Past and Present of the Antioxidant Studies in Chile: A Bibliometric Study from 2000 to 2024
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussions
3.1. Trends and Growth in Publications Around the Antioxidant Studies
3.2. Research in Chile and Its Collaboration Networks Around the Antioxidant Studies
3.3. Leading Institutions in the Antioxidant Studies in Chile
3.4. Authors and Co-Cited Authors Most Relevant in the Study of Antioxidant in Chile
3.4.1. Authorship Analysis of the 2000–2004 Period
3.4.2. Authorship Analysis of the 2005–2009 Period
3.4.3. Authorship Analysis of the 2010–2014 Period
3.4.4. Authorship Analysis of the 2015–2019 Period
3.4.5. Authorship Analysis of the 2020–2024 Period
3.5. Leading Journals in the Antioxidant Field
3.6. Analysis of Keywords
3.6.1. Thematic Analysis of the 2000–2004 Period
3.6.2. Thematic Analysis of the 2005–2009 Period
3.6.3. Thematic Analysis of the 2010–2014 Period
3.6.4. Thematic Analysis of the 2015–2019 Period
3.6.5. Analysis of the 2020–2024 Period
3.7. Antioxidant Research in Preclinical and Clinical Studies
3.7.1. Analysis of the 2015–2019 Period
3.7.2. Analysis of the 2020–2024 Period
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Unwin, N.; Alberti, K.G.M.M. Chronic Non-Communicable Diseases. Ann. Trop. Med. Parasitol. 2006, 100, 455–464. [Google Scholar] [CrossRef]
- Bazzano, L.A.; Serdula, M.K.; Liu, S. Dietary Intake of Fruits and Vegetables and Risk of Cardiovascular Disease. Curr. Atheroscler. Rep. 2003, 5, 492–499. [Google Scholar] [CrossRef] [PubMed]
- Riboli, E.; Norat, T. Epidemiologic Evidence of the Protective Effect of Fruit and Vegetables on Cancer Risk. Am. J. Clin. Nutr. 2003, 78, 559S–569S. [Google Scholar] [CrossRef] [PubMed]
- Jurgens, G.; Hoff, H.; Chisolm, G.; Esterbauer, H. Modification of Human-Serum Low-Density-Lipoprotein by Oxidation—Characterization and Pathophysiological Implications. Chem. Phys. Lipids 1987, 45, 315–336. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Johanning, G.; Odell, B. Phenolic-Acid Content of Food Plants and Possible Nutritional Implications. J. Agric. Food Chem. 1986, 34, 48–51. [Google Scholar] [CrossRef]
- Pandey, K.B.; Rizvi, S.I. Plant Polyphenols as Dietary Antioxidants in Human Health and Disease. Oxid. Med. Cell. Longev. 2009, 2, 270–278. [Google Scholar] [CrossRef]
- Avila, F.; Theoduloz, C.; Lopez-Alarcon, C.; Dorta, E.; Schmeda-Hirschmann, G. Cytoprotective Mechanisms Mediated by Polyphenols from Chilean Native Berries against Free Radical-Induced Damage on AGS Cells. Oxid. Med. Cell. Longev. 2017, 2017, 9808520. [Google Scholar] [CrossRef]
- Alarcon, E.; Campos, A.M.; Edwards, A.M.; Lissi, E.; Lopez-Alarcon, C. Antioxidant Capacity of Herbal Infusions and Tea Extracts: A Comparison of ORAC-Fluorescein and ORAC-Pyrogallol Red Methodologies. Food Chem. 2008, 107, 1114–1119. [Google Scholar] [CrossRef]
- Donthu, N.; Kumar, S.; Mukherjee, D.; Pandey, N.; Lim, W.M. How to Conduct a Bibliometric Analysis: An Overview and Guidelines. J. Bus. Res. 2021, 133, 285–296. [Google Scholar] [CrossRef]
- Aria, M.; Cuccurullo, C. Bibliometrix: An R-Tool for Comprehensive Science Mapping Analysis. J. Informetr. 2017, 11, 959–975. [Google Scholar] [CrossRef]
- ClarivateTM. Web of Science. Available online: https://www.webofknowledge.com/ (accessed on 7 April 2025).
- Mukherjee, D.; Lim, W.M.; Kumar, S.; Donthu, N. Guidelines for Advancing Theory and Practice through Bibliometric Research. J. Bus. Res. 2022, 148, 101–115. [Google Scholar] [CrossRef]
- Price, D. General Theory of Bibliometric and Other Cumulative Advantage Processes. J. Am. Soc. Inf. Sci. 1976, 27, 292–306. [Google Scholar] [CrossRef]
- Dobrov, G.; Randolph, R.; Rauch, W. New Options for Team Research Via International Computer-Networks. Scientometrics 1979, 1, 387–404. [Google Scholar] [CrossRef]
- van Eck, N.J.; Waltman, L. Software Survey: VOSviewer, a Computer Program for Bibliometric Mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef]
- Bulick, S. Book Use as a Bradford-Zipf Phenomenon. Coll. Res. Libr. 1978, 39, 215–219. [Google Scholar] [CrossRef]
- Desai, N.; Veras, L.; Gosain, A. Using Bradford’s Law of Scattering to Identify the Core Journals of Pediatric Surgery. J. Surg. Res. 2018, 229, 90–95. [Google Scholar] [CrossRef] [PubMed]
- Hirsch, J.E. An Index to Quantify an Individual’s Scientific Research Output. Proc. Natl. Acad. Sci. USA 2005, 102, 16569–16572. [Google Scholar] [CrossRef] [PubMed]
- Crespo, N.; Simoes, N. Publication Performance Through the Lens of the H-Index: How Can We Solve the Problem of the Ties? Soc. Sci. Q. 2019, 100, 2495–2506. [Google Scholar] [CrossRef]
- Zipf, G.K. Selected Studies of the Principle of Relative Frequency in Language; Harvard University Press: Cambridge, MA, USA, 2013; ISBN 978-0-674-43492-9. [Google Scholar]
- Merediz-Sola, I.; Bariviera, A.F. A Bibliometric Analysis of Bitcoin Scientific Production. Res. Int. Bus. Financ. 2019, 50, 294–305. [Google Scholar] [CrossRef]
- Perra, M.; Manca, M.L. Recent Trends in Nanoantioxidants. Antioxidants 2025, 14, 207. [Google Scholar] [CrossRef]
- Jomova, K.; Raptova, R.; Alomar, S.Y.; Alwasel, S.H.; Nepovimova, E.; Kuca, K.; Valko, M. Reactive Oxygen Species, Toxicity, Oxidative Stress, and Antioxidants: Chronic Diseases and Aging. Arch. Toxicol. 2023, 97, 2499–2574. [Google Scholar] [CrossRef] [PubMed]
- Instituto Nacional de Propiedad Industrial, INAPI Estadísticas Patente Experto. Available online: https://inapi.cl/estadisticas/patentes/experto (accessed on 21 June 2025).
- Du, C.; Yu, Y.; Fan, X. Analysis of Research Trends (2014–2023) on Oxidative Stress and Male Fertility Based on Bibliometrics and Knowledge Graphs-Web of Science Core Collection. Front. Endocrinol. 2024, 15, 1326402. [Google Scholar] [CrossRef] [PubMed]
- Bunout, D.; Garrido, A.; Suazo, M.; Kauffman, R.; Venegas, P.; de la Maza, P.; Petermann, M.; Hirsch, S. Effects of Supplementation with Folic Acid and Antioxidant Vitamins on Homocysteine Levels and LDL Oxidation in Coronary Patients. Nutrition 2000, 16, 107–110. [Google Scholar] [CrossRef] [PubMed]
- Carrasco-Pozo, C.; Morales, P.; Gotteland, M. Polyphenols Protect the Epithelial Barrier Function of Caco-2 Cells Exposed to Indomethacin through the Modulation of Occludin and Zonula Occludens-1 Expression. J. Agric. Food Chem. 2013, 61, 5291–5297. [Google Scholar] [CrossRef]
- Chiarello, D.; Abad, C.; Rojas, D.; Toledo, F.; Vazquez, C.M.; Mate, A.; Sobrevia, L.; Marin, R. Oxidative Stress: Normal Pregnancy versus Preeclampsia. Biochim. Biophys. Acta-Mol. Basis Dis. 2020, 1866, 165354. [Google Scholar] [CrossRef]
- Genskowsky, E.; Puente, L.A.; Perez-Alvarez, J.A.; Fernandez-Lopez, J.; Munoz, L.A.; Viuda-Martos, M. Assessment of Antibacterial and Antioxidant Properties of Chitosan Edible Films Incorporated with Maqui Berry (Aristotelia chilensis). LWT-Food Sci. Technol. 2015, 64, 1057–1062. [Google Scholar] [CrossRef]
- Simirgiotis, M.J.; Silva, M.; Becerra, J.; Schmeda-Hirschmann, G. Direct Characterisation of Phenolic Antioxidants in Infusions from Four Mapuche Medicinal Plants by Liquid Chromatography with Diode Array Detection (HPLC-DAD) and Electrospray Ionisation Tandem Mass Spectrometry (HPLC-ESI-MS). Food Chem. 2012, 131, 318–327. [Google Scholar] [CrossRef]
- Torres, P.; Avila, J.G.; de Vivar, A.R.; García, A.M.; Marín, J.C.; Aranda, E.; Céspedes, C.L. Antioxidant and Insect Growth Regulatory Activities of Stilbenes and Extracts from Yucca Periculosa. Phytochemistry 2003, 64, 463–473. [Google Scholar] [CrossRef]
- Santiani, A.; Evangelista, S.; Sepulveda, N.; Risopatron, J.; Villegas, J.; Sanchez, R. Addition of Superoxide Dismutase Mimics during Cooling Process Prevents Oxidative Stress and Improves Semen Quality Parameters in Frozen/Thawed Ram Spermatozoa. Theriogenology 2014, 82, 884–889. [Google Scholar] [CrossRef]
- Simirgiotis, M.J.; Theoduloz, C.; Caligari, P.D.S.; Schmeda-Hirschmann, G. Comparison of Phenolic Composition and Antioxidant Properties of Two Native Chilean and One Domestic Strawberry Genotypes. Food Chem. 2009, 113, 377–385. [Google Scholar] [CrossRef]
- Tapia, A.; Rodriguez, J.; Theoduloz, C.; Lopez, S.; Feresin, G.E.; Schmeda-Hirschmann, G. Free Radical Scavengers and Antioxidants from Baccharis grisebachii. J. Ethnopharmacol. 2004, 95, 155–161. [Google Scholar] [CrossRef]
- Simirgiotis, M.J.; Schmeda-Hirschmann, G.; Borquez, J.; Kennelly, E.J. The Passiflora tripartita (Banana Passion) Fruit: A Source of Bioactive Flavonoid C-Glycosides Isolated by HSCCC and Characterized by HPLC-DAD-ESI/MS/MS. Molecules 2013, 18, 1672–1692. [Google Scholar] [CrossRef]
- Mocan, A.; Moldovan, C.; Zengin, G.; Bender, O.; Locatelli, M.; Simirgiotis, M.; Atalay, A.; Vodnar, D.C.; Rohn, S.; Crisan, G. UHPLC-QTOF-MS Analysis of Bioactive Constituents from Two Romanian Goji (Lycium barbarum L.) Berries Cultivars and Their Antioxidant, Enzyme Inhibitory, and Real-Time Cytotoxicological Evaluation. Food Chem. Toxicol. 2018, 115, 414–424. [Google Scholar] [CrossRef]
- Pérez, D.D.; Strobel, P.; Foncea, R.; Díez, M.S.; Vásquez, L.; Urquiaga, I.; Castillo, O.; Cuevas, A.; San Martín, A.; Leighton, F. Wine, Diet, Antioxidant Defenses, and Oxidative Damage; Das, D.K., Ursini, F., Eds.; New York Academy of Sciences: New York, NY, USA, 2002; Volume 957, ISBN 978-1-57331-376-6. [Google Scholar]
- Hötzer, K.A.; Henriquez, C.; Pino, E.; Miranda-Rottmann, S.; Aspillaga, A.; Leighton, F.; Lissi, E. Antioxidant and Pro-Oxidant Effect of Red Wine and Its Fractions on Cu(II) Induced LDL Oxidation Evaluated by Absorbance and Chemiluminescence Measurements. Free Radic. Res. 2005, 39, 175–183. [Google Scholar] [CrossRef] [PubMed]
- Jiménez, I.; Lissi, E.A.; Speisky, H. Free-Radical-Induced Inactivation of Lysozyme and Carbonyl Residue Generation in Protein Are Not Necessarily Associated. Arch. Biochem. Biophys. 2000, 381, 247–252. [Google Scholar] [CrossRef] [PubMed]
- Speisky, H.; Gomez, M.; Carrasco-Pozo, C.; Pastene, E.; Lopez-Alarcon, C.; Olea-Azar, C. Cu(I)-Glutathione Complex: A Potential Source of Superoxide Radicals Generation. Bioorg. Med. Chem. 2008, 16, 6568–6574. [Google Scholar] [CrossRef] [PubMed]
- Speisky, H.; Gomez, M.; Burgos-Bravo, F.; Lopez-Alarcon, C.; Jullian, C.; Olea-Azar, C.; Aliaga, M.E. Generation of Superoxide Radicals by Copper-Glutathione Complexes: Redox-Consequences Associated with Their Interaction with Reduced Glutathione. Bioorg. Med. Chem. 2009, 17, 1803–1810. [Google Scholar] [CrossRef]
- Lopez-Alarcon, C.; Speisky, H.; Lissi, E. Antioxidant Effect of 5-Amino Salicylic Acid on Copper-Mediated LDL Oxidation. Biol. Res. 2007, 40, 155–162. [Google Scholar] [CrossRef]
- Pino, E.; Campos, A.M.; Lopez-Alarcon, C.; Aspee, A.; Lissi, E. Free Radical Scavenging Capacity of Hydroxycinnamic Acids and Related Compounds. J. Phys. Org. Chem. 2006, 19, 759–764. [Google Scholar] [CrossRef]
- Perez-Cruz, F.; Serra, S.; Delogu, G.; Lapier, M.; Diego Maya, J.; Olea-Azar, C.; Santana, L.; Uriarte, E. Antitrypanosomal and Antioxidant Properties of 4-Hydroxycoumarins Derivatives. Bioorg. Med. Chem. Lett. 2012, 22, 5569–5573. [Google Scholar] [CrossRef]
- Chiappa, R.; García, A.L.M. Equidad y capital humano avanzado: Análisis sobre las políticas de formación de doctorado en Chile. Psicoperspectivas 2015, 14, 17–30. [Google Scholar] [CrossRef]
- Costamagna, M.S.; Zampini, I.C.; Alberto, M.R.; Cuello, S.; Torres, S.; Perez, J.; Quispe, C.; Schmeda-Hirschmann, G.; Isla, M.I. Polyphenols Rich Fraction from Geoffroea decorticans Fruits Flour Affects Key Enzymes Involved in Metabolic Syndrome, Oxidative Stress and Inflammatory Process. Food Chem. 2016, 190, 392–402. [Google Scholar] [CrossRef] [PubMed]
- Torres-Carro, R.; Ines Isla, M.; Thomas-Valdes, S.; Jimenez-Aspee, F.; Schmeda-Hirschmann, G.; Rosa Alberto, M. Inhibition of of Pro-Inflammatory Enzymes by Medicinal Plants from the Argentinean Highlands (Puna). J. Ethnopharmacol. 2017, 205, 57–68. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, K.; Ah-Hen, K.S.; Vega-Galvez, A.; Vasquez, V.; Quispe-Fuentes, I.; Rojas, P.; Lemus-Mondaca, R. Changes in Bioactive Components and Antioxidant Capacity of Maqui, Aristotelia chilensis [Mol] Stuntz, Berries during Drying. LWT-Food Sci. Technol. 2016, 65, 537–542. [Google Scholar] [CrossRef]
- Ramirez, J.E.; Zambrano, R.; Sepulveda, B.; Kennelly, E.J.; Simirgiotis, M.J. Anthocyanins and Antioxidant Capacities of Six Chilean Berries by HPLC-HR-ESI-ToF-MS. Food Chem. 2015, 176, 106–114. [Google Scholar] [CrossRef] [PubMed]
- Paz Carcamo, M.; Reyes-Diaz, M.; Rengel, Z.; Alberdi, M.; Omena-Garcia, R.P.; Nunes-Nesi, A.; Inostroza-Blancheteau, C. Aluminum Stress Differentially Affects Physiological Performance and Metabolic Compounds in Cultivars of Highbush Blueberry. Sci. Rep. 2019, 9, 11275. [Google Scholar] [CrossRef]
- Carrasco-Pozo, C.; Tan, K.N.; Reyes-Farias, M.; De La Jara, N.; Ngo, S.T.; Fernando Garcia-Diaz, D.; Llanos, P.; Jose Cires, M.; Borges, K. The Deleterious Effect of Cholesterol and Protection by Quercetin on Mitochondrial Bioenergetics of Pancreatic β-Cells, Glycemic Control and Inflammation: In Vitro and in Vivo Studies. Redox Biol. 2016, 9, 229–243. [Google Scholar] [CrossRef]
- Silva, W.; Fernanda Torres-Gatica, M.; Oyarzun-Ampuero, F.; Silva-Weiss, A.; Robert, P.; Cofrades, S.; Gimenez, B. Double Emulsions as Potential Fat Replacers with Gallic Acid and Quercetin Nanoemulsions in the Aqueous Phases. Food Chem. 2018, 253, 71–78. [Google Scholar] [CrossRef]
- Angel Rincon-Cervera, M.; Valenzuela, R.; Catalina Hernandez-Rodas, M.; Marambio, M.; Espinosa, A.; Mayer, S.; Romero, N.; Barrera, C.; Valenzuela, A.; Videla, L.A. Supplementation with Antioxidant-Rich Extra Virgin Olive Oil Prevents Hepatic Oxidative Stress and Reduction of Desaturation Capacity in Mice Fed a High-Fat Diet: Effects on Fatty Acid Composition in Liver and Extrahepatic Tissues. Nutrition 2016, 32, 1254–1267. [Google Scholar] [CrossRef]
- Escobar-Avello, D.; Lozano-Castellon, J.; Mardones, C.; Perez, A.J.; Saez, V.; Riquelme, S.; von Baer, D.; Vallverdu-Queralt, A. Phenolic Profile of Grape Canes: Novel Compounds Identified by LC-ESI-LTQ-Orbitrap-MS. Molecules 2019, 24, 3763. [Google Scholar] [CrossRef]
- Chirinos, R.; Pedreschi, R.; Velásquez-Sánchez, M.; Aguilar-Galvez, A.; Campos, D. In Vitro Antioxidant and Angiotensin I-Converting Enzyme Inhibitory Properties of Enzymatically Hydrolyzed Quinoa (Chenopodium quinoa) and Kiwicha (Amaranthus caudatus) Proteins. Cereal Chem. 2020, 97, 949–957. [Google Scholar] [CrossRef]
- Abdalla, G.; Mussagy, C.U.; Sant’Ana Pegorin Brasil, G.; Scontri, M.; da Silva Sasaki, J.C.; Su, Y.; Bebber, C.; Rocha, R.R.; de Sousa Abreu, A.P.; Goncalves, R.P.; et al. Eco-Sustainable Coatings Based on Chitosan, Pectin, and Lemon Essential Oil Nanoemulsion and Their Effect on Strawberry Preservation. Int. J. Biol. Macromol. 2023, 249, 126016. [Google Scholar] [CrossRef] [PubMed]
- Vidal, C.; Ruiz, A.; Ortiz, J.; Larama, G.; Perez, R.; Santander, C.; Ferreira, P.A.A.; Cornejo, P. Antioxidant Responses of Phenolic Compounds and Immobilization of Copper in Imperata cylindrica, a Plant with Potential Use for Bioremediation of Cu Contaminated Environments. Plants 2020, 9, 1397. [Google Scholar] [CrossRef] [PubMed]
- Merino, O.; Dumorne, K.; Leidy, S.-V.; Figueroa, E.; Valdebenito, I.; Farias, J.G.; Risopatron, J. Short-Term Storage Sperm of Coho Salmon (Oncorhynchus kisutch) at 4 °C: Effect of Sperm: Extender Dilution Ratios and Antioxidant Butyl-Hydroxytoluene (BHT) on Sperm Function. Cryobiology 2020, 95, 44–50. [Google Scholar] [CrossRef]
- Larrazábal-Fuentes, M.J.; Fernández-Galleguillos, C.; Palma-Ramírez, J.; Romero-Parra, J.; Sepúlveda, K.; Galetovic, A.; González, J.; Paredes, A.; Borquez, J.; Simirgiotis, M.; et al. Chemical Profiling, Antioxidant, Anticholinesterase, and Antiprotozoal Potentials of Artemisia copa Phil. (Asteraceae). Front. Pharmacol. 2020, 11, 594174. [Google Scholar] [CrossRef]
- Faba, S.; Arrieta, M.P.; Romero, J.; Agüero, Á.; Torres, A.; Martínez, S.; Rayón, E.; Galotto, M.J. Biodegradable Nanocomposite Poly(Lactic Acid) Foams Containing Carvacrol-Based Cocrystal Prepared by Supercritical CO2 Processing for Controlled Release in Active Food Packaging. Int. J. Biol. Macromol. 2024, 254, 127793. [Google Scholar] [CrossRef]
- Figueroa, F.A.; Abdala-Díaz, R.T.; Pérez, C.; Casas-Arrojo, V.; Nesic, A.; Tapia, C.; Durán, C.; Valdes, O.; Parra, C.; Bravo-Arrepol, G.; et al. Sulfated Polysaccharide Extracted from the Green Algae Codium bernabei: Physicochemical Characterization and Antioxidant, Anticoagulant and Antitumor Activity. Mar. Drugs 2022, 20, 458. [Google Scholar] [CrossRef]
- Nile, A.; Nile, S.H.; Cespedes-Acuña, C.L.; Oh, J.-W. Spiraeoside Extracted from Red Onion Skin Ameliorates Apoptosis and Exerts Potent Antitumor, Antioxidant and Enzyme Inhibitory Effects. Food Chem. Toxicol. 2021, 154, 112327. [Google Scholar] [CrossRef]
- Shahidi, F.; Pinaffi-Langley, A.C.C.; Fuentes, J.; Speisky, H.; de Camargo, A.C. Vitamin E as an Essential Micronutrient for Human Health: Common, Novel, and Unexplored Dietary Sources. Free Radic. Biol. Med. 2021, 176, 312–321. [Google Scholar] [CrossRef]
- Rodriguez-Rojas, F.; Lopez-Marras, A.; Celis-Pla, P.S.M.; Munoz, P.; Garcia-Bartolomei, E.; Valenzuela, F.; Orrego, R.; Carratala, A.; Luis Sanchez-Lizaso, J.; Saez, C.A. Ecophysiological and Cellular Stress Responses in the Cosmopolitan Brown Macroalga Ectocarpus as Biomonitoring Tools for Assessing Desalination Brine Impacts. Desalination 2020, 489, 114527. [Google Scholar] [CrossRef]
- Jara-Gutiérrez, C.; Mercado, L.; Paz-Araos, M.; Howard, C.; Parraga, M.; Escobar, C.; Mellado, M.; Madrid, A.; Montenegro, I.; Santana, P.; et al. Oxidative Stress Promotes Cytotoxicity in Human Cancer Cell Lines Exposed to Escallonia spp. Extracts. BMC Compleme. Med. Ther. 2024, 24, 38. [Google Scholar] [CrossRef]
- Galarce-Bustos, O.; Fernández-Ponce, M.T.; Montes, A.; Pereyra, C.; Casas, L.; Mantell, C.; Aranda, M. Usage of Supercritical Fluid Techniques to Obtain Bioactive Alkaloid-Rich Extracts from Cherimoya Peel and Leaves: Extract Profiles and Their Correlation with Antioxidant Properties and Acetylcholinesterase and α-Glucosidase Inhibitory Activities. Food Funct. 2020, 11, 4224–4235. [Google Scholar] [CrossRef]
- Lizama, C.; Romero-Parra, J.; Andrade, D.; Riveros, F.; Bórquez, J.; Ahmed, S.; Venegas-Salas, L.; Cabalín, C.; Simirgiotis, M.J. Analysis of Carotenoids in Haloarchaea Species from Atacama Saline Lakes by High Resolution UHPLC-Q-Orbitrap-Mass Spectrometry: Antioxidant Potential and Biological Effect on Cell Viability. Antioxidants 2021, 10, 1230. [Google Scholar] [CrossRef]
- Urquiaga, I.; Leighton, F. Plant Polyphenol Antioxidants and Oxidative Stress. Biol. Res. 2000, 33, 55–64. [Google Scholar] [CrossRef]
- Evelson, P.; Travacio, M.; Repetto, M.; Escobar, J.; Llesuy, S.; Lissi, E.A. Evaluation of Total Reactive Antioxidant Potential (TRAP) of Tissue Homogenates and Their Cytosols. Arch. Biochem. Biophys. 2001, 388, 261–266. [Google Scholar] [CrossRef]
- Videla, L.A.; Rodrigo, R.; Orellana, M.; Fernandez, V.; Tapia, G.; Quiñones, L.; Varela, N.; Contreras, J.; Lazarte, R.; Csendes, A.; et al. Oxidative Stress-Related Parameters in the Liver of Non-Alcoholic Fatty Liver Disease Patients. Clin. Sci. 2004, 106, 261–268. [Google Scholar] [CrossRef] [PubMed]
- Waterhouse, A.L.; Laurie, V.F. Oxidation of Wine Phenolics: A Critical Evaluation and Hypotheses. Am. J. Enol. Vitic. 2006, 57, 306–313. [Google Scholar] [CrossRef]
- Saenz, C.; Tapia, S.; Chavez, J.; Robert, P. Microencapsulation by Spray Drying of Bioactive Compounds from Cactus Pear (Opuntia ficus-indica). Food Chem. 2009, 114, 616–622. [Google Scholar] [CrossRef]
- Vega-Galvez, A.; Di Scala, K.; Rodriguez, K.; Lemus-Mondaca, R.; Miranda, M.; Lopez, J.; Perez-Won, M. Effect of Air-Drying Temperature on Physico-Chemical Properties, Antioxidant Capacity, Colour and Total Phenolic Content of Red Pepper (Capsicum annuum, L. Var. Hungarian). Food Chem. 2009, 117, 647–653. [Google Scholar] [CrossRef]
- Millaleo, R.; Reyes-Diaz, M.; Ivanov, A.G.; Mora, M.L.; Alberdi, M. Manganese as Essential and Toxic Element for Plants: Transport, Accumulation and Resistance Mechanisms. J. Soil Sci. Plant Nutr. 2010, 10, 476–494. [Google Scholar] [CrossRef]
- Galvez Ranilla, L.; Kwon, Y.-I.; Apostolidis, E.; Shetty, K. Phenolic Compounds, Antioxidant Activity and in Vitro Inhibitory Potential against Key Enzymes Relevant for Hyperglycemia and Hypertension of Commonly Used Medicinal Plants, Herbs and Spices in Latin America. Bioresour. Technol. 2010, 101, 4676–4689. [Google Scholar] [CrossRef]
- Rodrigo, R.; Fernandez-Gajardo, R.; Gutierrez, R.; Matamala, J.M.; Carrasco, R.; Miranda-Merchak, A.; Feuerhake, W. Oxidative Stress and Pathophysiology of Ischemic Stroke: Novel Therapeutic Opportunities. CNS Neurol. Disord.-Drug Targets 2013, 12, 698–714. [Google Scholar] [CrossRef]
- Ince, C.; Mayeux, P.R.; Trung, N.; Gomez, H.; Kellum, J.A.; Ospina-Tascon, G.A.; Hernandez, G.; Murray, P.; De Backer, D. The Endothelium in Sepsis. Shock 2016, 45, 259–270. [Google Scholar] [CrossRef]
- Barratt, C.L.R.; Björndahl, L.; De Jonge, C.J.; Lamb, D.J.; Osorio Martini, F.; McLachlan, R.; Oates, R.D.; van der Poel, S.; St John, B.; Sigman, M.; et al. The Diagnosis of Male Infertility: An Analysis of the Evidence to Support the Development of Global WHO Guidance—Challenges and Future Research Opportunities. Hum. Reprod. Update 2017, 23, 660–680. [Google Scholar] [CrossRef] [PubMed]
- Miller, V.; Mente, A.; Dehghan, M.; Rangarajan, S.; Zhang, X.; Swaminathan, S.; Dagenais, G.; Gupta, R.; Mohan, V.; Lear, S.; et al. Fruit, Vegetable, and Legume Intake, and Cardiovascular Disease and Deaths in 18 Countries (PURE): A Prospective Cohort Study. Lancet 2017, 390, 2037–2049. [Google Scholar] [CrossRef] [PubMed]
- Salehi, B.; Machin, L.; Monzote, L.; Sharifi-Rad, J.; Ezzat, S.M.; Salem, M.A.; Merghany, R.M.; El Mahdy, N.M.; Kilic, C.S.; Sytar, O.; et al. Therapeutic Potential of Quercetin: New Insights and Perspectives for Human Health. ACS Omega 2020, 5, 11849–11872. [Google Scholar] [CrossRef]
- Sendra, M.; Pereiro, P.; Yeste, M.P.; Mercado, L.; Figueras, A.; Novoa, B. Size Matters: Zebrafish (Danio rerio) as a Model to Study Toxicity of Nanoplastics from Cells to the Whole Organism. Environ. Pollut. 2021, 268, 115769. [Google Scholar] [CrossRef] [PubMed]
- Molecules. Available online: https://www.mdpi.com/journal/molecules/apc (accessed on 22 May 2025).
- Antioxidants. Available online: https://www.mdpi.com/journal/antioxidants/apc (accessed on 22 May 2025).
- Plants. Available online: https://www.mdpi.com/journal/plants/apc (accessed on 22 May 2025).
- ANID. Concurso de Proyectos Fondecyt de Postdoctorado 2026. Available online: https://anid.cl/concursos/concurso-fondecyt-de-postdoctorado-2026/ (accessed on 22 May 2025).
- ANID. Concurso de Proyectos Fondecyt de Iniciación en Investigación 2026. Available online: https://anid.cl/concursos/concurso-de-proyectos-fondecyt-de-iniciacion-en-investigacion-2026/ (accessed on 22 May 2025).
- ANID. Concurso de Proyectos Fondecyt Regular 2026. Available online: https://anid.cl/concursos/concurso-de-proyectos-fondecyt-regular-2026/ (accessed on 22 May 2025).
- Fontúrbel, F.E.; Celis-Diez, J.L. The MDPIzation of Chilean Science: A Wake-up Call about How We Are Conducting Research and Using Public Resources. Rev. Chil. Hist. Nat. 2025, 98, 1. [Google Scholar] [CrossRef]
- Food Chemistry. Available online: https://www.sciencedirect.com/journal/food-chemistry (accessed on 22 May 2025).
- Journal of the Chilean Chemical Society. Available online: https://jcchems.com/index.php/JCCHEMS (accessed on 22 May 2025).
- UNESCO. Acceso Abierto. Available online: https://www.unesco.org/es/open-access (accessed on 22 May 2025).
- Batty, M.; Bennett, M.R.; Yu, E. The Role of Oxidative Stress in Atherosclerosis. Cells 2022, 11, 3843. [Google Scholar] [CrossRef]
- Santanam, N.; Penumetcha, M.; Speisky, H.; Parthasarathya, S. A Novel Alkaloid Antioxidant, Boldine and Synthetic Antioxidant, Reduced Form of RU486, Inhibit the Oxidation of LDL in-Vitro and Atherosclerosis in Vivo in LDLR (-/-) Mice. Atherosclerosis 2004, 173, 203–210. [Google Scholar] [CrossRef]
- Schmeda-Hirschmann, G.; Rodriguez, J.A.; Theoduloz, C.; Astudillo, S.L.; Feresin, G.E.; Tapia, A. Free-Radical Scavengers and Antioxidants from Peumus boldus Mol. (“Boldo”). Free Radic. Res. 2003, 37, 447–452. [Google Scholar] [CrossRef]
- Olivari, F.A.; Hernandez, P.P.; Allende, M.L. Acute Copper Exposure Induces Oxidative Stress and Cell Death in Lateral Line Hair Cells of Zebrafish Larvae. Brain Res. 2008, 1244, 1–12. [Google Scholar] [CrossRef]
- Cespedes, C.L.; El-Hafidi, M.; Pavon, N.; Alarcon, J. Antioxidant and Cardioprotective Activities of Phenolic Extracts from Fruits of Chilean Blackberry Aristotelia chilensis (Elaeocarpaceae), Maqui. Food Chem. 2008, 107, 820–829. [Google Scholar] [CrossRef]
- Suwalsky, M.; Vargas, P.; Avello, M.; Villena, F.; Sotomayor, C.P. Human Erythrocytes Are Affected in Vitro by Flavonoids of Aristotelia chilensis (Maqui) Leaves. Int. J. Pharm. 2008, 363, 85–90. [Google Scholar] [CrossRef]
- López-Alarcón, C.; Aspée, A.; Henríquez, C.; Campos, A.M.; Lissi, E.A. Interaction and Reactivity of Urocanic Acid towards Peroxyl Radicals. Redox Rep. 2005, 10, 227–234. [Google Scholar] [CrossRef]
- Munteanu, I.G.; Apetrei, C. Analytical Methods Used in Determining Antioxidant Activity: A Review. Int. J. Mol. Sci. 2021, 22, 3380. [Google Scholar] [CrossRef]
- Salgado, P.; Melin, V.; Contreras, D.; Moreno, Y.; Mansilla, H.D. Fenton Reaction Driven by Iron Ligands. J. Chil. Chem. Soc. 2013, 58, 2096–2101. [Google Scholar] [CrossRef]
- Richter, H.G.; Camm, E.J.; Modi, B.N.; Naeem, F.; Cross, C.M.; Cindrova-Davies, T.; Spasic-Boskovic, O.; Dunster, C.; Mudway, I.S.; Kelly, F.J.; et al. Ascorbate Prevents Placental Oxidative Stress and Enhances Birth Weight in Hypoxic Pregnancy in Rats. J. Physiol. 2012, 590, 1377–1387. [Google Scholar] [CrossRef] [PubMed]
- Zheng, M.; Liu, Y.; Zhang, G.; Yang, Z.; Xu, W.; Chen, Q. The Applications and Mechanisms of Superoxide Dismutase in Medicine, Food, and Cosmetics. Antioxidants 2023, 12, 1675. [Google Scholar] [CrossRef]
- Brito, A.; Areche, C.; Sepulveda, B.; Kennelly, E.J.; Simirgiotis, M.J. Anthocyanin Characterization, Total Phenolic Quantification and Antioxidant Features of Some Chilean Edible Berry Extracts. Molecules 2014, 19, 10936–10955. [Google Scholar] [CrossRef] [PubMed]
- Boots, A.W.; Haenen, G.R.M.M.; Bast, A. Health Effects of Quercetin: From Antioxidant to Nutraceutical. Eur. J. Pharmacol. 2008, 585, 325–337. [Google Scholar] [CrossRef]
- Walter Pertino, M.; Schmeda-Hirschmann, G. The Corrected Structure of Rosmaridiphenol, a Bioactive Diterpene from Rosmarinus officinalis. Planta Med. 2010, 76, 629–632. [Google Scholar] [CrossRef]
- Mendoza, L.; Cotoras, M.; Vivanco, M.; Matsuhiro, B.; Torres, S.; Aguirre, M. Evaluation of Antifungal Properties Against the Phytopathogenic Fungus Botrytis cinerea of Anthocyanin Rich-Extracts Obtained from Grape Pomaces. J. Chil. Chem. Soc. 2013, 58, 1725–1727. [Google Scholar] [CrossRef]
- Nunez-Mancilla, Y.; Perez-Won, M.; Uribe, E.; Vega-Galvez, A.; Di Scala, K. Osmotic Dehydration under High Hydrostatic Pressure: Effects on Antioxidant Activity, Total Phenolics Compounds, Vitamin C and Colour of Strawberry (Fragaria vesca). LWT-Food Sci. Technol. 2013, 52, 151–156. [Google Scholar] [CrossRef]
- Carrasco-Pozo, C.; Castillo, R.L.; Beltran, C.; Miranda, A.; Fuentes, J.; Gotteland, M. Molecular Mechanisms of Gastrointestinal Protection by Quercetin against Indomethacin-Induced Damage: Role of NF-κB and Nrf2. J. Nutr. Biochem. 2016, 27, 289–298. [Google Scholar] [CrossRef] [PubMed]
- Glorieux, C.; Zamocky, M.; Sandoval, J.M.; Verrax, J.; Calderon, P.B. Regulation of Catalase Expression in Healthy and Cancerous Cells. Free Radic. Biol. Med. 2015, 87, 84–97. [Google Scholar] [CrossRef]
- Blanca, A.J.; Ruiz-Armenta, M.V.; Zambrano, S.; Salsoso, R.; Miguel-Carrasco, J.L.; Fortuno, A.; Revilla, E.; Mate, A.; Vazquez, C.M. Leptin Induces Oxidative Stress Through Activation of NADPH Oxidase in Renal Tubular Cells: Antioxidant Effect of L-Carnitine. J. Cell. Biochem. 2016, 117, 2281–2288. [Google Scholar] [CrossRef]
- Uribe, E.; Vega-Galvez, A.; Heredia, V.; Pasten, A.; Di Scala, K. An Edible Red Seaweed (Pyropia orbicularis): Influence of Vacuum Drying on Physicochemical Composition, Bioactive Compounds, Antioxidant Capacity, and Pigments. J. Appl. Phycol. 2018, 30, 673–683. [Google Scholar] [CrossRef]
- Uribe, E.; Vega-Galvez, A.; Vargas, N.; Pasten, A.; Rodriguez, K.; Ah-Hen, K.S. Phytochemical Components and Amino Acid Profile of Brown Seaweed Durvillaea antarctica as Affected by Air Drying Temperature. J. Food Sci. Technol. 2018, 55, 4792–4801. [Google Scholar] [CrossRef]
- Miranda-Delgado, A.; Jose Montoya, M.; Paz-Araos, M.; Mellado, M.; Villena, J.; Arancibia, P.; Madrid, A.; Jara-Gutierrez, C. Antioxidant and Anti-Cancer Activities of Brown and Red Seaweed Extracts from Chilean Coasts. Lat. Am. J. Aquat. Res. 2018, 46, 301–313. [Google Scholar] [CrossRef]
- Uribe, E.; Pardo-Orellana, C.M.; Vega-Galvez, A.; Ah-Hen, K.S.; Pasten, A.; Garcia, V.; Aubourg, S.P. Effect of Drying Methods on Bioactive Compounds, Nutritional, Antioxidant, and Antidiabetic Potential of Brown Alga Durvillaea antarctica. Dry. Technol. 2020, 38, 1915–1928. [Google Scholar] [CrossRef]
- Tala, F.; Velasquez, M.; Mansilla, A.; Macaya, E.C.; Thiel, M. Latitudinal and Seasonal Effects on Short-Term Acclimation of Floating Kelp Species from the South-East Pacific. J. Exp. Mar. Biol. Ecol. 2016, 483, 31–41. [Google Scholar] [CrossRef]
- Genskowsky, E.; Puente, L.A.; Perez-Alvarez, J.A.; Fernandez-Lopez, J.; Munoz, L.A.; Viuda-Martos, M. Determination of Polyphenolic Profile, Antioxidant Activity and Antibacterial Properties of Maqui [Aristotelia chilensis (Molina) Stuntz] a Chilean Blackberry. J. Sci. Food Agric. 2016, 96, 4235–4242. [Google Scholar] [CrossRef]
- Gonzalez-Villagra, J.; Rodrigues-Salvador, A.; Nunes-Nesi, A.; Cohen, J.D.; Reyes-Diaz, M.M. Age-Related Mechanism and Its Relationship with Secondary Metabolism and Abscisic Acid in Aristotelia chilensis Plants Subjected to Drought Stress. Plant Physiol. Biochem. 2018, 124, 136–145. [Google Scholar] [CrossRef] [PubMed]
- Nina, N.; Quispe, C.; Jimenez-Aspee, F.; Theoduloz, C.; Feresin, G.E.; Lima, B.; Leiva, E.; Schmeda-Hirschmann, G. Antibacterial Activity, Antioxidant Effect and Chemical Composition of Propolis from the Region Del Maule, Central Chile. Molecules 2015, 20, 18144–18167. [Google Scholar] [CrossRef] [PubMed]
- Valenzuela-Barra, G.; Castro, C.; Figueroa, C.; Barriga, A.; Silva, X.; de las Heras, B.; Hortelano, S.; Delporte, C. Anti-Inflammatory Activity and Phenolic Profile of Propolis from Two Locations in Region Metropolitana de Santiago, Chile. J. Ethnopharmacol. 2015, 168, 37–44. [Google Scholar] [CrossRef] [PubMed]
- Uribe, E.; Vega-Galvez, A.; Garcia, V.; Pasten, A.; Lopez, J.; Goni, G. Effect of Different Drying Methods on Phytochemical Content and Amino Acid and Fatty Acid Profiles of the Green Seaweed, Ulva spp. J. Appl. Phycol. 2019, 31, 1967–1979. [Google Scholar] [CrossRef]
- Herrera, E.A.; Farias, J.G.; Gonzalez-Candia, A.; Short, S.E.; Carrasco-Pozo, C.; Castillo, R.L. Ω3 Supplementation and Intermittent Hypobaric Hypoxia Induce Cardioprotection Enhancing Antioxidant Mechanisms in Adult Rats. Mar. Drugs 2015, 13, 838–860. [Google Scholar] [CrossRef]
- Thakor, A.S.; Allison, B.J.; Niu, Y.; Botting, K.J.; Seron-Ferre, M.; Herrera, E.A.; Giussani, D.A. Melatonin Modulates the Fetal Cardiovascular Defense Response to Acute Hypoxia. J. Pineal Res. 2015, 59, 80–90. [Google Scholar] [CrossRef]
- Sanchez, C.; Villacreses, J.; Blanc, N.; Espinoza, L.; Martinez, C.; Pastor, G.; Manque, P.; Undurraga, S.F.; Polanco, V. High Quality RNA Extraction from Maqui Berry for Its Application in Next-Generation Sequencing. SpringerPlus 2016, 5, 1243. [Google Scholar] [CrossRef]
- Jose Arismendi, M.; Almada, R.; Pimentel, P.; Bastias, A.; Salvatierra, A.; Rojas, P.; Hinrichsen, P.; Pinto, M.; Di Genova, A.; Travisany, D.; et al. Transcriptome Sequencing of Prunus sp. Rootstocks Roots to Identify Candidate Genes Involved in the Response to Root Hypoxia. Tree Genet. Genomes 2015, 11, 11. [Google Scholar] [CrossRef]
- Uddin, M.S.; Al Mamun, A.; Kabir, M.T.; Jakaria, M.; Mathew, B.; Barreto, G.E.; Ashraf, G.M. Nootropic and Anti-Alzheimer’s Actions of Medicinal Plants: Molecular Insight into Therapeutic Potential to Alleviate Alzheimer’s Neuropathology. Mol. Neurobiol. 2019, 56, 4925–4944. [Google Scholar] [CrossRef]
- Bosio, C.; Tomasoni, G.; Martinez, R.; Olea, A.F.; Carrasco, H.; Villena, J. Cytotoxic and Apoptotic Effects of Leptocarpin, a Plant-Derived Sesquiterpene Lactone, on Human Cancer Cell Lines. Chem.-Biol. Interact. 2015, 242, 415–421. [Google Scholar] [CrossRef] [PubMed]
- Jimenez-Gonzalez, A.; Quispe, C.; Borquez, J.; Sepulveda, B.; Riveros, F.; Areche, C.; Nagles, E.; Garcia-Beltran, O.; Simirgiotis, M.J. UHPLC-ESI-ORBITRAP-MS Analysis of the Native Mapuche Medicinal Plant Palo Negro (Leptocarpha rivularis DC.—Asteraceae) and Evaluation of Its Antioxidant and Cholinesterase Inhibitory Properties. J. Enzym. Inhib. Med. Chem. 2018, 33, 936–944. [Google Scholar] [CrossRef] [PubMed]
- Regnier, P.; Bastias, J.; Rodriguez-Ruiz, V.; Caballero-Casero, N.; Caballo, C.; Sicilia, D.; Fuentes, A.; Maire, M.; Crepin, M.; Letourneur, D.; et al. Astaxanthin from Haematococcus pluvialis Prevents Oxidative Stress on Human Endothelial Cells without Toxicity. Mar. Drugs 2015, 13, 2857–2874. [Google Scholar] [CrossRef] [PubMed]
- Thomas-Valdes, S.; Theoduloz, C.; Jimenez-Aspee, F.; Schmeda-Hirschmann, G. Effect of Simulated Gastrointestinal Digestion on Polyphenols and Bioactivity of the Native Chilean Red Strawberry (Fragaria chiloensis ssp. chiloensis f. patagonica). Food Res. Int. 2019, 123, 106–114. [Google Scholar] [CrossRef]
- Suwalsky, M.; Colina, J.; Jose Gallardo, M.; Jemiola-Rzeminska, M.; Strzalka, K.; Manrique-Moreno, M.; Sepulveda, B. Antioxidant Capacity of Gallic Acid in Vitro Assayed on Human Erythrocytes. J. Membr. Biol. 2016, 249, 769–779. [Google Scholar] [CrossRef]
- Ondrasek, G.; Rathod, S.; Manohara, K.K.; Gireesh, C.; Anantha, M.S.; Sakhare, A.S.; Parmar, B.; Yadav, B.K.; Bandumula, N.; Raihan, F.; et al. Salt Stress in Plants and Mitigation Approaches. Plants 2022, 11, 717. [Google Scholar] [CrossRef]
- Barrientos, R.E.; Ahmed, S.; Cortés, C.; Fernández-Galleguillos, C.; Romero-Parra, J.; Simirgiotis, M.J.; Echeverría, J. Chemical Fingerprinting and Biological Evaluation of the Endemic Chilean Fruit Greigia sphacelata (Ruiz and Pav.) Regel (Bromeliaceae) by UHPLC-PDA-Orbitrap-Mass Spectrometry. Molecules 2020, 25, 3750. [Google Scholar] [CrossRef]
- Busso, D.; David, A.; Penailillo, R.; Echeverría, G.; Rigotti, A.; Kovalskys, I.; Gómez, G.; Cortés Sanabria, L.Y.; Yépez García, M.C.; Pareja, R.G.; et al. Intake of Vitamin E and C in Women of Reproductive Age: Results from the Latin American Study of Nutrition and Health (ELANS). Nutrients 2021, 13, 1954. [Google Scholar] [CrossRef]
- Ybañez-Julca, R.O.; Palacios, J.; Asunción-Alvarez, D.; Quispe-Díaz, I.; Nwokocha, C.R.; de Albuquerque, R.D.D.G. Lepidium meyenii Walp (Red Maca) Supplementation Prevents Acrylamide-Induced Oxidative Stress and Liver Toxicity in Rats: Phytochemical Composition by UHPLC–ESI–MS/MS. Plant Foods Hum. Nutr. 2022, 77, 460–466. [Google Scholar] [CrossRef]
- Miranda, S.; Vilches, P.; Suazo, M.; Pavez, L.; Garcia, K.; Mendez, M.A.; Gonzalez, M.; Meisel, L.A.; Defilippi, B.G.; del Pozo, T. Melatonin Triggers Metabolic and Gene Expression Changes Leading to Improved Quality Traits of Two Sweet Cherry Cultivars during Cold Storage. Food Chem. 2020, 319, 126360. [Google Scholar] [CrossRef]
- Velasquez, P.; Montenegro, G.; Leyton, F.; Ascar, L.; Ramirez, O.; Giordano, A. Bioactive Compounds and Antibacterial Properties of Monofloral Ulmo Honey. CyTA-J. Food 2020, 18, 11–19. [Google Scholar] [CrossRef]
- Karthikeyan, C.; Jayaramudu, T.; Núñez, D.; Jara, N.; Opazo-Capurro, A.; Varaprasad, K.; Kim, K.; Yallapu, M.M.; Sadiku, R. Hybrid Nanomaterial Composed of Chitosan, Curcumin, ZnO and TiO2 for Antibacterial Therapies. Int. J. Biol. Macromol. 2023, 242, 124814. [Google Scholar] [CrossRef]
- Yanez, O.; Osorio, M.I.; Areche, C.; Vasquez-Espinal, A.; Bravo, J.; Sandoval-Aldana, A.; Perez-Donoso, J.M.; Gonzalez-Nilo, F.; Matos, M.J.; Osorio, E.; et al. Theobroma cacao L. Compounds: Theoretical Study and Molecular Modeling as Inhibitors of Main SARS-CoV-2 Protease. Biomed. Pharmacother. 2021, 140, 111764. [Google Scholar] [CrossRef]
- Diaz-Galindo, E.P.; Nesic, A.; Cabrera-Barjas, G.; Mardones, C.; von Baer, D.; Bautista-Banos, S.; Garcia, O.D. Physical-Chemical Evaluation of Active Food Packaging Material Based on Thermoplastic Starch Loaded with Grape Cane Extract. Molecules 2020, 25, 1306. [Google Scholar] [CrossRef]
- Echeverria, F.; Patino, P.A.J.; Castro-Sepulveda, M.; Bustamante, A.; Concha, P.A.G.; Poblete-Aro, C.; Valenzuela, R.; Garcia-Diaz, D.F. Microencapsulated Pomegranate Peel Extract Induces Mitochondrial Complex IV Activity and Prevents Mitochondrial Cristae Alteration in Brown Adipose Tissue in Mice Fed on a High-Fat Diet. Brit. J. Nut. 2021, 126, 825–836. [Google Scholar] [CrossRef]
- Torres-Vega, J.; Gomez-Alonso, S.; Perez-Navarro, J.; Pastene-Navarrete, E. Green Extraction of Alkaloids and Polyphenols from Peumus boldus Leaves with Natural Deep Eutectic Solvents and Profiling by HPLC-PDA-IT-MS/MS and HPLC-QTOF-MS/MS. Plants 2020, 9, 242. [Google Scholar] [CrossRef]
- Ponce, C.; Kuhn, N.; Arellano, M.; Time, A.; Multari, S.; Martens, S.; Carrera, E.; Sagredo, B.; Manuel Donoso, J.; Meisel, L.A. Differential Phenolic Compounds and Hormone Accumulation Patterns between Early- and Mid-Maturing Sweet Cherry (Prunus avium L.) Cultivars during Fruit Development and Ripening. J. Agric. Food Chem. 2021, 69, 8850–8860. [Google Scholar] [CrossRef]
- Palacios-Peralta, C.; Ruiz, A.; Ercoli, S.; Reyes-Díaz, M.; Bustamante, M.; Muñoz, A.; Osorio, P.; Ribera-Fonseca, A. Plastic Covers and Potassium Pre-Harvest Sprays and Their Influence on Antioxidant Properties, Phenolic Profile, and Organic Acids Composition of Sweet Cherry Fruits Cultivated in Southern Chile. Plants 2023, 12, 50. [Google Scholar] [CrossRef]
- Rojas-García, A.; Fuentes, E.; Cádiz-Gurrea, M.D.L.L.; Rodriguez, L.; Villegas-Aguilar, M.D.C.; Palomo, I.; Arráez-Román, D.; Segura-Carretero, A. Biological Evaluation of Avocado Residues as a Potential Source of Bioactive Compounds. Antioxidants 2022, 11, 1049. [Google Scholar] [CrossRef]
- Burgos-Diaz, C.; Opazo-Navarrete, M.; Palacios, J.L.; Verdugo, L.; Anguita-Barrales, F.; Bustamante, M. Food-Grade Bioactive Ingredient Obtained from the Durvillaea incurvata Brown Seaweed: Antibacterial Activity and Antioxidant Activity. Algal Res. 2022, 68, 102880. [Google Scholar] [CrossRef]
- Santana, P.A.; Jara-Gutiérrez, C.; Mellado, M.; Forero, J.C.; Guzmán, F.; Barriga, A.; Albericio, F.; Álvarez, C.A. Effects of Elderflower Extract Enriched with Polyphenols on Antioxidant Defense of Salmon Leukocytes. Electron. J. Biotechn. 2021, 52, 13–20. [Google Scholar] [CrossRef]
- Eugenia Orqueda, M.; Torres, S.; Catiana Zampini, I.; Cattaneo, F.; Fernandez Di Pardo, A.; Valle, E.M.; Jimenez-Aspee, F.; Schmeda-Hirschmann, G.; Ines Isla, M. Integral Use of Argentinean Solanum betaceum Red Fruits as Functional Food Ingredient to Prevent Metabolic Syndrome: Effect of in Vitro Simulated Gastroduodenal Digestion. Heliyon 2020, 6, e03387. [Google Scholar] [CrossRef]
- Nina, N.; Theoduloz, C.; Tapia, G.; Jimenez-Aspee, F.; Marquez, K.; Schmeda-Hirschmann, G. Changes in Polyphenol Composition, Antioxidant Capacity and Enzyme inhibition in Phaseolus vulgaris L. Submitted to Hydric Stress. Sci. Hortic. 2023, 317, 112070. [Google Scholar] [CrossRef]
- Andrea, A.-V.; Muriel, Q.; Stanley, L.; Juan Pablo, M.; Carolina, L.X. Tuber Yield and Quality Responses of Potato to Moderate Temperature Increase during Tuber Bulking under Two Water Availability Scenarios. Field Crop. Res. 2020, 251, 107786. [Google Scholar] [CrossRef]
- Huamán-Castilla, N.L.; Campos, D.; García-Ríos, D.; Parada, J.; Martínez-Cifuentes, M.; Mariotti-Celis, M.S.; Pérez-Correa, J.R. Chemical Properties of Vitis vinifera Carménère Pomace Extracts Obtained by Hot Pressurized Liquid Extraction, and Their Inhibitory Effect on Type 2 Diabetes Mellitus Related Enzymes. Antioxidants 2021, 10, 472. [Google Scholar] [CrossRef]
- Villavicencio-Tejo, F.; Olesen, M.A.; Aránguiz, A.; Quintanilla, R.A. Activation of the Nrf2 Pathway Prevents Mitochondrial Dysfunction Induced by Caspase-3 Cleaved Tau: Implications for Alzheimer’s Disease. Antioxidants 2022, 11, 515. [Google Scholar] [CrossRef]
- Viayna, E.; Coquelle, N.; Cieslikiewicz-Bouet, M.; Cisternas, P.; Oliva, C.A.; Sanchez-Lopez, E.; Ettcheto, M.; Bartolini, M.; De Simone, A.; Ricchini, M.; et al. Discovery of a Potent Dual Inhibitor of Acetylcholinesterase and Butyrylcholinesterase with Antioxidant Activity That Alleviates Alzheimer-like Pathology in Old APP/PS1 Mice. J. Med. Chem. 2021, 64, 812–839. [Google Scholar] [CrossRef]
- Vargas-Arana, G.; Merino-Zegarra, C.; del-Castillo, Á.M.R.; Quispe, C.; Viveros-Valdez, E.; Simirgiotis, M.J. Antioxidant, Antiproliferative and Anti-Enzymatic Capacities, Nutritional Analysis and UHPLC-PDA-MS Characterization of Ungurahui Palm Fruits (Oenocarpus bataua Mart) from the Peruvian Amazon. Antioxidants 2022, 11, 1598. [Google Scholar] [CrossRef]
- Vijayakumar, S.; Divya, M.; Vaseeharan, B.; Chen, J.; Biruntha, M.; Silva, L.P.; Durán-Lara, E.F.; Shreema, K.; Ranjan, S.; Dasgupta, N. Biological Compound Capping of Silver Nanoparticle with the Seed Extracts of Blackcumin (Nigella sativa): A Potential Antibacterial, Antidiabetic, Anti-Inflammatory, and Antioxidant. J. Inorg. Organomet. Polym. 2021, 31, 624–635. [Google Scholar] [CrossRef]
- Cuellar, L.M.; Escobedo-Avellaneda, Z.; del Valle, J.M. Effect of Supercritical CO2 Modified with Ethanol on the Extraction Yield and Antimicrobial Activity of Bioactive Compounds from Aerial Parts of Berberis microphylla G. Fort. LWT-Food Sci. Technol. 2024, 211, 116885. [Google Scholar] [CrossRef]
- Carmen Ruiz-Dominguez, M.; Cerezal, P.; Salinas, F.; Medina, E.; Renato-Castro, G. Application of Box-Behnken Design and Desirability Function for Green Prospection of Bioactive Compounds from Isochrysis galbana. Appl. Sci. 2020, 10, 2789. [Google Scholar] [CrossRef]
- Trujillo-Mayol, I.; Badillo-Muñoz, G.; Céspedes-Acuña, C.; Alarcón-Enos, J. The Relationship between Fruit Size and Phenolic and Enzymatic Composition of Avocado Byproducts (Persea americana Mill.): The Importance for Biorefinery Applications. Horticulturae 2020, 6, 91. [Google Scholar] [CrossRef]
- Pino, S.; Espinoza, L.; Jara-Gutiérrez, C.; Villena, J.; Olea, A.F.; Díaz, K. Study of Cannabis Oils Obtained from Three Varieties of C. sativa and by Two Different Extraction Methods: Phytochemical Characterization and Biological Activities. Plants 2023, 12, 1772. [Google Scholar] [CrossRef]
- Zuniga, P.E.; Castaneda, Y.; Arrey-Salas, O.; Fuentes, L.; Aburto, F.; Figueroa, C.R. Methyl Jasmonate Applications from Flowering to Ripe Fruit Stages of Strawberry (Fragaria × Ananassa ’Camarosa’) Reinforce the Fruit Antioxidant Response at Post-Harvest. Front. Plant Sci. 2020, 11, 538. [Google Scholar] [CrossRef]
- Ortiz, T.; Argüelles-Arias, F.; Begines, B.; García-Montes, J.-M.; Pereira, A.; Victoriano, M.; Vázquez-Román, V.; Pérez Bernal, J.L.; Callejón, R.M.; De-Miguel, M.; et al. Native Chilean Berries Preservation and In Vitro Studies of a Polyphenol Highly Antioxidant Extract from Maqui as a Potential Agent against Inflammatory Diseases. Antioxidants 2021, 10, 843. [Google Scholar] [CrossRef]
- Ovalle-Marin, A.; Reyes-Farias, M.; Vasquez, K.; Parra-Ruiz, C.; Quitral, V.; Jimenez, P.; Garcia, L.; Ramirez, L.A.; Quezada, J.; Gonzalez-Muniesa, P.; et al. Maqui, Calafate, and Blueberry Fruits Extracts Treatments Suppress the Pathogenic Interaction amongst Human Adipocytes and Macrophages. J. Berry Res. 2020, 10, 531–545. [Google Scholar] [CrossRef]
- Leiva-Portilla, D.; Martinez, R.; Bernal, C. Valorization of Shrimp (Heterocarpus reedi) Processing Waste via Enzymatic Hydrolysis: Protein Extractions, Hydrolysates and Antioxidant Peptide Fractions. Biocatal. Agric. Biotechnol. 2023, 48, 102625. [Google Scholar] [CrossRef]
- Rajivgandhi, G.; Chelliah, C.K.; Murugan, M.; Ramachandran, G.; Chackaravarthi, G.; Maruthupandy, M.; Quero, F.; Arunachalam, A.; Viswanathan, M.R.; Khaled, J.M.; et al. Discovery of Secondary Metabolites from Avicennia Marina to Inhibit the Anti-Oxidant and Anti-Biofilm Activities of Biofilm Forming Bacteria. J. King Saud Univ. Sci. 2024, 36, 102979. [Google Scholar] [CrossRef]
- Órbenes, G.; Rodríguez-Seoane, P.; Torres, M.D.; Chamy, R.; Zúñiga, M.E.; Domínguez, H. Valorization of Artichoke Industrial By-Products Using Green Extraction Technologies: Formulation of Hydrogels in Combination with Paulownia Extracts. Molecules 2021, 26, 4386. [Google Scholar] [CrossRef]
- Ortiz, M.; Soto-Alarcon, S.A.; Orellana, P.; Espinosa, A.; Campos, C.; Lopez-Arana, S.; Rincon, M.A.; Illesca, P.; Valenzuela, R.; Videla, L.A. Suppression of High-Fat Diet-Induced Obesity-Associated Liver Mitochondrial Dysfunction by Docosahexaenoic Acid and Hydroxytyrosol Co-Administration. Dig. Liver Dis. 2020, 52, 895–904. [Google Scholar] [CrossRef]
- Rimoldi, S.F.; Sartori, C.; Rexhaj, E.; Bailey, D.M.; de Marchi, S.F.; McEneny, J.; von Arx, R.; Cerny, D.; Duplain, H.; Germond, M.; et al. Antioxidants Improve Vascular Function in Children Conceived by Assisted Reproductive Technologies: A Randomized Double-Blind Placebo-Controlled Trial. Eur. J. Prev. Cardiol. 2015, 22, 1399–1407. [Google Scholar] [CrossRef]
- Collado Mateo, D.; Pazzi, F.; Dominguez Munoz, F.J.; Martin Martinez, J.P.; Olivares, P.R.; Gusi, N.; Adsuar, J.C. Ganoderma lucidum Improves Physical Fitness in Women with Fibromyalgia. Nutr. Hosp. 2015, 32, 2126–2135. [Google Scholar] [CrossRef]
- Capo, X.; Martorell, M.; Sureda, A.; Miguel Batle, J.; Antoni Tur, J.; Pons, A. Docosahexaenoic Diet Supplementation, Exercise and Temperature Affect Cytokine Production by Lipopolysaccharide-Stimulated Mononuclear Cells. J. Physiol. Biochem. 2016, 72, 421–434. [Google Scholar] [CrossRef]
- Petersen, F.; Rodrigo, R.; Richter, M.; Kostin, S. The Effects of Polyunsaturated Fatty Acids and Antioxidant Vitamins on Atrial Oxidative Stress, Nitrotyrosine Residues, and Connexins Following Extracorporeal Circulation in Patients Undergoing Cardiac Surgery. Mol. Cell. Biochem. 2017, 433, 27–40. [Google Scholar] [CrossRef]
- Sureda, A.; del Mar Bibiloni, M.; Martorell, M.; Buil-Cosiales, P.; Marti, A.; Pons, A.; Tur, J.A.; Angel Martinez-Gonzalez, M. Mediterranean Diets Supplemented with Virgin Olive Oil and Nuts Enhance Plasmatic Antioxidant Capabilities and Decrease Xanthine Oxidase Activity in People with Metabolic Syndrome: The PREDIMED Study. Mol. Nutr. Food Res. 2016, 60, 2654–2664. [Google Scholar] [CrossRef]
- Davinelli, S.; Carlos Bertoglio, J.; Zarrelli, A.; Pina, R.; Scapagnini, G. A Randomized Clinical Trial Evaluating the Efficacy of an Anthocyanin-Maqui Berry Extract (Delphinol®) on Oxidative Stress Biomarkers. J. Am. Coll. Nutr. 2015, 34, 28–33. [Google Scholar] [CrossRef]
- Hernandez-Salinas, R.; Decap, V.; Leguina, A.; Caceres, P.; Perez, D.; Urquiaga, I.; Iturriaga, R.; Velarde, V. Antioxidant and Anti Hyperglycemic Role of Wine Grape Powder in Rats Fed with a High Fructose Diet. Biol. Res. 2015, 48, 53. [Google Scholar] [CrossRef]
- Leyva-Soto, A.; Chavez-Santoscoy, R.A.; Porras, O.; Hidalgo-Ledesma, M.; Serrano-Medina, A.; Ramirez-Rodriguez, A.A.; Castillo-Martinez, N.A. Epicatechin and Quercetin Exhibit in Vitro Antioxidant Effect, Improve Biochemical Parameters Related to Metabolic Syndrome, and Decrease Cellular Genotoxicity in Humans. Food Res. Int. 2021, 142, 110101. [Google Scholar] [CrossRef]
- Carrasco, R.; Ramirez, M.C.; Nes, K.; Schuster, A.; Aguayo, R.; Morales, M.; Ramos, C.; Hasson, D.; Sotomayor, C.G.; Henriquez, P.; et al. Prevention of doxorubicin-induced Cardiotoxicity by pharmacological non-hypoxic myocardial preconditioning based on Docosahexaenoic Acid (DHA) and carvedilol direct antioxidant effects: Study protocol for a pilot, randomized, double-blind, controlled trial (CarDHA trial). Trials 2020, 21, 137. [Google Scholar] [CrossRef]
- Pourshahidi, L.K.; Caballero, E.; Osses, A.; Hyland, B.W.; Ternan, N.G.; Gill, C.I.R. Modest Improvement in CVD Risk Markers in Older Adults Following Quinoa (Chenopodium quinoa Willd.) Consumption: A Randomized-Controlled Crossover Study with a Novel Food Product. Eur. J. Nutr. 2020, 59, 3313–3323. [Google Scholar] [CrossRef] [PubMed]
- Ashraf, S.; Ashraf, S.; Ashraf, M.; Imran, M.A.; Kalsoom, L.; Siddiqui, U.N.; Farooq, I.; Akmal, R.; Akram, M.K.; Ashraf, S.; et al. Honey and Nigella Sativa against COVID-19 in Pakistan (HNS-COVID-PK): A Multicenter Placebo-Controlled Randomized Clinical Trial. Phytother. Res. 2023, 37, 627–644. [Google Scholar] [CrossRef] [PubMed]
Variable | Value (or Sample, n) | Unit | Subsampling Criterion |
---|---|---|---|
Documents | 3190 | Article | Hirsch’s index (h-index) |
Time | 2000–2024 | Year | Period without blanks, Price’s Law |
Place (Affiliation) | 2397 | Country/Territory | Census |
Authors | 11,646 | Person | Only authors with sustained productivity over time were included. |
Keywords and Keywords Plus | 7930 and 8022 | Words | Zipf’s Law |
Journals | 844 | Journal | Bradford’s Law |
Entry | Institution | City | Foundation | Percentage |
---|---|---|---|---|
1 | Universidad de Chile (UChile) | Santiago | 1842 | 10.6 |
2 | Pontificia Universidad Católica de Chile (PUC) | Santiago | 1888 | 4.9 |
3 | Universidad de Concepcion (UdeC) | Concepcion | 1919 | 4.7 |
4 | Universidad de Santiago de Chile (USACH) | Santiago | 1849 | 3.9 |
5 | Universidad de la Frontera (UFRO) | Temuco | 1981 | 3.8 |
6 | Universidad de Talca (UTalca) | Talca | 1981 | 3.3 |
7 | Universidad Austral de Chile (UAustral) | Valdivia | 1954 | 3.1 |
Total | 34.3 |
Entry | Journal | Publisher | Impact Factor 2023 | Q a | Category b | Perc. c | P.T d |
---|---|---|---|---|---|---|---|
1 | Molecules | MDPI | 4.2 | Q2 | Biochemistry & Molecular Biology/Chemistry, Multidisciplinary | 3.54 | OA |
2 | Antioxidants | MDPI | 6.0 | Q1 | Biochemistry & Molecular Biology/Chemistry, Medicinal | 3.29 | OA |
3 | Food Chemistry | Elsevier | 8.5 | Q1 | Chemistry, Applied/Food Science & Technology/Nutrition & Dietetics | 2.79 | Hy |
4 | Plants-Basel | MDPI | 4.0 | Q1 | Plant Sciences | 1.94 | OA |
5 | Journal of the Chilean Chemical Society | Sociedad Chilena de Química | 1.3 | Q3 | Chemistry, Multidisciplinary | 1.72 | OA |
6 | Foods | MDPI | 4.7 | Q1 | Food Science & Technology | 1.60 | OA |
7 | Boletin Latinoamericano y del Caribe de Plantas Medicinales y Aromaticas | MS-Editions | 0.7 | Q4 | Integrative & Complementary Medicine/Pharmacology & Pharmacy | 1.50 | OA |
8 | Food Research International | Elsevier | 7.0 | Q1 | Food Science & Technology | 1.19 | Hy |
9 | Lwt—Food Science and Technology | Elsevier | 6.0 | Q1 | Food Science & Technology | 1.19 | OA |
10 | International Journal of Molecular Sciences | MDPI | 4.9 | Q1 | Biochemistry & Molecular Biology | 1.10 | OA |
11 | Biological Research | Sociedad Biologica de Chile/BioMed Central | 4.3 | Q1 | Biology | 1.03 | OA |
12 | Journal of Agricultural and Food Chemistry | American of Chemical Society | 5.7 | Q1 | Agriculture, Multidisciplinary/Chemistry, Applied/Food Science & Technology | 0.97 | Hy |
13 | Plos One | Public Library Science | 2.9 | Q1 | Multidisciplinary Sciences | 0.97 | OA |
14 | Industrial Crops and Products | Elsevier | 5.6 | Q1 | Agricultural Engineering/Agronomy | 0.88 | OA |
15 | Frontiers in Plant Science | Frontiers Media SA | 4.1 | Q1 | Plant Sciences | 0.85 | OA |
16 | Free Radical Biology and Medicine | Elsevier | 7.1 | Q1 | Biochemistry & Molecular Biology/Endocrinology & Metabolism | 0.82 | Hy |
17 | Chilean Journal of Agricultural Research | Instituto de Investigaciones Agropecuarias | 1.5 | Q2 | Agriculture, Multidisciplinary | 0.78 | OA |
18 | Food Bioscience | Elsevier | 4.8 | Q1 | Food Science & Technology | 0.78 | Hy |
19 | Journal of Soil Science and Plant Nutrition | Springer | 3.4 | Q1 | Plant Sciences | 0.78 | Hy |
20 | Agronomy-Basel | MDPI | 3.3 | Q1 | Agronomy/Plant Sciences | 0.72 | OA |
21 | Journal of Food Processing and Preservation | Wiley-Hindawi | 2.0 | Q3 | Food Science & Technology | 0.72 | OA |
22 | Journal of the Science of Food and Agriculture | Wiley | 3.3 | Q1 | Agriculture, Multidisciplinary | 0.72 | Hy |
23 | Journal of Applied Phycology | Springer | 2.8 | Q1 | Marine & Freshwater Biology | 0.69 | Hy |
24 | International Journal of Biological Macromolecules | Elsevier | 7.7 | Q1 | Biochemistry & Molecular Biology/Chemistry, Applied/Polymer Science | 0.66 | Hy |
25 | Plant Physiology and Biochemistry | Elsevier | 6.1 | Q1 | Plant Sciences | 0.66 | Hy |
26 | Horticulturae | MDPI | 3.1 | Q1 | Horticulture | 0.63 | OA |
Total | 32.52 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lorca, M.; Vega-Muñoz, A.; Acosta, A.; Cabezas, D.; Díaz, K.; Mella, J.; Sabadini, G.; Salazar-Sepúlveda, G.; Contreras-Barraza, N.; Mellado, M. Past and Present of the Antioxidant Studies in Chile: A Bibliometric Study from 2000 to 2024. Antioxidants 2025, 14, 985. https://doi.org/10.3390/antiox14080985
Lorca M, Vega-Muñoz A, Acosta A, Cabezas D, Díaz K, Mella J, Sabadini G, Salazar-Sepúlveda G, Contreras-Barraza N, Mellado M. Past and Present of the Antioxidant Studies in Chile: A Bibliometric Study from 2000 to 2024. Antioxidants. 2025; 14(8):985. https://doi.org/10.3390/antiox14080985
Chicago/Turabian StyleLorca, Marcos, Alejandro Vega-Muñoz, Alison Acosta, David Cabezas, Katy Díaz, Jaime Mella, Gianfranco Sabadini, Guido Salazar-Sepúlveda, Nicolás Contreras-Barraza, and Marco Mellado. 2025. "Past and Present of the Antioxidant Studies in Chile: A Bibliometric Study from 2000 to 2024" Antioxidants 14, no. 8: 985. https://doi.org/10.3390/antiox14080985
APA StyleLorca, M., Vega-Muñoz, A., Acosta, A., Cabezas, D., Díaz, K., Mella, J., Sabadini, G., Salazar-Sepúlveda, G., Contreras-Barraza, N., & Mellado, M. (2025). Past and Present of the Antioxidant Studies in Chile: A Bibliometric Study from 2000 to 2024. Antioxidants, 14(8), 985. https://doi.org/10.3390/antiox14080985