy to inhibit testosterone synthesis in mouse leydig cells. Environ. Pollut. 2022, 314, 120314. [Google Scholar] [CrossRef]
- Xia, Y.; Yang, X.; Lu, J.; Xie, Q.; Ye, A.; Sun, W. The endoplasmic reticulum stress and related signal pathway mediated the glyphosate-induced testosterone synthesis inhibition in TM3 cells. Environ. Pollut. 2020, 260, 113949. [Google Scholar] [CrossRef]
- Zhao, L.; Zhang, J.; Yang, L.; Zhang, H.; Zhang, Y.; Gao, D.; Jiang, H.; Li, Y.; Dong, H.; Ma, T. Glyphosate exposure attenuates testosterone synthesis via NR1D1 inhibition of StAR expression in mouse Leydig cells. Sci. Total Environ. 2021, 785, 147323. [Google Scholar] [CrossRef]
- Walsh, L.P.; McCormick, C.; Martin, C.; Stocco, D.M. Roundup inhibits steroidogenesis by disrupting steroidogenic acute regulatory (StAR) protein expression. Environ. Health Perspect. 2000, 108, 769–776. [Google Scholar] [CrossRef] [PubMed]
- Richard, S.; Moslemi, S.; Sipahutar, H.; Benachour, N.; Seralini, G.E. Differential effects of glyphosate and roundup on human placental cells and aromatase. Environ. Health Perspect. 2005, 113, 716–720. [Google Scholar] [CrossRef] [PubMed]
- Anifandis, G.; Amiridis, G.; Dafopoulos, K.; Daponte, A.; Dovolou, E.; Gavriil, E.; Gorgogietas, V.; Kachpani, E.; Mamuris, Z.; Messini, C.I. The in vitro impact of the herbicide roundup on human sperm motility and sperm mitochondria. Toxics 2017, 6, 2. [Google Scholar] [CrossRef]
- Ferramosca, A.; Lorenzetti, S.; Di Giacomo, M.; Murrieri, F.; Coppola, L.; Zara, V. Herbicides glyphosate and glufosinate ammonium negatively affect human sperm mitochondria respiration efficiency. Reprod. Toxicol. 2021, 99, 48–55. [Google Scholar] [CrossRef]
- Anifandis, G.; Katsanaki, K.; Lagodonti, G.; Messini, C.; Simopoulou, M.; Dafopoulos, K.; Daponte, A. The effect of glyphosate on human sperm motility and sperm DNA fragmentation. Int. J. Environ. Res. Public Health 2018, 15, 1117. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Yu, H.; Zhang, J.; Shu, L. [Effects of glyphosate on apoptosis and expressions of androgen-binding protein and vimentin mRNA in mouse Sertoli cells]. Nan Fang Yi Ke Da Xue Xue Bao 2013, 33, 1709–1713. [Google Scholar] [PubMed]
- Zamoner, A.; Oliveira, P.F.; Alves, M.G. Sertoli cell lysosomes and late-onset hypogonadism. Nat. Aging 2024, 4, 618–620. [Google Scholar] [CrossRef] [PubMed]
- OECD. Guidance Document on Using Cytotoxicity Tests to Estimate Starting Doses for Acute Oral Systemic Toxicity Tests; OECD Series on Testing and Assessment, No. 129; OECD: Paris, France, 2010. [Google Scholar]
- Cassault-Meyer, E.; Gress, S.; Séralini, G.-É.; Galeraud-Denis, I. An acute exposure to glyphosate-based herbicide alters aromatase levels in testis and sperm nuclear quality. Environ. Toxicol. Pharmacol. 2014, 38, 131–140. [Google Scholar] [CrossRef]
- Nardi, J.; Moras, P.B.; Koeppe, C.; Dallegrave, E.; Leal, M.B.; Rossato-Grando, L.G. Prepubertal subchronic exposure to soy milk and glyphosate leads to endocrine disruption. Food Chem. Toxicol. 2017, 100, 247–252. [Google Scholar] [CrossRef]
- Dai, P.; Hu, P.; Tang, J.; Li, Y.; Li, C. Effect of glyphosate on reproductive organs in male rat. Acta Histochem. 2016, 118, 519–526. [Google Scholar] [CrossRef]
- Liu, J.-B.; Li, Z.-F.; Lu, L.; Wang, Z.-Y.; Wang, L. Glyphosate damages blood-testis barrier via NOX1-triggered oxidative stress in rats: Long-term exposure as a potential risk for male reproductive health. Environ. Int. 2022, 159, 107038. [Google Scholar] [CrossRef]
- Gorga, A.; Rindone, G.M.; Centola, C.L.; Sobarzo, C.M.; Pellizzari, E.H.; Camberos, M.d.C.; Marín-Briggiler, C.I.; Cohen, D.J.; Riera, M.F.; Galardo, M.N.; et al. Low Doses of Glyphosate/Roundup Alter Blood–Testis Barrier Integrity in Juvenile Rats. Front. Endocrinol. 2021, 12, 615678. [Google Scholar] [CrossRef]
- Oliveira, A.G.; Telles, L.F.; Hess, R.A.; Mahecha, G.A.; Oliveira, C.A. Effects of the herbicide Roundup on the epididymal region of drakes Anas platyrhynchos. Reprod. Toxicol. 2007, 23, 182–191. [Google Scholar] [CrossRef]
- Serra, L.; Estienne, A.; Bourdon, G.; Ramé, C.; Chevaleyre, C.; Didier, P.; Chahnamian, M.; El Balkhi, S.; Froment, P.; Dupont, J. Chronic dietary exposure of roosters to a glyphosate-based herbicide increases seminal plasma glyphosate and AMPA concentrations, alters sperm parameters, and induces metabolic disorders in the progeny. Toxics 2021, 9, 318. [Google Scholar] [CrossRef]
- Ruuskanen, S.; Rainio, M.J.; Gómez-Gallego, C.; Selenius, O.; Salminen, S.; Collado, M.C.; Saikkonen, K.; Saloniemi, I.; Helander, M. Glyphosate-based herbicides influence antioxidants, reproductive hormones and gut microbiome but not reproduction: A long-term experiment in an avian model. Environ. Pollut. 2020, 266, 115108. [Google Scholar] [CrossRef] [PubMed]
- Ben Maamar, M.; Beck, D.; Nilsson, E.E.; Kubsad, D.; Skinner, M.K. Epigenome-wide association study for glyphosate induced transgenerational sperm DNA methylation and histone retention epigenetic biomarkers for disease. Epigenetics 2021, 16, 1150–1167. [Google Scholar] [CrossRef]
- Verderame, M.; Chianese, T.; Rosati, L.; Scudiero, R. Molecular and histological effects of glyphosate on testicular tissue of the lizard Podarcis siculus. Int. J. Mol. Sci. 2022, 23, 4850. [Google Scholar] [CrossRef]
- Lopes, F.M.; Junior, A.S.V.; Corcini, C.D.; da Silva, A.C.; Guazzelli, V.G.; Tavares, G.; da Rosa, C.E. Effect of glyphosate on the sperm quality of zebrafish Danio rerio. Aquat. Toxicol. 2014, 155, 322–326. [Google Scholar] [CrossRef]
- Lombó, M.; Giommi, C.; Amoresano, A.; Pinto, G.; Illiano, A.; Sella, F.; Serpico, S.; Habibi, H.; Maradonna, F.; Carnevali, O. The impact of glyphosate at regulatory "safe" levels on reproductive health: Cellular and molecular disruptions on male germ line. Environ. Int. 2025, 200, 109544. [Google Scholar] [CrossRef] [PubMed]
- Sánchez, J.A.A.; Junior, A.S.V.; Corcini, C.D.; da Silva, J.C.; Primel, E.G.; Caldas, S.; Klein, R.D.; Martins, C.D.M.G. Effects of Roundup formulations on biochemical biomarkers and male sperm quality of the livebearing Jenynsia multidentata. Chemosphere 2017, 177, 200–210. [Google Scholar] [CrossRef] [PubMed]
- Dallegrave, E.; Mantese, F.D.; Oliveira, R.T.; Andrade, A.J.; Dalsenter, P.R.; Langeloh, A. Pre-and postnatal toxicity of the commercial glyphosate formulation in Wistar rats. Arch. Toxicol. 2007, 81, 665–673. [Google Scholar] [CrossRef]
- Teleken, J.L.; Gomes, E.C.Z.; Marmentini, C.; Moi, M.B.; Ribeiro, R.A.; Balbo, S.L.; Amorim, E.M.P.; Bonfleur, M.L. Glyphosate-based herbicide exposure during pregnancy and lactation malprograms the male reproductive morphofunction in F1 offspring. J. Dev. Orig. Health Dis. 2020, 11, 146–153. [Google Scholar] [CrossRef]
- Cattani, D.; Pierozan, P.; Zamoner, A.; Brittebo, E.; Karlsson, O. Long-Term Effects of Perinatal Exposure to a Glyphosate-Based Herbicide on Melatonin Levels and Oxidative Brain Damage in Adult Male Rats. Antioxidants 2023, 12, 1825. [Google Scholar] [CrossRef]
- Rocha, C.S.; Rato, L.; Martins, A.D.; Alves, M.G.; Oliveira, P.F. Melatonin and male reproductive health: Relevance of darkness and antioxidant properties. Curr. Mol. Med. 2015, 15, 299–311. [Google Scholar] [CrossRef]
- Cattani, D.; Cesconetto, P.A.; Tavares, M.K.; Parisotto, E.B.; De Oliveira, P.A.; Rieg, C.E.H.; Leite, M.C.; Prediger, R.D.S.; Wendt, N.C.; Razzera, G.; et al. Developmental exposure to glyphosate-based herbicide and depressive-like behavior in adult offspring: Implication of glutamate excitotoxicity and oxidative stress. Toxicology 2017, 387, 67–80. [Google Scholar] [CrossRef] [PubMed]
- Cattani, D.; Cavalli, V.L.d.L.O.; Rieg, C.E.H.; Domingues, J.T.; Dal-Cim, T.; Tasca, C.I.; Silva, F.R.M.B.; Zamoner, A. Mechanisms underlying the neurotoxicity induced by glyphosate-based herbicide in immature rat hippocampus: Involvement of glutamate excitotoxicity. Toxicology 2014, 320, 34–45. [Google Scholar] [CrossRef] [PubMed]
- Rieg, C.E.H.; Cattani, D.; Naspolini, N.F.; Cenci, V.H.; de Liz Oliveira Cavalli, V.L.; Jacques, A.V.; Nascimento, M.; Dalmarco, E.M.; De Moraes, A.C.R.; Santos-Silva, M.C.; et al. Perinatal exposure to a glyphosate pesticide formulation induces offspring liver damage. Toxicol. Appl. Pharmacol. 2022, 454, 116245. [Google Scholar] [CrossRef]
- Santillo, A.; Falvo, S.; Chieffi, P.; Burrone, L.; Chieffi Baccari, G.; Longobardi, S.; Di Fiore, M.M. D-aspartate affects NMDA receptor-extracellular signal-regulated kinase pathway and upregulates androgen receptor expression in the rat testis. Theriogenology 2014, 81, 744–751. [Google Scholar] [CrossRef]
- Gao, H.; Chen, J.; Ding, F.; Chou, X.; Zhang, X.; Wan, Y.; Hu, J.; Wu, Q. Activation of the N-methyl-d-aspartate receptor is involved in glyphosate-induced renal proximal tubule cell apoptosis. J. Appl. Toxicol. 2019, 39, 1096–1107. [Google Scholar] [CrossRef] [PubMed]
- George, J.; Shukla, Y. Emptying of intracellular calcium pool and oxidative stress imbalance are associated with the glyphosate-induced proliferation in human skin keratinocytes HaCaT cells. Int. Sch. Res. Not. 2013, 2013, 825180. [Google Scholar] [CrossRef]
- Giorgi, C.; Marchi, S.; Pinton, P. The machineries, regulation and cellular functions of mitochondrial calcium. Nat. Rev. Mol. Cell Biol. 2018, 19, 713–730. [Google Scholar] [CrossRef]
- Galaris, D.; Barbouti, A.; Pantopoulos, K. Iron homeostasis and oxidative stress: An intimate relationship. Biochim. Biophys. Acta-Mol. Cell Res. 2019, 1866, 118535. [Google Scholar] [CrossRef]
- Liu, J.; Yang, G.; Zhang, H. Glyphosate-triggered hepatocyte ferroptosis via suppressing Nrf2/GSH/GPX4 axis exacerbates hepatotoxicity. Sci. Total Environ. 2023, 862, 160839. [Google Scholar] [CrossRef]
- Bianco, C.D.; Ourique, F.; Dos Santos, D.C.; Pedrosa, R.C.; Kviecisnki, M.R.; Zamoner, A. Glyphosate-induced glioblastoma cell proliferation: Unraveling the interplay of oxidative, inflammatory, proliferative, and survival signaling pathways. Environ. Pollut. 2023, 338, 122695. [Google Scholar] [CrossRef]
- Agarwal, A.; Saleh, R.A.; Bedaiwy, M.A. Role of reactive oxygen species in the pathophysiology of human reproduction. Fertil. Steril. 2003, 79, 829–843. [Google Scholar] [CrossRef] [PubMed]
- Sikka, S.C. Relative impact of oxidative stress on male reproductive function. Curr. Med. Chem. 2001, 8, 851–862. [Google Scholar] [CrossRef]
- Chen, K.; Liu, J.B.; Tie, C.Z.; Wang, L. Trehalose prevents glyphosate-induced testicular damage in roosters via its antioxidative properties. Res. Vet. Sci. 2022, 152, 314–322. [Google Scholar] [CrossRef]
- Liu, J.; Li, K.; Li, S.; Yang, G.; Lin, Z.; Miao, Z. Grape seed-derived procyanidin inhibits glyphosate-induced hepatocyte ferroptosis via enhancing crosstalk between Nrf2 and FGF12. Phytomedicine 2024, 123, 155278. [Google Scholar] [CrossRef] [PubMed]
- Hashim, A.R.; Bashir, D.W.; Yasin, N.A.E.; Rashad, M.M.; El-Gharbawy, S.M. Ameliorative effect of N-acetylcysteine on the testicular tissue of adult male albino rats after glyphosate-based herbicide exposure. J. Biochem. Mol. Toxicol. 2022, 36, e22997. [Google Scholar] [CrossRef] [PubMed]
- Turkmen, R.; Birdane, Y.O.; Demirel, H.H.; Yavuz, H.; Kabu, M.; Ince, S. Antioxidant and cytoprotective effects of N-acetylcysteine against subchronic oral glyphosate-based herbicide-induced oxidative stress in rats. Environ. Sci. Pollut. Res. Int. 2019, 26, 11427–11437. [Google Scholar] [CrossRef]
- Ghafarizadeh, A.; Malmir, M.; Naderi Noreini, S.; Faraji, T. Antioxidant effects of N-acetylcysteine on the male reproductive system: A systematic review. Andrologia 2021, 53, e13898. [Google Scholar] [CrossRef]
- Bhardwaj, J.K.; Kumar, V.; Saraf, P.; Panchal, H.; Rathee, V.; Sachdeva, S.N. Efficacy of N-acetyl- l-cysteine against glyphosate induced oxidative stress and apoptosis in testicular germ cells preventing infertility. J. Biochem. Mol. Toxicol. 2022, 36, e22979. [Google Scholar] [CrossRef] [PubMed]
- Bhardwaj, J.K.; Kumar, V.; Panchal, H.; Sachdeva, S.N. Transmission electron microscopic analysis of glyphosate induced cytotoxicity and its attenuation by N-acetyl-L-cysteine in caprine testicular germ cells in vitro. Ultrastruct. Pathol. 2021, 45, 407–413. [Google Scholar] [CrossRef] [PubMed]
- Güngör, Ş.; Kırıkkulak, M.; Denk, B.; Gülhan, M.F.; Güleş, Ö.; Budak, D.; İnanç, M.E.; Avdatek, F.; Yeni, D.; Taşdemir, U. Potential Protective Effect of Hesperidin (Vitamin P) against Glyphosate-Induced Spermatogenesis Damage in Male Rats: Biochemical and Histopathological Findings on Reproductive Parameters. Life 2024, 14, 1190. [Google Scholar] [CrossRef] [PubMed]
- El Hamzaoui, A.; Lamtai, M.; El Brouzi, M.Y.; Azirar, S.; Rezqaoui, A.; Zghari, O.; El Aoufi, M.; Nouar, R.; El-Hessni, A.; Mesfioui, A. Melatonin attenuates affective disorders and cognitive deficits induced by perinatal exposure to a glyphosate-based herbicide via antioxidant pathway in adult male and female rats. Int. J. Dev. Neurosci. 2024, 84, 745–757. [Google Scholar] [CrossRef]
- Ikpeme, E.V.; Udensi, O.; Ekaluo, U.B.; Solomon, T.O. Efficacy of Ascorbic Acid in Reducing Glyphosate-Induced Toxicity in Rats. Biotechnol. J. Int. 2012, 2, 157–168. [Google Scholar] [CrossRef]
Study Model | Compound | Concentration Used | Period of Treatment | Main Results | Ref. |
---|---|---|---|---|---|
TM3 mouse Leydig cell line | Glyphosate | 0.5 mg/L 5 mg/L | 24 h | Inhibition of testosterone secretion; Downregulation of testosterone synthase StAR and CYP17A1; Endoplasmic reticulum stress; Activation of PERK/eIF2α signaling pathway. | [73] |
TM3 mouse Leydig cell line | Glyphosate | 10 µM (equivalent to 1.69 mg/L) | 24 h | Inhibition of testosterone synthesis; Suppression of StAR and CYP11A1 expression levels; Overproduction of mitochondrial ROS; Ultrastructural damage; Disruption of mitochondrial dynamics. | [72] |
TM3 mouse Leydig cell line | Glyphosate | 0.1 mM (equivalent to 16.9 mg/L) | 24 and 48 h | Decrease in StAR and CYP17A1 expression levels; Upregulation of NR1D1 levels. | [74] |
MA-10 Leydig tumor cell line | Roundup® | 25 µg/mL (equivalent to 25 mg/L) | 2–4 h | Inhibition of steroidogenesis. | [75] |
Sertoli cells isolated from 20-day-old Sprague–Dawley rats | Glyphosate Roundup® | 10, 100, and 1000 ppm (equivalent to 10, 100, and 1000 mg/L) | 48 h | Signal delocalization from membrane to cytoplasm. | [67] |
Testis and Primary culture of Sertoli cells isolated from 30-day-old Wistar rats | Glyphosate Roundup® | 0.036 g/L Roundup or glyphosate (equivalent to 36 mg/L) | 30 min | Increased 45Ca2+ uptake; Necrosis; Oxidative stress: GSH depletion, lipid peroxidation, protein carbonylation, and enhanced activity of antioxidant enzymes (GPx, GR, GST, G6PD, γGT, CAT, SOD); Mechanism of toxicity dependent on PLC/PKC, PI3K, ERK1/2, and p38MAPK pathways; Effects of the pesticide were prevented by antioxidants Trolox and ascorbic acid. | [41] |
Mature rat fresh testicular cells from Sprague–Dawley rats (Leydig, Sertoli, and germ cells) | Glyphosate Roundup® | 1–10,000 ppm (equivalent to 1–10,000 mg/L) | 1–48 h | Induced necrosis and apoptosis in LC; Reduced caspases 3 and 7 activity; Decreased testosterone production. | [69] |
TM4 mouse Sertoli cell line | Glyphosate Roundup Bioforce® Glyphogan | 10 ppm–1000 ppm (equivalent to 10–1000 mg/L) | 24 h | Reduced cell viability; Mitochondrial dysfunction; Oxidative stress; Lipid droplet accumulation. | [71] |
Human semen from 66 volunteers living in an agricultural region in Greece | Roundup® | 1 mg/L | 1 h | Reduced sperm progressive motility; Mitochondrial dysfunction. | [77] |
Human spermatozoa | Glyphosate | 0.1–1000 nM (equivalent to 0.0000169–0.169 mg/L) | 1 h | Disruption of mitochondrial respiration efficiency. | [78] |
Human semen from 30 healthy volunteered men living in an agricultural region in Greece | Glyphosate | 0.36 mg/L | 1 h | Decreased progressive motility of sperm; Reduced motility; DNA fragmentation | [79] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Branco, S.R.; Alves, M.G.; Oliveira, P.F.; Zamoner, A. Critical Review of Glyphosate-Induced Oxidative and Hormonal Testicular Disruption. Antioxidants 2025, 14, 1036. https://doi.org/10.3390/antiox14091036
Branco SR, Alves MG, Oliveira PF, Zamoner A. Critical Review of Glyphosate-Induced Oxidative and Hormonal Testicular Disruption. Antioxidants. 2025; 14(9):1036. https://doi.org/10.3390/antiox14091036
Chicago/Turabian StyleBranco, Sara R., Marco G. Alves, Pedro Fontes Oliveira, and Ariane Zamoner. 2025. "Critical Review of Glyphosate-Induced Oxidative and Hormonal Testicular Disruption" Antioxidants 14, no. 9: 1036. https://doi.org/10.3390/antiox14091036
APA StyleBranco, S. R., Alves, M. G., Oliveira, P. F., & Zamoner, A. (2025). Critical Review of Glyphosate-Induced Oxidative and Hormonal Testicular Disruption. Antioxidants, 14(9), 1036. https://doi.org/10.3390/antiox14091036