Implications of CD36 Gene Variants in Oxidative Stress Markers Between Mexican Patients with Type 2 Diabetes and ST-Segment Elevation Myocardial Infarction
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population
- Inclusion Criteria:
- Non-Inclusion Criteria:
- Exclusion Criteria:
2.2. Variables and Definitions for Study Participants
2.3. Ethical Approval and Informed Consent
2.4. Biochemical Measurements
2.5. Genotyping
2.6. Measurement of sCD36, oxLDL, and MDA-LDL
2.7. Statistical Analysis
3. Results
4. Discussion
4.1. Clinical and Biochemical Characteristics of the Study Population
4.2. CD36 Gene Variants and Haplotype Distribution
4.3. Soluble CD36 as a Potential Biomarker
4.4. Associations Between CD36 Variants and sCD36 Levels
4.5. Interpretation of Oxidative Biomarker Results
4.6. Study Limitations and Future Directions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
STEMI | ST elevation myocardial infarction |
NSTEMI | Non-ST elevation myocardial infarction |
References
- GBD 2021 Diabetes Collaborators. Global, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: A systematic analysis for the Global Burden of Disease Study 2021. Lancet 2023, 402, 203–234. [Google Scholar] [CrossRef]
- Milazzo, V.; Cosentino, N.; Genovese, S.; Campodonico, J.; Mazza, M.; De Metrio, M.; Marenzi, M. Diabetes Mellitus and Acute Myocardial Infarction: Impact on Short and Long-Term Mortality. In Diabetes: From Research to Clinical Practice; Islam, S., Ed.; Advances in Experimental Medicine and Biology; Springer: Cham, Switzerland, 2020; Volume 4, pp. 153–169. [Google Scholar] [CrossRef]
- Megaly, M.; Schmidt, C.W.; Dworak, M.W.; Garberich, R.; Stanberry, L.; Sharkey, S.; Brilakis, E.S.; Aguirre, F.V.; Pacheco, R.; Tannenbaum, M.; et al. Diabetic Patients Who Present With ST-Elevation Myocardial Infarction. Cardiovasc. Revasc. Med. 2022, 38, 89–93. [Google Scholar] [CrossRef]
- Goshima, Y.; Okada, Y.; Torimoto, K.; Fujino, Y.; Tanaka, Y. Changes in endothelial function during educational hospitalization and the contributor to improvement of endothelial function in type 2 diabetes mellitus. Sci. Rep. 2020, 10, 15384. [Google Scholar] [CrossRef]
- Orekhov, A.; Bobryshev, Y.; Sobenin, I.; Melnichenko, A.; Chistiakov, D. Modified Low Density Lipoprotein and Lipoprotein-Containing Circulating Immune Complexes as Diagnostic and Prognostic Biomarkers of Atherosclerosis and Type 1 Diabetes Macrovascular Disease. Int. J. Mol. Sci. 2014, 15, 12807–12841. [Google Scholar] [CrossRef]
- Bonilha, I.; Hajduch, E.; Luchiari, B.; Nadruz, W.; Le Goff, W.; Sposito, A.C. The Reciprocal Relationship between LDL Metabolism and Type 2 Diabetes Mellitus. Metabolites 2021, 11, 807. [Google Scholar] [CrossRef]
- Mauricio, D.; Alonso, N.; Gratacòs, M. Chronic Diabetes Complications: The Need to Move beyond Classical Concepts. Trends Endocrinol. Metab. 2020, 31, 287–295. [Google Scholar] [CrossRef]
- Glatz, J.F.C.; Heather, L.C.; Luiken, J.J.F.P. CD36 as a gatekeeper of myocardial lipid metabolism and therapeutic target for metabolic disease. Physiol. Rev. 2024, 104, 727–764. [Google Scholar] [CrossRef] [PubMed]
- Hatmal, M.M.; Alshaer, W.; Mahmoud, I.S.; Al-Hatamleh, M.A.I.; Al-Ameer, H.J.; Abuyaman, O.; Zihlif, M.; Mohamud, R.; Darras, M.; Al Shhab, M.; et al. Investigating the association of CD36 gene polymorphisms (rs1761667 and rs1527483) with T2DM and dyslipidemia: Statistical analysis, machine learning based prediction, and meta-analysis. PLoS ONE 2021, 16, e0257857. [Google Scholar] [CrossRef] [PubMed]
- Luiken, J.J.F.P.; Nabben, M.; Neumann, D.; Glatz, J.F.C. Understanding the distinct subcellular trafficking of CD36 and GLUT4 during the development of myocardial insulin resistance. Biochim. Biophys. Acta Mol. Basis Dis. 2020, 1866, 165775. [Google Scholar] [CrossRef]
- Wondmkun, Y.T. Obesity, Insulin resistance, and Type 2 diabetes: Associations and Therapeutic Implications. Diabetes Metab. Syndr. Obes. 2020, 13, 3611–3616. [Google Scholar] [CrossRef] [PubMed]
- Kotani, K.; Tashiro, J.; Yamazaki, K.; Nakamura, Y.; Miyazaki, A.; Bujo, H.; Saito, Y.; Kanno, T.; Maekawa, M. Investigation of MDA-LDL (malondialdehyde-modified low-density lipoprotein) as a prognostic marker for coronary artery disease in patients with type 2 diabetes mellitus. Clin. Chim. Acta Int. J. Clin. Chem. 2015, 450, 145–150. [Google Scholar] [CrossRef] [PubMed]
- Ito, T.; Ichihashi, T.; Fujita, H.; Sugiura, T.; Ohte, N. Impact of malondialdehyde-modified low-density lipoprotein on coronary plaque vulnerability in patients not receiving lipid-lowering therapy: A whole coronary analysis with multislice-computed tomography. Heart Vessels 2017, 33, 351–357. [Google Scholar] [CrossRef]
- Love-Gregory, L.; Sherva, R.; Schappe, T.; Qi, J.S.; McCrea, J.; Klein, S.; Connelly, M.A.; Abumrad, N.A. Common CD36 SNPs reduce protein expression and may contribute to a protective atherogenic profile. Hum. Mol. Genetics 2010, 20, 193–201. [Google Scholar] [CrossRef]
- Yazdanpanah, Z.; Mozaffari-Khosravi, H.; Mirzaei, M.; Sheikhha, M.H.; Salehi-Abargouei, A. A systematic review and meta-analysis on the association between CD36 rs1761667 polymorphism and cardiometabolic risk factors in adults. Sci. Rep. 2022, 12, 5916. [Google Scholar] [CrossRef]
- Griffin, E.; Re, A.; Hamel, N.; Fu, C.; Bush, H.; McCaffrey, T.; Asch, A.S. A link between diabetes and atherosclerosis: Glucose regulates expression of CD36 at the level of translation. Nat. Med. 2001, 7, 840–846. [Google Scholar] [CrossRef]
- Arnett, D.K.; Blumenthal, R.S.; Albert, M.A.; Buroker, A.B.; Goldberger, Z.D.; Hahn, E.J.; Himmelfarb, C.D.; Khera, A.; Lloyd-Jones, D.; McEvoy, J.W.; et al. 2019 ACC/AHA Guideline on the Primary Prevention of Cardiovascular Disease. A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation. Circulation 2019, 140, e596–e646. [Google Scholar] [CrossRef]
- Levitan, I.; Volkov, S.; Subbaiah, P.V. Oxidized LDL: Diversity, Patterns of Recognition, and Pathophysiology. Antioxidants 2010, 13, 39–75. [Google Scholar] [CrossRef]
- American Diabetes Association Professional Practice Committee. Introduction and Methodology: Standards of Care in Diabetes. Diabetes Care 2024, 47 (Suppl. S1), S1–S350. [Google Scholar] [CrossRef]
- Campos-Nonato, I.; Oviedo-Solís, C.; Vargas-Meza, J.; Ramírez-Villalobos, D.; Medina-García, C.; Gómez-Álvarez, E.; Hernández-Barrera, L.; Barquera, S. Prevalencia, tratamiento y control de la hipertensión arterial en adultos mexicanos: Resultados de la Ensanut 2022. Salud Pública México 2023, 65, s169–s180. [Google Scholar] [CrossRef] [PubMed]
- Ortiz-Rodríguez, M.A.; Bautista-Ortiz, L.F.; Villa, A.R.; Antúnez-Bautista, P.K.; Aldaz-Rodríguez, M.V.; Estrada-Luna, D.; Denova-Gutiérrez, E.; Camacho-Díaz, B.H.; Martínez-Salazar, M.F. Prevalence of Metabolic Syndrome Among Mexican Adults. Metab. Syndr. Relat. Disord. 2022, 20, 264–272. [Google Scholar] [CrossRef] [PubMed]
- Kumar, N.; Kumar, S.; Kumar, A.; Shakoor, T.; Rizwan, A. Lipid Profile of Patients with Acute Myocardial Infarction (AMI). Cureus 2019, 11, e4265. [Google Scholar] [CrossRef] [PubMed]
- Ramos-Lopez, O.; Roman, S.; Martinez-Lopez, E.; Fierro, N.A.; Gonzalez-Aldaco, K.; Jose-Abrego, A.; Panduro, A. CD36genetic variation, fat intake and liver fibrosis in chronic hepatitis C virus infection. World J. Hepatol. 2016, 8, 1067. [Google Scholar] [CrossRef] [PubMed]
- Bartoszewicz, M.; Rać, M. Prognostic Value of the Selected Polymorphisms in the CD36 Gene in the Domain-Encoding Lipid-Binding Region at a 10-Year Follow-Up for Early-Onset CAD Patients. Biomedicines 2023, 11, 1332. [Google Scholar] [CrossRef]
- Wojcik, G.L.; Graff, M.; Nishimura, K.K.; Tao, R.; Haessler, J.; Gignoux, C.R.; Highland, H.M.; Patel, Y.M.; Sorokin, E.P.; Avery, C.L.; et al. Genetic analyses of diverse populations improves discovery for complex traits. Nature 2019, 570, 514–518. [Google Scholar] [CrossRef]
- Martín-Márquez, B.T.; Sandoval-Garcia, F.; Vazquez-Del Mercado, M.; Martínez-García, E.; Corona-Meraz, F.; Fletes-Rayas, A.; Zavaleta-Muñiz, S. Contribution of rs3211938 polymorphism at CD36 to glucose levels, oxidized low-density lipoproteins, insulin resistance, and body mass index in Mexican mestizos with type-2 diabetes from western Mexico. Nutr. Hosp. Órgano Of. Soc. Española Nutr. Clínica Y Metab. (SENPE) 2021, 38, 742–748. [Google Scholar] [CrossRef]
- Martínez-Cortés, G.; Salazar-Flores, J.; Fernández-Rodríguez, L.G.; Rubi-Castellanos, R.; Rodríguez-Loya, C.; Velarde-Félix, J.S.; Muñoz-Valle, J.F.; Parra-Rojas, I.; Rangel-Villalobos, H. Admixture and population structure in Mexican-Mestizos based on paternal lineages. J. Hum. Genet. 2012, 57, 568–574. [Google Scholar] [CrossRef]
- Handberg, A.; Højlund, K.; Gastaldelli, A.; Flyvbjerg, A.; Dekker, J.M.; Petrie, J.; Piatti, P.; Beck-Nielsen, H.; the RISC Investigators. Plasma sCD36 is associated with markers of atherosclerosis, insulin resistance and fatty liver in a nondiabetic healthy population. J. Intern. Med. 2011, 271, 294–304. [Google Scholar] [CrossRef]
- Jiang, X.; Zhao, X.; Chen, R.; Jiang, Q.; Zhou, B. Plasma soluble CD36, carotid intima-media thickness and cognitive function in patients with type 2 diabetes. Arch. Med. Sci. 2016, 5, 1031–1039. [Google Scholar] [CrossRef]
- Rać, M.; Krzystolik, A.; Rać, M.; Safranow, K.; Dziedziejko, V.; Goschorska, M.; Poncyljusz, W.; Chlubek, D. Is plasma-soluble CD36 associated with density of atheromatous plaque and ankle–brachial index in early-onset coronary artery disease patients? Kardiol. Polska 2015, 74, 570–575. [Google Scholar] [CrossRef]
- Puchałowicz, K.; Rać, M.E. The Multifunctionality of CD36 in Diabetes Mellitus and Its Complications—Update in Pathogenesis, Treatment and Monitoring. Cells 2020, 9, 1877. [Google Scholar] [CrossRef] [PubMed]
- Castelblanco, E.; Sanjurjo, L.; Falguera, M.; Hernández, M.; Fernandez-Real, J.-M.; Sarrias, M.-R.; Alonso, N.; Mauricio, D. Circulating Soluble CD36 is Similar in Type 1 and Type 2 Diabetes Mellitus versus Non-Diabetic Subjects. J. Clin. Med. 2019, 8, 710. [Google Scholar] [CrossRef]
- Kashyap, S.R.; Ioachimescu, A.G.; Gornik, H.L.; Gopan, T.; Davidson, M.B.; Makdissi, A.; Major, J.; Febbraio, M.; Silverstein, R.L. Lipid-induced Insulin Resistance Is Associated With Increased Monocyte Expression of Scavenger Receptor CD36 and Internalization of Oxidized LDL. Obesity 2009, 17, 2142–2148. [Google Scholar] [CrossRef]
- Lyu, Q.; Lin, Y.; Pan, Y.; Guan, X.; Ji, X.; Peng, M.; Li, Q.; Wang, Z.; Zhang, Z.; Luo, Z.; et al. The polymorphism analysis for CD36 among platelet donors. Sci. Rep. 2024, 14, 8534. [Google Scholar] [CrossRef]
- Davies, S.S.; Roberts, L.J. F2-isoprostanes as an indicator and risk factor for coronary heart disease. Free. Radic. Biol. Med. 2011, 50, 559–566. [Google Scholar] [CrossRef] [PubMed]
- Zinellu, A.; Paliogiannis, P.; Usai, M.F.; Carru, C.; Mangoni, A.A. Effect of statin treatment on circulating malondialdehyde concentrations: A systematic review and meta-analysis. Ther. Adv. Chronic Dis. 2019, 10, 2040622319862714. [Google Scholar] [CrossRef] [PubMed]
- Geshi, E.; Irie, S.; Katagiri, T.; Goto, S. Usefulness of oxidized-LDL-cholesterol (MDA-LDL) evaluations to estimate cardiovascular organ damage in the early stage of Hypertension and Metabolic Syndrome. J. Hypertens. 2011, 29, e324. [Google Scholar] [CrossRef]
- Muda, P.; Kampus, P.; Teesalu, R.; Zilmer, K.; Ristimäe, T.; Fischer, K.; Zilmer, M. Effects of amlodipine and candesartan on oxidized LDL level in patients with mild to moderate essential hypertension. Blood Press. 2006, 15, 313–318. [Google Scholar] [CrossRef]
Variables | STE-T2DM (n = 400) n (%) | T2DM (n = 400) n (%) | p |
---|---|---|---|
Age, years | 63 (57–66) | 58 (52–64) | ns |
Male Female | 329 (82.25) 71 (17.75) | 194 (48.50) 206 (51.50) | 0.0001 |
Sedentarism | 260 (65.00) | 92 (23.00) | 0.0001 |
MeS | 260 (65.00) | 272 (68.00) | ns |
Dyslipidemia | 228 (57.00) | 116 (29.00) | 0.002 |
Smoking | 301 (75.25) | 153 (38.25) | 0.001 |
Overweight | 172 (43.00) | 37 (9.25) | ns |
Obesity | 100 (25.00) | 31 (7.75) | ns |
Hypertension | 200 (50.00) | 87 (21.75) | 0.0001 |
STE-T2DM | T2DM | Reference Values | p | |
---|---|---|---|---|
Cholesterol | 108.5 (77–126) | 156 (138–185) | 150–199 (mg/dL) | <0.0001 |
Glucose | 187.5 (162–211) | 159 (118–244) | 75–105 (mg/dL) | ns |
Triacylglycerols | 84 (76–93) | 114 (84–147) | ≤250 (mg/dL) | 0.00056 |
LDL | 39 (28–52) | 68 (52–95) | <130 (mg/dL) | <0.0001 |
HDL | 18 (12–24) | 34 (25–51) | >40 (mg/dL) | <0.0001 |
CRP | 24 (8.4–33.7) | 3 (1–4) | 1–10 (mg/dL) | <0.0001 |
Apo-AI | 156 (138–170) | 194 (173–210) | 94–178 (mg/dL) | <0.0001 |
Apo-B | 121 (101–152) | 163 (148–184) | 63–133 (mg/dL) | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parra-Reyna, B.; Roa-Bruzón, I.Y.; García-Garduño, T.C.; Duany-Almira, L.F.; Quintero-Ramos, A.; Padilla-Gutiérrez, J.R.; Flores-Salinas, H.E.; Valdes-Alvarado, E.; Muñoz-Valle, J.F.; Valle, Y. Implications of CD36 Gene Variants in Oxidative Stress Markers Between Mexican Patients with Type 2 Diabetes and ST-Segment Elevation Myocardial Infarction. Antioxidants 2025, 14, 999. https://doi.org/10.3390/antiox14080999
Parra-Reyna B, Roa-Bruzón IY, García-Garduño TC, Duany-Almira LF, Quintero-Ramos A, Padilla-Gutiérrez JR, Flores-Salinas HE, Valdes-Alvarado E, Muñoz-Valle JF, Valle Y. Implications of CD36 Gene Variants in Oxidative Stress Markers Between Mexican Patients with Type 2 Diabetes and ST-Segment Elevation Myocardial Infarction. Antioxidants. 2025; 14(8):999. https://doi.org/10.3390/antiox14080999
Chicago/Turabian StyleParra-Reyna, Brenda, Iliannis Yisel Roa-Bruzón, Texali Candelaria García-Garduño, Luis Felix Duany-Almira, Antonio Quintero-Ramos, Jorge Ramón Padilla-Gutiérrez, Héctor Enrique Flores-Salinas, Emmanuel Valdes-Alvarado, José Francisco Muñoz-Valle, and Yeminia Valle. 2025. "Implications of CD36 Gene Variants in Oxidative Stress Markers Between Mexican Patients with Type 2 Diabetes and ST-Segment Elevation Myocardial Infarction" Antioxidants 14, no. 8: 999. https://doi.org/10.3390/antiox14080999
APA StyleParra-Reyna, B., Roa-Bruzón, I. Y., García-Garduño, T. C., Duany-Almira, L. F., Quintero-Ramos, A., Padilla-Gutiérrez, J. R., Flores-Salinas, H. E., Valdes-Alvarado, E., Muñoz-Valle, J. F., & Valle, Y. (2025). Implications of CD36 Gene Variants in Oxidative Stress Markers Between Mexican Patients with Type 2 Diabetes and ST-Segment Elevation Myocardial Infarction. Antioxidants, 14(8), 999. https://doi.org/10.3390/antiox14080999