ROS Regulation and Antioxidant Responses in Plants Under Air Pollution: Molecular Signaling, Metabolic Adaptation, and Biotechnological Solutions
Abstract
1. Introduction
2. Anthropogenic and Natural Sources of Air Pollutants: Impacts on Plant Systems
Particulate Matter (PM10 and PM2.5) and Its Impact on Plants
3. Signal Transduction Pathways Activated by Air Pollutants in Plants
3.1. MAPK Cascades in Plant Responses to Oxidative Stress
3.2. Phytohormonal Crosstalk in Air Pollution Stress Adaptation
3.3. Integrated Phytohormone Networks Under Stress Conditions
4. Enzymatic and Non-Enzymatic Antioxidant Systems Under Combined Pollution and Heavy Metal Stress
5. Transcriptomic Reprogramming Under Air Pollution Stress
6. Metabolic Adaptations and Secondary Metabolite Production in Polluted Environments
Phenylpropanoid Metabolism and Its Role in Pollutant Detoxification
7. Secondary Metabolites as Antioxidants and Chelators to Mitigate Oxidative Stress
8. Biotechnological Strategies for Enhancing Plant Tolerance to Pollution
Multi-Omics Approaches for Decoding Plant Stress Responses
9. Challenges and Opportunities in Plant-Pollution Interaction Research
- Combined Stress Responses: Most studies focus on single pollutants, yet plants in urban/industrial areas face simultaneous exposure to multiple stressors (e.g., O3 + HMs). Research must elucidate synergistic or antagonistic interactions between pollutants and their integrated effects on plant physiology.
- Field-to-Lab Translation: While transcriptomic and metabolomic studies reveal stress responses in controlled environments, field validation is scarce. Long-term studies are needed to assess the stability of engineered traits under real-world conditions.
- Phytohormone Crosstalk: The dynamics of SA, JA, and ethylene signaling under chronic pollution exposure remain poorly understood. Deciphering their spatiotemporal regulation could optimize stress tolerance without compromising growth.
- Secondary Metabolite Engineering: Despite their protective roles, the metabolic costs of producing flavonoids, lignin, and terpenoids are unclear. Balancing defense and productivity through targeted metabolic engineering is a promising yet underexplored avenue.
10. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
Symbol | Full Name | Family/Class |
MYB | MYELOBLASTOSIS | MYB-domain TFs |
WRKY | WRKYGQK domain | WRKY-domain TFs |
NAC | NAM/ATAF/CUC (NO APICAL MERISTEM/ARABIDOPSIS TRANSCRIPTION ACTIVATION FACTOR/CUP-SHAPED COTYLEDON) | NAC-domain TFs |
bHLH | Basic Helix-Loop-Helix | bHLH-domain TFs |
bZIP | Basic Leucine Zipper | bZIP-domain TFs |
AP2/ERF | APETALA2/Ethylene-Responsive Factor | AP2/ERF superfamily |
ARF | Auxin Response Factor | ARF family |
HSF | Heat Shock Factor | HSF family |
DREB1/CBF | Dehydration-Responsive Element-Binding Protein 1/C-repeat Binding Factor | AP2/ERF superfamily |
ABI3VP1 | ABSCISIC ACID INSENSITIVE 3/VIVIPAROUS 1 | B3-domain TFs |
CCAAT-DR1 | CCAAT-box Binding Protein | CCAAT-box TFs |
CCAAT-HAP2/3/5 | CCAAT-binding Histone-Associated Proteins | CCAAT-box TFs |
C2C2-Dof | DNA-binding One Zinc Finger | Dof family |
C2C2-CO-like | CONSTANS-like | CO-like family |
E2F-DP | E2F-Dimerization Partner | E2F/DP family |
C2C2-GATA | GATA-binding | GATA family |
C2C2-YABBY | YABBY domain | YABBY family |
AtSR | Arabidopsis Stress-Responsive | NF-κB-like TFs |
C3H | Cys3His zinc finger | Zinc finger TFs |
C2H2 | Cys2His2 zinc finger | Zinc finger TFs |
EMF1 | EMBRYONIC FLOWER 1 | Polycomb-group TFs |
MADS | MCM1/AGAMOUS/DEFICIENS/SRF | MADS-box TFs |
TUB | TUBBY domain | TUBBY family |
FIT | FER-LIKE IRON DEFICIENCY-INDUCED TRANSCRIPTION FACTOR | bHLH family |
PYE | POPEYE (Iron homeostasis regulator) | bHLH family |
HY5 | ELONGATED HYPOCOTYL 5 | bZIP family |
References
- Edo, G.I.; Itoje-akpokiniovo, L.O.; Obasohan, P.; Ikpekoro, V.O.; Samuel, P.O.; Jikah, A.N.; Nosu, L.C.; Ekokotu, H.A.; Ugbune, U.; Oghroro, E.E.A. Impact of Environmental Pollution from Human Activities on Water, Air Quality and Climate Change. Ecol. Front. 2024, 44, 874–889. [Google Scholar] [CrossRef]
- Rathod, S.V.; Saras, P.; Gondaliya, S.M. Environmental Pollution: Threats and Challenges for Management. In Eco-Restoration of Polluted Environment; CRC Press: Boca Raton, FL, USA, 2024; pp. 1–34. [Google Scholar]
- Rafie-Rad, Z.; Raza, T.; Eash, N.S.; Moradi-Khajevand, M.; Moradkhani, M. Effects of Outdoor Air Pollutants on Plants and Agricultural Productivity. In Health and Environmental Effects of Ambient Air Pollution; Elsevier: Amsterdam, The Netherlands, 2024; pp. 71–90. [Google Scholar]
- Angon, P.B.; Islam, M.S.; Das, A.; Anjum, N.; Poudel, A.; Suchi, S.A. Sources, Effects and Present Perspectives of Heavy Metals Contamination: Soil, Plants and Human Food Chain. Heliyon 2024, 10, e28357. [Google Scholar] [CrossRef] [PubMed]
- Musah, B.I. Effects of Heavy Metals and Metalloids on Plant-Animal Interaction and Biodiversity of Terrestrial Ecosystems—An Overview. Environ. Monit. Assess. 2025, 197, 12. [Google Scholar] [CrossRef] [PubMed]
- Hanif, S.; Ali, S.; Chaudhry, A.H.; Sial, N.; Marium, A.; Mehmood, T. A Review on Soil Metal Contamination and Its Environmental Implications. Nat. Environ. Pollut. Technol. 2025, 24, 1684. [Google Scholar] [CrossRef]
- Carfora, A.; Lucibelli, F.; Di Lillo, P.; Mazzucchiello, S.M.; Saccone, G.; Salvemini, M.; Varone, M.; Volpe, G.; Aceto, S. Genetic Responses of Plants to Urban Environmental Challenges. Planta 2025, 261, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Sun, Z.; Zhou, X. WRKY Transcription Factors in Response to Metal Stress in Plants: A Review. Int. J. Mol. Sci. 2024, 25, 10952. [Google Scholar] [CrossRef] [PubMed]
- Niekerk, L.; Gokul, A.; Basson, G.; Badiwe, M.; Nkomo, M.; Klein, A.; Keyster, M. Heavy Metal Stress and Mitogen Activated Kinase Transcription Factors in Plants: Exploring Heavy Metal-ROS Influences on Plant Signalling Pathways. Plant Cell Environ. 2024, 47, 2793–2810. [Google Scholar] [CrossRef] [PubMed]
- Antenozio, M.L.; Caissutti, C.; Caporusso, F.M.; Marzi, D.; Brunetti, P. Urban Air Pollution and Plant Tolerance: Omics Responses to Ozone, Nitrogen Oxides, and Particulate Matter. Plants 2024, 13, 2027. [Google Scholar] [CrossRef] [PubMed]
- Rao, M.J.; Zheng, B. The Role of Polyphenols in Abiotic Stress Tolerance and Their Antioxidant Properties to Scavenge Reactive Oxygen Species and Free Radicals. Antioxidants 2025, 14, 74. [Google Scholar] [CrossRef] [PubMed]
- Mendoza-Almanza, B.; de la Guerrero-González, M.L.; Loredo-Tovias, M.; García-Arreola, M.E.; Loredo-Osti, C.; Padilla-Ortega, E.; Delgado-Sánchez, P. AsNAC Genes: Response to High Mercury Concentrations in Allium Sativum Seed Clove. BioTech 2025, 14, 27. [Google Scholar] [CrossRef] [PubMed]
- Mansoor, S.; Ali, A.; Kour, N.; Bornhorst, J.; AlHarbi, K.; Rinklebe, J.; Abd El Moneim, D.; Ahmad, P.; Chung, Y.S. Heavy Metal Induced Oxidative Stress Mitigation and ROS Scavenging in Plants. Plants 2023, 16, 3003. [Google Scholar] [CrossRef] [PubMed]
- Rabeh, K.; Hnini, M.; Oubohssaine, M. A Comprehensive Review of Transcription Factor-Mediated Regulation of Secondary Metabolites in Plants under Environmental Stress. Stress. Biol. 2025, 5, 15. [Google Scholar] [CrossRef]
- Xu, Y.; Li, Y.; Chen, Z.; Chen, X.; Li, X.; Li, W.; Li, L.; Li, Q.; Geng, Z.; Shi, S. Malus Xiaojinensis MxbHLH30 Confers Iron Homeostasis Under Iron Deficiency in Arabidopsis. Int. J. Mol. Sci. 2025, 26, 368. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Chen, J.; Yue, X.; Wei, X.; Zou, J.; Chen, Y.; Su, N.; Cui, J. The Zinc-Regulated Protein (ZIP) Family Genes and Glutathione s-Transferase (GST) Family Genes Play Roles in Cd Resistance and Accumulation of Pak Choi (Brassica campestris Ssp. Chinensis). Ecotoxicol. Environ. Saf. 2019, 183, 109571. [Google Scholar] [CrossRef] [PubMed]
- Isinkaralar, O.; Rajfur, M.; Isinkaralar, K.; Świsłowski, P. Contamination Degree and Health Implications of Indoor Air Pollution: Operating Field Measurements in Market Environments. Sci. Total Environ. 2025, 969, 178946. [Google Scholar] [CrossRef] [PubMed]
- Tavella, R.A.; da Silva Júnior, F.M.R.; Santos, M.A.; Miraglia, S.G.E.K.; Pereira Filho, R.D. A Review of Air Pollution from Petroleum Refining and Petrochemical Industrial Complexes: Sources, Key Pollutants, Health Impacts, and Challenges. ChemEngineering 2025, 9, 13. [Google Scholar] [CrossRef]
- Atafar, Z.; Sarkhoshkalat, M.M.; Manesh, M.B. Overview of Air Pollution: History, Sources and Effects. In Air Pollution, Air Quality, and Climate Change; Elsevier: Amsterdam, Noord-Holland, The Netherlands, 2025; pp. 1–21. [Google Scholar]
- Sharma, P.; Saxena, P. Impacts and Responses of Particulate Matter Pollution on Vegetation. In Airborne Particulate Matter: Source, Chemistry and Health; Springer: Singapore, 2022; pp. 229–264. [Google Scholar]
- Roy, S.S.; Bahri, S.; Devi, L.S.; Moitra, S. Impact of Particulate Matter on the Ecophysiology of Plants. In Ecophysiology of Tropical Plants; CRC Press: Boca Raton, FL, USA, 2023; pp. 66–72. [Google Scholar]
- Tripathi, D.P.; Nema, A.K. Air Pollution Mitigation and Suspended Particulate Matter Retention Potential of Selected Plant Species across Seasonal Variation in the Urban Area. Environ. Sci. Pollut. Res. 2024, 31, 45035–45054. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.; Zhao, X.-T.; Lin, J.-S.; Zhao, T.-T.; Feng, C.-L.; Li, L.; Wu, R.-J.; Huang, Q.-X.; Liu, H.-B.; Wang, J.-G. Genome-Wide Identification and Unveiling the Role of MAP Kinase Cascade Genes Involved in Sugarcane Response to Abiotic Stressors. BMC Plant Biol. 2025, 25, 484. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.; Shah, S.T.; Basit, A.; Mohamed, H.I.; Li, Y. Mitogen-Activated Protein Kinase: A Potent Signaling Protein That Combats Biotic and Abiotic Stress in Plants. J. Plant Growth Regul. 2024, 43, 1762–1786. [Google Scholar] [CrossRef]
- Samuel, M.A.; Ellis, B.E. Double Jeopardy: Both Overexpression and Suppression of a Redox-Activated Plant Mitogen-Activated Protein Kinase Render Tobacco Plants Ozone Sensitive. Plant Cell 2002, 14, 2059–2069. [Google Scholar] [CrossRef] [PubMed]
- Miles, G.P.; Samuel, M.A.; Zhang, Y.; Ellis, B.E. RNA Interference-Based (RNAi) Suppression of AtMPK6, an Arabidopsis Mitogen-Activated Protein Kinase, Results in Hypersensitivity to Ozone and Misregulation of AtMPK3. Environ. Pollut. 2005, 138, 230–237. [Google Scholar] [CrossRef] [PubMed]
- Hasan, M.M.; Rahman, M.A.; Skalicky, M.; Alabdallah, N.M.; Waseem, M.; Jahan, M.S.; Ahammed, G.J.; El-Mogy, M.M.; El-Yazied, A.A.; Ibrahim, M.F.M. Ozone Induced Stomatal Regulations, MAPK and Phytohormone Signaling in Plants. Int. J. Mol. Sci. 2021, 22, 6304. [Google Scholar] [CrossRef] [PubMed]
- Rasmussen, M.W.; Roux, M.; Petersen, M.; Mundy, J. MAP Kinase Cascades in Arabidopsis Innate Immunity. Front. Plant Sci. 2012, 3, 169. [Google Scholar] [CrossRef] [PubMed]
- Vainonen, J.P.; Kangasjärvi, J. Plant Signalling in Acute Ozone Exposure. Plant Cell Environ. 2015, 38, 240–252. [Google Scholar] [CrossRef] [PubMed]
- Overmyer, K.; Brosché, M.; Pellinen, R.; Kuittinen, T.; Tuominen, H.; Ahlfors, R.; Keinänen, M.; Saarma, M.; Scheel, D.; Kangasjärvi, J. Ozone-Induced Programmed Cell Death in the Arabidopsis Radical-Induced Cell Death1 Mutant. Plant Physiol. 2005, 137, 1092–1104. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Zhang, S. Regulation of Ethylene Biosynthesis and Signaling by Protein Kinases and Phosphatases. Mol. Plant 2014, 7, 939–942. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.; Kant, K.; Kaur, N.; Gupta, S.; Jindal, P.; Gill, S.S.; Naeem, M. Salicylic Acid: Homeostasis, Signalling and Phytohormone Crosstalk in Plants under Environmental Challenges. S. Afr. J. Bot. 2024, 169, 314–335. [Google Scholar] [CrossRef]
- Gandin, A.; Dizengremel, P.; Jolivet, Y. Integrative Role of Plant Mitochondria Facing Oxidative Stress: The Case of Ozone. Plant Physiol. Biochem. 2021, 159, 202–210. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Zhu, W.; Zhao, Q. Salicylic Acid Biosynthesis Is Not from Phenylalanine in Arabidopsis. J. Integr. Plant Biol. 2023, 65, 881–887. [Google Scholar] [CrossRef] [PubMed]
- Barros, J.; Dixon, R.A. Plant Phenylalanine/Tyrosine Ammonia-Lyases. Trends Plant Sci. 2020, 25, 66–79. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, D.; Nakajima, N.; Sano, T.; Tamaoki, M.; Aono, M.; Kubo, A.; Kanna, M.; Ioki, M.; Kamada, H.; Saji, H. Salicylic Acid Accumulation under O3 Exposure Is Regulated by Ethylene in Tobacco Plants. Plant Cell Physiol. 2005, 46, 1062–1072. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Mane, S.P.; Sioson, A.A.; Robinet, C.V.; Heath, L.S.; Bohnert, H.J.; Grene, R. Effects of Chronic Ozone Exposure on Gene Expression in Arabidopsis Thaliana Ecotypes and in Thellungiella Halophila. Plant Cell Environ. 2006, 29, 854–868. [Google Scholar] [CrossRef] [PubMed]
- Morales, L.O.; Shapiguzov, A.; Safronov, O.; Leppälä, J.; Vaahtera, L.; Yarmolinsky, D.; Kollist, H.; Brosché, M. Ozone Responses in Arabidopsis: Beyond Stomatal Conductance. Plant Physiol. 2021, 186, 180–192. [Google Scholar] [CrossRef] [PubMed]
- Modesti, M.; Marchica, A.; Pisuttu, C.; Risoli, S.; Pellegrini, E.; Bellincontro, A.; Mencarelli, F.; Tonutti, P.; Nali, C. Ozone-Induced Biochemical and Molecular Changes in Vitis Vinifera Leaves and Responses to Botrytis Cinerea Infections. Antioxidants 2023, 12, 343. [Google Scholar] [CrossRef] [PubMed]
- Rao, M.V.; Davis, K.R. Ozone-induced Cell Death Occurs via Two Distinct Mechanisms in Arabidopsis: The Role of Salicylic Acid. Plant J. 1999, 17, 603–614. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.; Alvi, A.F.; Saify, S.; Iqbal, N.; Khan, N.A. The Ethylene Biosynthetic Enzymes, 1-Aminocyclopropane-1-Carboxylate (ACC) Synthase (ACS) and ACC Oxidase (ACO): The Less Explored Players in Abiotic Stress Tolerance. Biomolecules 2024, 14, 90. [Google Scholar] [CrossRef] [PubMed]
- Houben, M.; Van de Poel, B. 1-Aminocyclopropane-1-Carboxylic Acid Oxidase (ACO): The Enzyme That Makes the Plant Hormone Ethylene. Front. Plant Sci. 2019, 10, 695. [Google Scholar] [CrossRef] [PubMed]
- Bandurska, H.; Borowiak, K.; Miara, M. Effect of Two Different Ambient Ozone Concentrations on Antioxidative Enzymes in Leaves of Two Tobacco Cultivars with Contrasting Ozone Sensitivity. Acta Biol. Crac. Ser. Bot. 2009, 51, 37–44. [Google Scholar]
- Gupta, S.K.; Sharma, M.; Majumder, B.; Maurya, V.K.; Lohani, M.; Deeba, F.; Pandey, V. Impact of Ethylene Diurea (EDU) on Growth, Yield and Proteome of Two Winter Wheat Varieties under High Ambient Ozone Phytotoxicity. Chemosphere 2018, 196, 161–173. [Google Scholar] [CrossRef] [PubMed]
- Altaf, F.; Parveen, S.; Lone, M.L.; Haq, A.U.; Farooq, S.; Tahir, I.; Mansoor, S.; ALYEMENI, M.N. Modulation of Leaf Senescence in Bergenia ciliata (Haw.) Sternb. through the Supplementation of Kinetin and Methyl Jasmonate. Pak. J. Bot. 2024, 56, 667–677. [Google Scholar] [CrossRef] [PubMed]
- Bozsó, Z.; Barna, B. Diverse Effect of Two Cytokinins, Kinetin and Benzyladenine, on Plant Development, Biotic Stress Tolerance, and Gene Expression. Life 2021, 11, 1404. [Google Scholar] [CrossRef] [PubMed]
- Kantharaj, V.; Ramasamy, N.K.; Yoon, Y.-E.; Lee, K.-A.; Kumar, V.; Choe, H.; Chohra, H.; Kim, Y.-N.; Lee, Y.B. Regulatory Response of Rice Seedlings to Exogenously Applied Kinetin During Oxidative Stress. J. Plant Growth Regul. 2024, 43, 4680–4690. [Google Scholar] [CrossRef]
- Ruan, J.; Zhou, Y.; Zhou, M.; Yan, J.; Khurshid, M.; Weng, W.; Cheng, J.; Zhang, K. Jasmonic Acid Signaling Pathway in Plants. Int. J. Mol. Sci. 2019, 20, 2479. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Yuan, J.; Yang, W.; Zhu, L.; Su, C.; Wang, X.; Wu, H.; Sun, Z.; Li, X. Genome Wide Identification and Expression Profiling of Ethylene Receptor Genes during Soybean Nodulation. Front. Plant Sci. 2017, 8, 859. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.; Cao, S.; Yang, Z.; Zheng, Y. MeJA Regulates Enzymes Involved in Ascorbic Acid and Glutathione Metabolism and Improves Chilling Tolerance in Loquat Fruit. Postharvest Biol. Technol. 2011, 59, 324–326. [Google Scholar] [CrossRef]
- Sasaki-Sekimoto, Y.; Taki, N.; Obayashi, T.; Aono, M.; Matsumoto, F.; Sakurai, N.; Suzuki, H.; Hirai, M.Y.; Noji, M.; Saito, K. Coordinated Activation of Metabolic Pathways for Antioxidants and Defence Compounds by Jasmonates and Their Roles in Stress Tolerance in Arabidopsis. Plant J. 2005, 44, 653–668. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Yu, H.; Dai, X.; Yu, M.; Yu, Z. Effect of Methyl Jasmonate on the Quality and Antioxidant Capacity by Modulating Ascorbate-Glutathione Cycle in Peach Fruit. Sci. Hortic. 2022, 303, 111216. [Google Scholar] [CrossRef]
- Yadav, D.S.; Rai, K.; Gupta, A.; Agrawal, S.B.; Agrawal, M. Cross-Talk between ROS and Phytohormones Signaling Determines Crop Sensitivity against Ozone. In Advances in Botanical Research; Elsevier: Amsterdam, The Netherlands, 2023; Volume 108, pp. 47–81. ISBN 0065-2296. [Google Scholar]
- Samanta, S.; Roychoudhury, A. Molecular Crosstalk of Jasmonate with Major Phytohormones and Plant Growth Regulators during Diverse Stress Responses. J. Plant Growth Regul. 2025, 44, 62–88. [Google Scholar] [CrossRef]
- Muhammad Aslam, M.; Waseem, M.; Jakada, B.H.; Okal, E.J.; Lei, Z.; Saqib, H.S.A.; Yuan, W.; Xu, W.; Zhang, Q. Mechanisms of Abscisic Acid-Mediated Drought Stress Responses in Plants. Int. J. Mol. Sci. 2022, 23, 1084. [Google Scholar] [CrossRef] [PubMed]
- Hsu, P.; Dubeaux, G.; Takahashi, Y.; Schroeder, J.I. Signaling Mechanisms in Abscisic Acid-mediated Stomatal Closure. Plant J. 2021, 105, 307–321. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Song, S.; Zhang, H.; Li, Y.; Niu, L.; Zhang, J.; Wang, W. Signaling Transduction of ABA, ROS, and Ca2+ in Plant Stomatal Closure in Response to Drought. Int. J. Mol. Sci. 2022, 23, 14824. [Google Scholar] [CrossRef] [PubMed]
- Parveen, N.; Kandhol, N.; Sharma, S.; Singh, V.P.; Chauhan, D.K.; Ludwig-Müller, J.; Corpas, F.J.; Tripathi, D.K. Auxin Crosstalk with Reactive Oxygen and Nitrogen Species in Plant Development and Abiotic Stress. Plant Cell Physiol. 2022, 63, 1814–1825. [Google Scholar] [CrossRef] [PubMed]
- Rao, M.J.; Duan, M.; Zhou, C.; Jiao, J.; Cheng, P.; Yang, L.; Wei, W.; Shen, Q.; Ji, P.; Yang, Y.; et al. Antioxidant Defense System in Plants: Reactive Oxygen Species Production, Signaling, and Scavenging During Abiotic Stress-Induced Oxidative Damage. Horticulturae 2025, 11, 477. [Google Scholar] [CrossRef]
- Tonelli, M.; Pellegrini, E.; D’Angiolillo, F.; Petersen, M.; Nali, C.; Pistelli, L.; Lorenzini, G. Ozone-Elicited Secondary Metabolites in Shoot Cultures of Melissa officinalis L. Plant Cell Tissue Organ Cult. PCTOC 2015, 120, 617–629. [Google Scholar] [CrossRef]
- Sadeghifar, H.; Ragauskas, A. Lignin as a Bioactive Polymer and Heavy Metal Absorber-an Overview. Chemosphere 2022, 309, 136564. [Google Scholar] [CrossRef] [PubMed]
- Molina, L.; Segura, A. Biochemical and Metabolic Plant Responses toward Polycyclic Aromatic Hydrocarbons and Heavy Metals Present in Atmospheric Pollution. Plants 2021, 10, 2305. [Google Scholar] [CrossRef] [PubMed]
- Ansari, M.K.A.; Iqbal, M.; Ahmad, M.; Munir, M.; Gaffar, S.A.; Chaachouay, N. Heavy Metal Stress and Cellular Antioxidant Systems of Plants: A Review. Agric. Rev. 2024, 45, 400–409. [Google Scholar] [CrossRef]
- Jiang, J.; Zhang, N.; Srivastava, A.K.; He, G.; Tai, Z.; Wang, Z.; Yang, S.; Xie, X.; Li, X. Superoxide Dismutase Positively Regulates Cu/Zn Toxicity Tolerance in Sorghum Bicolor by Interacting with Cu Chaperone for Superoxide Dismutase. J. Hazard. Mater. 2024, 480, 135828. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, P.; Mir, R.A.; Khah, M.A. Ascorbate–Glutathione Cycle. In Nitric Oxide in Plants: A Molecule with Dual Roles; John Wiley & Sons: Hoboken, NJ, USA, 2022. [Google Scholar]
- Balali-Mood, M.; Naseri, K.; Tahergorabi, Z.; Khazdair, M.R.; Sadeghi, M. Toxic Mechanisms of Five Heavy Metals: Mercury, Lead, Chromium, Cadmium, and Arsenic. Front. Pharmacol. 2021, 12, 643972. [Google Scholar] [CrossRef] [PubMed]
- Irato, P.; Santovito, G. Enzymatic and Non-Enzymatic Molecules with Antioxidant Function. Antioxidants 2021, 10, 579. [Google Scholar] [CrossRef] [PubMed]
- Tyagi, S.; Singh, K.; Upadhyay, S.K. Molecular Characterization Revealed the Role of Catalases under Abiotic and Arsenic Stress in Bread Wheat (Triticum aestivum L.). J. Hazard. Mater. 2021, 403, 123585. [Google Scholar] [CrossRef] [PubMed]
- Farooq, M.A.; Ali, S.; Hameed, A.; Ishaque, W.; Mahmood, K.; Iqbal, Z. Alleviation of Cadmium Toxicity by Silicon Is Related to Elevated Photosynthesis, Antioxidant Enzymes; Suppressed Cadmium Uptake and Oxidative Stress in Cotton. Ecotoxicol. Environ. Saf. 2013, 96, 242–249. [Google Scholar] [CrossRef] [PubMed]
- Pan, G.; Zhao, L.; Li, J.; Huang, S.; Tang, H.; Chang, L.; Dai, Z.; Chen, A.; Li, D.; Li, Z. Physiological Responses and Tolerance of Flax (Linum usitatissimum L.) to Lead Stress. Acta Physiol. Plant 2020, 42, 1–9. [Google Scholar] [CrossRef]
- Singh, V.P.; Srivastava, P.K.; Prasad, S.M. Nitric Oxide Alleviates Arsenic-Induced Toxic Effects in Ridged Luffa Seedlings. Plant Physiol. Biochem. 2013, 71, 155–163. [Google Scholar] [CrossRef] [PubMed]
- Chowardhara, B.; Borgohain, P.; Saha, B.; Awasthi, J.P.; Panda, S.K. Differential Oxidative Stress Responses in Brassica juncea (L.) Czern and Coss Cultivars Induced by Cadmium at Germination and Early Seedling Stage. Acta Physiol. Plant 2020, 42, 105. [Google Scholar] [CrossRef]
- Sinn, J.P.; Schlagnhaufer, C.D.; Arteca, R.N.; Pell, E.J. Ozone-induced Ethylene and Foliar Injury Responses Are Altered in 1-aminocyclopropane-1-carboxylate Synthase Antisense Potato Plants. New Phytol. 2004, 164, 267–277. [Google Scholar] [CrossRef] [PubMed]
- Leppälä, J.; Gaupels, F.; Xu, E.; Morales, L.O.; Durner, J.; Brosché, M. Ozone and Nitrogen Dioxide Regulate Similar Gene Expression Responses in Arabidopsis but Natural Variation in the Extent of Cell Death Is Likely Controlled by Different Genetic Loci. Front. Plant Sci. 2022, 13, 994779. [Google Scholar] [CrossRef] [PubMed]
- Zhao, F.; Durner, J.; Winkler, J.B.; Traidl-Hoffmann, C.; Strom, T.-M.; Ernst, D.; Frank, U. Pollen of Common Ragweed (Ambrosia artemisiifolia L.): Illumina-Based de Novo Sequencing and Differential Transcript Expression upon Elevated NO2/O3. Environ. Pollut. 2017, 224, 503–514. [Google Scholar] [CrossRef] [PubMed]
- Sheng, Q.; Zhou, C.; Liang, Y.; Zhang, H.; Song, M.; Zhu, Z. Elevated NO2 Induces Leaf Defensive Mechanisms in Bougainvillea Spectabilis Seedlings. Ecotoxicol. Environ. Saf. 2022, 248, 114292. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Li, M.; Yang, Y.; Sun, P.; Zhou, S.; Kang, Y.; Xu, Y.; Yuan, X.; Feng, Z.; Jin, W. Physiological and Molecular Responses of Different Rose (Rosa hybrida L.) Cultivars to Elevated Ozone Levels. Plant Direct 2023, 7, e513. [Google Scholar] [CrossRef] [PubMed]
- Iyer, N.J.; Tang, Y.; Mahalingam, R. Physiological, Biochemical and Molecular Responses to a Combination of Drought and Ozone in Medicago Truncatula. Plant Cell Environ. 2013, 36, 706–720. [Google Scholar] [CrossRef] [PubMed]
- Kabera, J.N.; Semana, E.; Mussa, A.R.; He, X. Plant Secondary Metabolites: Biosynthesis, Classification, Function and Pharmacological Properties. J. Pharm. Pharmacol. 2014, 2, 377–392. [Google Scholar]
- Rao, M.J.; Wang, H.; Lei, H.; Zhang, H.; Duan, X.; Bao, L.; Yang, C.; Han, D.; Zhang, Y.; Yang, S.; et al. LC-MS/MS-Based Metabolomic Study Provides Insights into Altitude-Dependent Variations in Flavonoid Profiles of Strawberries. Front. Plant Sci. 2025, 15, 1527212. [Google Scholar] [CrossRef] [PubMed]
- Rao, M.J.; Xu, Y.; Tang, X.; Huang, Y.; Liu, J.; Deng, X. CsCYT75B1, a Citrus CYTOCHROME P450 Gene, Is Involved in Accumulation of Antioxidant Flavonoids and Induces Drought Tolerance in Transgenic Arabidopsis. Antioxidants 2020, 9, 161. [Google Scholar] [CrossRef] [PubMed]
- Rao, M.J.; Xu, Y.; Huang, Y.; Tang, X.; Deng, X.; Xu, Q. Ectopic Expression of Citrus UDP-GLUCOSYL TRANSFERASE Gene Enhances Anthocyanin and Proanthocyanidins Contents and Confers High Light Tolerance in Arabidopsis. BMC Plant Biol. 2019, 19, 603. [Google Scholar] [CrossRef] [PubMed]
- Yu, F.; De Luca, V. Transport of Monoterpenoid Indole Alkaloids in Catharanthus Roseus. Plant ABC Transp. 2014, 63–75. [Google Scholar]
- Singh, A.A.; Ghosh, A.; Agrawal, M.; Agrawal, S.B. Secondary Metabolites Responses of Plants Exposed to Ozone: An Update. Environ. Sci. Pollut. Res. 2023, 30, 88281–88312. [Google Scholar] [CrossRef] [PubMed]
- Wink, M.; Schimmer, O. Molecular Modes of Action of Defensive Secondary Metabolites. Annu. Plant Rev. Funct. Biotechnol. Plant Second. Metab. 2010, 39, 21–161. [Google Scholar]
- Boublin, F.; Cabassa-Hourton, C.; Leymarie, J.; Leitao, L. Potential Involvement of Proline and Flavonols in Plant Responses to Ozone. Environ. Res. 2022, 207, 112214. [Google Scholar] [CrossRef] [PubMed]
- Marchica, A.; Ascrizzi, R.; Flamini, G.; Cotrozzi, L.; Tonelli, M.; Lorenzini, G.; Nali, C.; Pellegrini, E. Ozone as Eustress for Enhancing Secondary Metabolites and Bioactive Properties in Salvia officinalis. Ind. Crops Prod. 2021, 170, 113730. [Google Scholar] [CrossRef]
- Chen, C.; Zhang, H.; Dong, C.; Ji, H.; Zhang, X.; Li, L.; Ban, Z.; Zhang, N.; Xue, W. Effect of Ozone Treatment on the Phenylpropanoid Biosynthesis of Postharvest Strawberries. RSC Adv. 2019, 9, 25429–25438. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Qin, Y.; Sun, W.; Shi, H.; Zhao, S.; He, L.; Li, C.; Zhao, J.; Pan, J.; Wang, G. Phylogenomic Analysis of Cytochrome P450 Gene Superfamily and Their Association with Flavonoids Biosynthesis in Peanut (Arachis hypogaea L.). Genes 2023, 14, 1944. [Google Scholar] [CrossRef] [PubMed]
- Cho, K.; Tiwari, S.; Agrawal, S.B.; Torres, N.L.; Agrawal, M.; Sarkar, A.; Shibato, J.; Agrawal, G.K.; Kubo, A.; Rakwal, R. Tropospheric Ozone and Plants: Absorption, Responses, and Consequences. Rev. Environ. Contam. Toxicol. 2011, 212, 61–111. [Google Scholar] [PubMed]
- Gupta, P.; De, B. Differential Responses of Cell Wall Bound Phenolic Compounds in Sensitive and Tolerant Varieties of Rice in Response to Salinity. Plant Signal Behav. 2017, 12, e1379643. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Yang, J.; Li, H.; Chiang, V.L.; Fu, Y. Cooperative Regulation of Flavonoid and Lignin Biosynthesis in Plants. CRC Crit. Rev. Plant Sci. 2021, 40, 109–126. [Google Scholar] [CrossRef]
- Marchiosi, R.; dos Santos, W.D.; Constantin, R.P.; de Lima, R.B.; Soares, A.R.; Finger-Teixeira, A.; Mota, T.R.; de Oliveira, D.M.; de Foletto-Felipe, M.P.; Abrahão, J. Biosynthesis and Metabolic Actions of Simple Phenolic Acids in Plants. Phytochem. Rev. 2020, 19, 865–906. [Google Scholar] [CrossRef]
- Khan, P.; Tong, L.; Khan, S.U.; Zhang, C.; Wang, W. Lignin: A Defensive Shield Halting the Environmental Stresses—A Review. Appl. Ecol. Environ. Res. 2022, 20, 22. [Google Scholar] [CrossRef]
- Shao, J.; Huang, K.; Batool, M.; Idrees, F.; Afzal, R.; Haroon, M.; Noushahi, H.A.; Wu, W.; Hu, Q.; Lu, X. Versatile Roles of Polyamines in Improving Abiotic Stress Tolerance of Plants. Front. Plant Sci. 2022, 13, 1003155. [Google Scholar] [CrossRef] [PubMed]
- Shen, N.; Wang, T.; Gan, Q.; Liu, S.; Wang, L.; Jin, B. Plant Flavonoids: Classification, Distribution, Biosynthesis, and Antioxidant Activity. Food Chem. 2022, 383, 132531. [Google Scholar] [CrossRef] [PubMed]
- Rao, M.J.; Wu, S.; Duan, M.; Wang, L. Antioxidant Metabolites in Primitive, Wild, and Cultivated Citrus and Their Role in Stress Tolerance. Molecules 2021, 26, 5801. [Google Scholar] [CrossRef] [PubMed]
- Winkel-Shirley, B. Flavonoid Biosynthesis. A Colorful Model for Genetics, Biochemistry, Cell Biology, and Biotechnology. Plant Physiol. 2001, 126, 485–493. [Google Scholar] [CrossRef] [PubMed]
- Hajam, Y.A.; Lone, R.; Kumar, R. Role of Plant Phenolics against Reactive Oxygen Species (ROS) Induced Oxidative Stress and Biochemical Alterations. In Plant Phenolics in Abiotic Stress Management; Springer: Berlin/Heidelberg, Germany, 2023; pp. 125–147. [Google Scholar]
- Dusart, N.; Gandin, A.; Vaultier, M.-N.; Joffe, R.; Cabané, M.; Dizengremel, P.; Jolivet, Y. Importance of Detoxification Processes in Ozone Risk Assessment: Need to Integrate the Cellular Compartmentation of Antioxidants? Front. For. Glob. Change 2019, 2, 45. [Google Scholar] [CrossRef]
- Fatima, A.; Singh, A.A.; Mukherjee, A.; Agrawal, M.; Agrawal, S.B. Variability in Defence Mechanism Operating in Three Wheat Cultivars Having Different Levels of Sensitivity against Elevated Ozone. Environ. Exp. Bot. 2018, 155, 66–78. [Google Scholar] [CrossRef]
- Pellegrini, E.; Campanella, A.; Cotrozzi, L.; Tonelli, M.; Nali, C.; Lorenzini, G. What about the Detoxification Mechanisms Underlying Ozone Sensitivity in Liriodendron Tulipifera? Environ. Sci. Pollut. Res. 2018, 25, 8148–8160. [Google Scholar] [CrossRef] [PubMed]
- Richet, N.; Afif, D.; Tozo, K.; Pollet, B.; Maillard, P.; Huber, F.; Priault, P.; Banvoy, J.; Gross, P.; Dizengremel, P. Elevated CO2 and/or Ozone Modify Lignification in the Wood of Poplars (Populus tremula x Alba). J. Exp. Bot. 2012, 63, 4291–4301. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, F.F.; Cardoso-Gustavson, P.; Alves, E.S. Synergism between Ozone and Light Stress: Structural Responses of Polyphenols in a Woody Brazilian Species. Chemosphere 2016, 155, 573–582. [Google Scholar] [CrossRef] [PubMed]
- Cotrozzi, L.; Campanella, A.; Pellegrini, E.; Lorenzini, G.; Nali, C.; Paoletti, E. Phenylpropanoids Are Key Players in the Antioxidant Defense to Ozone of European Ash, Fraxinus Excelsior. Environ. Sci. Pollut. Res. 2018, 25, 8137–8147. [Google Scholar] [CrossRef] [PubMed]
- Joardar, S.; Dewanjee, S.; Bhowmick, S.; Dua, T.K.; Das, S.; Saha, A.; De Feo, V. Rosmarinic Acid Attenuates Cadmium-Induced Nephrotoxicity via Inhibition of Oxidative Stress, Apoptosis, Inflammation and Fibrosis. Int. J. Mol. Sci. 2019, 20, 2027. [Google Scholar] [CrossRef] [PubMed]
- Kittipornkul, P.; Treesubsuntorn, C.; Thiravetyan, P. Effect of Exogenous Catechin and Salicylic Acid on Rice Productivity under Ozone Stress: The Role of Chlorophyll Contents, Lipid Peroxidation, and Antioxidant Enzymes. Environ. Sci. Pollut. Res. 2020, 27, 25774–25784. [Google Scholar] [CrossRef] [PubMed]
- Bano, K.; Kumar, B.; Alyemeni, M.N.; Ahmad, P. Exogenously-Sourced Salicylic Acid Imparts Resilience towards Arsenic Stress by Modulating Photosynthesis, Antioxidant Potential and Arsenic Sequestration in Brassica Napus Plants. Antioxidants 2022, 11, 2010. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Saleem, M.H.; Ali, B.; Rasheed, R.; Ashraf, M.A.; Aziz, H.; Ercisli, S.; Riaz, S.; Elsharkawy, M.M.; Hussain, I. Impact of Foliar Application of Syringic Acid on Tomato (Solanum lycopersicum L.) under Heavy Metal Stress-Insights into Nutrient Uptake, Redox Homeostasis, Oxidative Stress, and Antioxidant Defense. Front. Plant Sci. 2022, 13, 950120. [Google Scholar] [CrossRef] [PubMed]
- Balci, M.; Arikan-Abdulveli, B.; Yildiztugay, E.; Ozfidan-Konakci, C. Role of Syringic Acid in Enhancing Growth, Photosynthesis, and Antioxidant Defense in Lettuce Exposed to Arsenic Stress. Physiol. Plant 2025, 177, e70051. [Google Scholar] [CrossRef] [PubMed]
- Badhani, B.; Sharma, N.; Kakkar, R. Gallic Acid: A Versatile Antioxidant with Promising Therapeutic and Industrial Applications. RSC Adv. 2015, 5, 27540–27557. [Google Scholar] [CrossRef]
- Kerdsomboon, K.; Chumsawat, W.; Auesukaree, C. Effects of Moringa Oleifera Leaf Extracts and Its Bioactive Compound Gallic Acid on Reducing Toxicities of Heavy Metals and Metalloid in Saccharomyces Cerevisiae. Chemosphere 2021, 270, 128659. [Google Scholar] [CrossRef] [PubMed]
- Afzaal, Z.; Hussain, I.; Ashraf, M.A.; Riaz, S. Ascorbic Acid and Vanillic Acid Application Alleviate the Lead Toxicity in Lycopersicon Esculentum by Modulating Key Biochemical Attributes and Antioxidant Defense Systems. Russ. J. Plant Physiol. 2023, 70, 129. [Google Scholar] [CrossRef]
- Chen, S.; Lin, R.; Lu, H.; Wang, Q.; Yang, J.; Liu, J.; Yan, C. Effects of Phenolic Acids on Free Radical Scavenging and Heavy Metal Bioavailability in Kandelia obovata under Cadmium and Zinc Stress. Chemosphere 2020, 249, 126341. [Google Scholar] [CrossRef]
- Ghosh, A.; Pandey, B.; Agrawal, M.; Agrawal, S.B. Interactive Effects and Competitive Shift between Triticum aestivum L. (Wheat) and Chenopodium album L. (Fat-Hen) under Ambient and Elevated Ozone. Environ. Pollut. 2020, 265, 114764. [Google Scholar] [CrossRef] [PubMed]
- Goncharuk, E.A.; Zagoskina, N. V Heavy Metals, Their Phytotoxicity, and the Role of Phenolic Antioxidants in Plant Stress Responses with Focus on Cadmium. Molecules 2023, 28, 3921. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Soares, C.; Sousa, B.; Martins, M.; Kumar, V.; Shahzad, B.; Sidhu, G.P.S.; Bali, A.S.; Asgher, M.; Bhardwaj, R. Nitric Oxide-mediated Regulation of Oxidative Stress in Plants under Metal Stress: A Review on Molecular and Biochemical Aspects. Physiol. Plant 2020, 168, 318–344. [Google Scholar] [CrossRef] [PubMed]
- Pellegrini, E.; Campanella, A.; Cotrozzi, L.; Tonelli, M.; Nali, C.; Lorenzini, G. Ozone Primes Changes in Phytochemical Parameters in the Medicinal Herb Hypericum Perforatum (St. John’s Wort). Ind. Crops Prod. 2018, 126, 119–128. [Google Scholar] [CrossRef]
- Gaur, K.; Siddique, Y.H. The Role of Apigenin in Alleviating the Impact of Environmental Pollutants. Curr. Bioact. Compd. 2025, 21, E050324227673. [Google Scholar] [CrossRef]
- Mao, B.; Yin, H.; Wang, Y.; Zhao, T.-H.; Tian, R.-R.; Wang, W.; Ye, J.-S. Combined Effects of O3 and UV Radiation on Secondary Metabolites and Endogenous Hormones of Soybean Leaves. PLoS ONE 2017, 12, e0183147. [Google Scholar] [CrossRef] [PubMed]
- Magray, J.A.; Sharma, D.P.; Deva, M.A.; Thoker, S.A. Phenolics: Accumulation and Role in Plants Grown under Heavy Metal Stress. Plant Phenolics Abiotic Stress. Manag. 2023, 321–351. [Google Scholar]
- Zhang, X.; Zhang, X.; Zhang, L.; Zhang, Y.; Zhang, D.; Gu, X.; Zheng, Y.; Wang, T.; Li, C. Metabolite Profiling for Model Cultivars of Wheat and Rice under Ozone Pollution. Environ. Exp. Bot. 2020, 179, 104214. [Google Scholar] [CrossRef]
- Mi, Y.; Tong, K.; Zhu, G.; Zhang, X.; Liu, X.; Si, Y. Surface Spraying of Anthocyanin through Antioxidant Defense and Subcellular Sequestration to Decrease Cd Accumulation in Rice (Oryza sativa L.) Grains in a Lead–Zinc Mine Area. Environ. Geochem. Health 2021, 43, 1855–1866. [Google Scholar] [CrossRef] [PubMed]
- Dai, L.-P.; Dong, X.-J.; Ma, H.-H. Antioxidative and Chelating Properties of Anthocyanins in Azolla Imbricata Induced by Cadmium. Pol. J. Environ. Stud. 2012, 21, 837–844. [Google Scholar]
- Richau, K.H.; Kozhevnikova, A.D.; Seregin, I.V.; Vooijs, R.; Koevoets, P.L.M.; Smith, J.A.C.; Ivanov, V.B.; Schat, H. Chelation by Histidine Inhibits the Vacuolar Sequestration of Nickel in Roots of the Hyperaccumulator Thlaspi Caerulescens. New Phytol. 2009, 183, 106–116. [Google Scholar] [CrossRef] [PubMed]
- Kanagendran, A.; Pazouki, L.; Niinemets, Ü. Differential Regulation of Volatile Emission from Eucalyptus Globulus Leaves upon Single and Combined Ozone and Wounding Treatments through Recovery and Relationships with Ozone Uptake. Environ. Exp. Bot. 2018, 145, 21–38. [Google Scholar] [CrossRef] [PubMed]
- Kanagendran, A.; Chatterjee, P.; Liu, B.; Sa, T.; Pazouki, L.; Niinemets, Ü. Foliage Inoculation by Burkholderia Vietnamiensis CBMB40 Antagonizes Methyl Jasmonate-Mediated Stress in Eucalyptus Grandis. J. Plant Physiol. 2019, 242, 153032. [Google Scholar] [CrossRef] [PubMed]
- Bortolin, R.C.; Caregnato, F.F.; Junior, A.M.D.; Zanotto-Filho, A.; Moresco, K.S.; de Oliveira Rios, A.; de Oliveira Salvi, A.; Ortmann, C.F.; de Carvalho, P.; Reginatto, F.H. Chronic Ozone Exposure Alters the Secondary Metabolite Profile, Antioxidant Potential, Anti-Inflammatory Property, and Quality of Red Pepper Fruit from Capsicum baccatum. Ecotoxicol. Environ. Saf. 2016, 129, 16–24. [Google Scholar] [CrossRef] [PubMed]
- Gill, S.S.; Tuteja, N. Reactive Oxygen Species and Antioxidant Machinery in Abiotic Stress Tolerance in Crop Plants. Plant Physiol. Biochem. 2010, 48, 909–930. [Google Scholar] [CrossRef] [PubMed]
- Nile, S.H.; Keum, Y.S.; Nile, A.S.; Jalde, S.S.; Patel, R. V Antioxidant, Anti-inflammatory, and Enzyme Inhibitory Activity of Natural Plant Flavonoids and Their Synthesized Derivatives. J. Biochem. Mol. Toxicol. 2018, 32, e22002. [Google Scholar] [CrossRef] [PubMed]
- da Rosa Santos, A.C.; Furlan, C.M. Levels of Phenolic Compounds in Tibouchina Pulchra after Fumigation with Ozone. Atmos. Pollut. Res. 2013, 4, 250–256. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, X.; Wang, T.; Li, C. Metabolic Response of Soybean Leaves Induced by Short-Term Exposure of Ozone. Ecotoxicol. Environ. Saf. 2021, 213, 112033. [Google Scholar] [CrossRef] [PubMed]
- Betz, G.A.; Knappe, C.; Lapierre, C.; Olbrich, M.; Welzl, G.; Langebartels, C.; Heller, W.; Sandermann, H.; Ernst, D. Ozone Affects Shikimate Pathway Transcripts and Monomeric Lignin Composition in European Beech (Fagus sylvatica L.). Eur. J. For. Res. 2009, 128, 109–116. [Google Scholar] [CrossRef]
- Matyssek, R.; Sandermann, H. Impact of Ozone on Trees: An Ecophysiological Perspective. Prog. Progress. Bot. Genet. Physiol. Syst. Ecol. 2003, 349–404. [Google Scholar]
- Di Baccio, D.; Castagna, A.; Paoletti, E.; Sebastiani, L.; Ranieri, A. Could the Differences in O3 Sensitivity between Two Poplar Clones Be Related to a Difference in Antioxidant Defense and Secondary Metabolic Response to O3 Influx? Tree Physiol. 2008, 28, 1761–1772. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Wei, H.; Wei, C.; Dong, T.; Liu, C.; Chen, Z.; Xu, S.; Ruan, Y. Changes of Main Secondary Metabolites in Leaves of Ginkgo Biloba in Response to Ozone Fumigation. J. Environ. Sci. 2009, 21, 199–203. [Google Scholar] [CrossRef] [PubMed]
- Bartwal, A.; Mall, R.; Lohani, P.; Guru, S.K.; Arora, S. Role of Secondary Metabolites and Brassinosteroids in Plant Defense against Environmental Stresses. J. Plant Growth Regul. 2013, 32, 216–232. [Google Scholar] [CrossRef]
- Chaudhary, I.J.; Nigam, B.; Rathore, D. Effect of Elevated Ozone on Soybean (Glycine max L.) Cultivar: Role of Orange Juice and Synthetic Ascorbic Acid. Nat. Environ. Pollut. Technol. 2023, 22, 1225–1238. [Google Scholar] [CrossRef]
- Munné-Bosch, S.; Falk, J. New Insights into the Function of Tocopherols in Plants. Planta 2004, 218, 323–326. [Google Scholar] [CrossRef] [PubMed]
- Pollastri, S.; Baccelli, I.; Loreto, F. Isoprene: An Antioxidant Itself or a Molecule with Multiple Regulatory Functions in Plants? Antioxidants 2021, 10, 684. [Google Scholar] [CrossRef] [PubMed]
- Velikova, V.; Sharkey, T.D.; Loreto, F. Stabilization of Thylakoid Membranes in Isoprene-Emitting Plants Reduces Formation of Reactive Oxygen Species. Plant Signal Behav. 2012, 7, 139–141. [Google Scholar] [CrossRef] [PubMed]
- Ansari, N.; Yadav, D.S.; Agrawal, M.; Agrawal, S.B. The Impact of Elevated Ozone on Growth, Secondary Metabolites, Production of Reactive Oxygen Species and Antioxidant Response in an Anti-Diabetic Plant Costus pictus. Funct. Plant Biol. 2021, 48, 597–610. [Google Scholar] [CrossRef] [PubMed]
- Bison, J.V.; Cardoso-Gustavson, P.; de Moraes, R.M.; da Silva Pedrosa, G.; Cruz, L.S.; Freschi, L.; de Souza, S.R. Volatile Organic Compounds and Nitric Oxide as Responses of a Brazilian Tropical Species to Ozone: The Emission Profile of Young and Mature Leaves. Environ. Sci. Pollut. Res. 2018, 25, 3840–3848. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Yan, X.; Sun, T.; Shen, Y.; Shi, Q.; Wang, W.; Bao, M.; Luo, H.; Nian, F.; Ning, G. Homeostatic Regulation of Flavonoid and Lignin Biosynthesis in Phenylpropanoid Pathway of Transgenic Tobacco. Gene 2022, 809, 146017. [Google Scholar] [CrossRef] [PubMed]
- Yousuf, P.Y.; Shabir, P.A.; Hakeem, K.R. MiRNAomics and Stress Management in Plants; CRC Press: Boca Raton, FL, USA, 2024; ISBN 1040120032. [Google Scholar]
- Taylor, M.J.; Lukowski, J.K.; Anderton, C.R. Spatially Resolved Mass Spectrometry at the Single Cell: Recent Innovations in Proteomics and Metabolomics. J. Am. Soc. Mass. Spectrom. 2021, 32, 872–894. [Google Scholar] [CrossRef] [PubMed]
- Dezem, F.S.; Morosini, N.S.; Arjumand, W.; DuBose, H.; Plummer, J. Spatially Resolved Single-Cell Omics: Methods, Challenges, and Future Perspectives. Annu. Rev. Biomed. Data Sci. 2024, 7, 131–153. [Google Scholar] [CrossRef] [PubMed]
- Charagh, S.; Wang, H.; Wang, J.; Raza, A.; Hui, S.; Cao, R.; Zhou, L.; Tang, S.; Hu, P.; Hu, S. Leveraging Multi-Omics Tools to Comprehend Responses and Tolerance Mechanisms of Heavy Metals in Crop Plants. Funct. Integr. Genom. 2024, 24, 194. [Google Scholar] [CrossRef] [PubMed]
- Rao, M.J.; Duan, M.; Yang, M.; Fan, H.; Shen, S.; Hu, L.; Wang, L. Novel Insights into Anthocyanin Metabolism and Molecular Characterization of Associated Genes in Sugarcane Rinds Using the Metabolome and Transcriptome. Int. J. Mol. Sci. 2022, 23, 338. [Google Scholar] [CrossRef] [PubMed]
- Rao, M.J.; Duan, M.; Wang, J.; Han, S.; Ma, L.; Mo, X.; Li, M.; Hu, L.; Wang, L. Transcriptomic and Widely Targeted Metabolomic Approach Identified Diverse Group of Bioactive Compounds, Antiradical Activities, and Their Associated Genes in Six Sugarcane Varieties. Antioxidants 2022, 11, 1319. [Google Scholar] [CrossRef] [PubMed]
- Zia, K.; Rao, M.J.; Sadaqat, M.; Azeem, F.; Fatima, K.; Tahir Ul Qamar, M.; Alshammari, A.M.; Alharbi, M. Pangenome-Wide Analysis of Cyclic Nucleotide-Gated Channel (CNGC) Gene Family in Citrus Spp. Revealed Their Intraspecies Diversity and Potential Roles in Abiotic Stress Tolerance. Front. Genet. 2022, 13, 1034921. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, A.; Abraham, S.; Singh, A.; Balaji, S.; Mukunthan, K.S. From Data to Cure: A Comprehensive Exploration of Multi-Omics Data Analysis for Targeted Therapies. Mol. Biotechnol. 2025, 67, 1269–1289. [Google Scholar] [CrossRef] [PubMed]
- Rao, M.J.; Duan, M.; Eman, M.; Yuan, H.; Sharma, A.; Zheng, B. Comparative Analysis of Citrus Species’ Flavonoid Metabolism, Gene Expression Profiling, and Their Antioxidant Capacity under Drought Stress. Antioxidants 2024, 13, 1149. [Google Scholar] [CrossRef] [PubMed]
- Rao, M.J.; Duan, M.; Shad, M.A.; Aslam, M.Z.; Wang, J.; Wang, L. Widely Targeted LC-MS/MS Approach Provides Insights into Variations in Bioactive Flavonoid Compounds and Their Antioxidant Activities in Green, Red, and Purple Sugarcane. LWT Food Sci. Technol. 2024, 209, 116792. [Google Scholar] [CrossRef]
- Duan, M.; Bao, L.; Eman, M.; Han, D.; Zhang, Y.; Zheng, B.; Yang, S.; Rao, M.J. The Ectopic Expression of the MpDIR1(t) Gene Enhances the Response of Plants from Arabidopsis Thaliana to Biotic Stress by Regulating the Defense Genes and Antioxidant Flavonoids. Plants 2024, 13, 2692. [Google Scholar] [CrossRef] [PubMed]
- Li, Y. Modern Epigenetics Methods in Biological Research. Methods 2021, 187, 104–113. [Google Scholar] [CrossRef] [PubMed]
- Yan, W.; Fu, R.; Huang, X.; Zhan, A. Dynamic and Functional MiRNA-mediated Gene Regulations in Response to Recurrent Environmental Challenges during Biological Invasions. Mol. Ecol. 2025, e17749. [Google Scholar] [CrossRef] [PubMed]
- Sandrini, M.; Nerva, L.; Sillo, F.; Balestrini, R.; Chitarra, W.; Zampieri, E. Abiotic Stress and Belowground Microbiome: The Potential of Omics Approaches. Int. J. Mol. Sci. 2022, 23, 1091. [Google Scholar] [CrossRef] [PubMed]
Serial No. | Metabolic Compound | Response to Air Pollution | Heavy Metal Pollution | ROS Quenching | Stress Tolerance Mechanism | Antioxidant Defense | Reference |
---|---|---|---|---|---|---|---|
1 | Rosmarinic Acid | Reduces oxidative stress caused by PM and O3. | Chelates HMs like cadmium and lead, reducing toxicity. | Direct ROS scavenger enhances antioxidant enzyme. | Strengthen stress tolerance by regulating antioxidant genes. | Activates glutathione-S-transferase (GST) and SOD pathways. | [60,106] |
2 | Salicylic Acid | Mitigates ozone-induced oxidative stress. | Reduces cadmium and arsenic toxicity by enhancing antioxidant capacity. | Indirect ROS quenching via upregulation of antioxidant enzymes. | Induces systemic acquired resistance (SAR) in plants. | Activates peroxidase (POD) and catalase (CAT) pathways. | [107,108] |
3 | Syringic Acid | Protects against oxidative damage from air pollutants. | Chelates heavy metals like arsenic stress. | Direct ROS scavenger. | Enhances membrane stability under stress. | Boosts ascorbate peroxidase (APX) activity. | [109,110] |
4 | Gallic Acid | Reduces oxidative stress from air pollutants. | Chelates heavy metals like chromium and nickel. | Direct ROS scavenger. | Stabilizes cellular membranes and proteins. | Activates SOD and CAT pathways. | [84,111,112] |
5 | Vanillic Acid | Protect oxidative stress from sulfur dioxide. | Reduces lead and cadmium toxicity. | Indirect ROS quenching via antioxidant enzyme activation. | Enhances lignin biosynthesis for structural defense. | Upregulates POD and APX pathways. | [84,113] |
6 | Lignin | Acts as a physical barrier against air pollutants. | Binds heavy metals, reducing their bioavailability. | Indirect ROS quenching by reinforcing cell walls. | Provides structural integrity under stress. | Enhances the phenylpropanoid pathway for stress tolerance. | [60,61] |
7 | p-Coumaric Acid | Reduces oxidative stress from O3 and PM. | Chelates heavy metals like cadmium. | Direct ROS scavenger. | Enhances lignin biosynthesis. | Activates PAL (phenylalanine ammonia-lyase) pathway. | [114,115] |
8 | Caffeic Acid | Protects against oxidative damage from air pollutants. | Chelates heavy metals like iron and copper. | Direct ROS scavenger. | Enhance phenolic compound biosynthesis. | Boosts APX and SOD activity. | [114,116] |
9 | Ferulic Acid | Reduces oxidative stress from different air pollutants. | Chelates heavy metals like aluminum. | Direct ROS scavenger. | Stabilizes cell walls and membranes. | Activates POD and CAT pathways. | [114,116,117] |
10 | Isofraxidin | Mitigates oxidative stress from O3. | Reduces cadmium toxicity. | Direct ROS scavenger. | Improves lignin biosynthesis. | Activates POD and CAT pathways. | [105] |
11 | Kaempferol | Reduces oxidative stress from particulate matter. | Chelates heavy metals like lead and cadmium. | Direct ROS scavenger. | Enhances flavonoid biosynthesis. | Activates GST and SOD pathways. | [118] |
12 | Apigenin | Protects against oxidative damage from air pollutants. | Reduces chromium toxicity. | Direct ROS scavenger. | Strengthens stress tolerance via flavonoid metabolism. | Boosts CAT and APX activity. | [119] |
13 | Quercetin | Reduces oxidative stress from ozone and nitrogen oxides (NOx). | Chelates heavy metals like cadmium and lead. | Direct ROS scavenger. | Increases flavonoid biosynthesis. | Activates SOD, CAT, and APX pathways. | [118] |
14 | Quercitrin | Mitigates oxidative damage from air pollutants. | Reduces arsenic toxicity. | Direct ROS scavenger. | Enhance stress tolerance via flavonoid metabolism. | Activates GST and SOD pathways. | [120,121] |
15 | Rutin | Protects against oxidative stress from sulfur dioxide (SO2). | Chelates heavy metals like cadmium. | Direct ROS scavenger. | Improves flavonoid biosynthesis. | Boosts CAT and APX activity. | [120] |
16 | Isoquercetrin | Reduces oxidative stress from ozone. | Reduces lead toxicity. | Direct ROS scavenger. | Enhance stress tolerance via flavonoid metabolism. | Activates SOD and CAT pathways. | [105,122] |
17 | Isoquercetin | Mitigates oxidative damage from air pollutants. | Reduces cadmium toxicity. | Direct ROS scavenger. | Increases flavonoid biosynthesis. | Boosts APX and GST activity. | [105,122] |
18 | Oleuropein | Protects against oxidative stress from ozone | Chelates heavy metals like copper and zinc. | Direct ROS scavenger. | Enhance phenolic compound biosynthesis. | Activates SOD and CAT pathways. | [105,122] |
19 | Condensed Tannin | Acts as a physical barrier against air pollutants. | Binds heavy metals, reducing their bioavailability. | Indirect ROS quenching by reinforcing cell walls. | Provides structural integrity under stress. | Enhances the phenylpropanoid pathway for stress tolerance. | [121] |
20 | Anthocyanins | Reduces oxidative stress from ozone and particulate matter. | Chelates heavy metals like cadmium. | Direct ROS scavenger. | Enhances flavonoid biosynthesis. | Activates SOD, CAT, and APX pathways. | [123,124] |
21 | Serine | Helps in detoxifying air pollutants by supporting glutathione synthesis. | Reduces heavy metal toxicity by enhancing antioxidant enzyme activity. | Indirect ROS quenching via glutathione production. | Supports cellular metabolism and stress signaling. | Activates glutathione (GSH) biosynthesis pathway. | [62] |
22 | Threonine | Supports protein synthesis under oxidative stress caused by air pollution. | Chelates heavy metals like cadmium and lead. | Indirect ROS quenching by supporting antioxidant enzyme synthesis. | Boosts protein stability and repair under stress. | Boosts the synthesis of stress-responsive proteins. | [62] |
23 | Arginine | Reduces oxidative stress from nitrogen oxides (NOx) by producing nitric oxide (NO). | Chelates heavy metals like copper and zinc. | Indirect ROS quenching via nitric oxide (NO) signaling. | Increases stress tolerance through polyamine biosynthesis. | Activates nitric oxide synthase (NOS) and polyamine pathways. | [62] |
24 | Ornithine | Supports detoxification of air pollutants by participating in the urea cycle. | Reduces heavy metal toxicity by enhancing polyamine biosynthesis. | Indirect ROS quenching via polyamine production. | Enhance cellular repair and stress signaling. | Activates polyamine biosynthesis pathway. | [6] |
25 | Phenylalanine | Precursor for phenolic compounds that mitigate oxidative stress from air pollution. | Reduces heavy metal toxicity by enhancing lignin and flavonoid biosynthesis. | Indirect ROS quenching via phenolic compound production. | Improves structural defense through lignin biosynthesis. | Activates the phenylpropanoid pathway for antioxidant production. | [7,8] |
26 | Anthranilate | Supports the synthesis of secondary metabolites that combat oxidative stress. | Reduces HM toxicity by enhancing tryptophan-derived metabolite production. | Indirect ROS quenching via secondary metabolite production. | Enhance stress tolerance through secondary metabolite biosynthesis. | Activates tryptophan metabolism pathway. | [62,105] |
27 | Histidinol | Precursor for histidine, which plays a role in metal binding and ROS scavenging. | Reduces heavy metal toxicity by chelating metals like nickel and cadmium. | Indirect ROS quenching via histidine production. | Increases metal binding and stress tolerance. | Activates the histidine biosynthesis pathway. | [125] |
28 | Histidine | Chelates heavy metals and reduces oxidative stress from air pollutants. | Strong metal chelator, reduces the toxicity of nickel, cadmium, and copper. | Direct ROS scavenger and metal chelator. | Enhances metal detoxification and stress tolerance. | Activates metal chelation and antioxidant defense pathways. | [125] |
29 | Glutamate | Central metabolite in nitrogen metabolism, supports detoxification of air pollutants. | Reduces heavy metal toxicity by enhancing glutathione synthesis. | Indirect ROS quenching via glutathione production. | Boosts nitrogen metabolism and stress signaling. | Activates glutathione (GSH) biosynthesis pathway. | [62,105] |
30 | Glutamine | Supports the synthesis of antioxidants and stress-responsive proteins. | Reduces heavy metal toxicity by enhancing glutathione synthesis. | Indirect ROS quenching via glutathione production. | Enhances nitrogen metabolism and cellular repair. | Activates glutathione (GSH) biosynthesis and stress-responsive protein pathways. | [62,105] |
31 | β-Carotene | Protects from oxidative stress caused by O3 and PM. | Reduces HM toxicity by scavenging ROS generated by metals like cadmium and lead. | Direct ROS scavenger, protects chlorophyll and membranes. | Protects photosynthetic apparatus and stabilizes membranes. | Activates non-enzymatic antioxidant defense by quenching singlet oxygen and peroxyl radicals. | [13,126,127] |
32 | α-Pinene | Reduces oxidative stress from O3 and nitrogen oxides (NOx). | Reduces HM toxicity by enhancing antioxidant capacity. | Indirect ROS quenching via upregulation of antioxidant enzymes. | Improves membrane stability and reduces lipid peroxidation. | Boosts the activity of SOD and CAT enzymes. | [126] |
33 | 1,8-Cineole | Mitigates oxidative stress from O3 and sulfur dioxide (SO2). | Decreases HM toxicity by chelating metals like cadmium and lead. | Indirect ROS quenching via antioxidant enzyme activation. | Enhance stress tolerance by stabilizing cellular membranes. | Activates GST and APX pathways. | [127] |
34 | Camphene | Mitigates oxidative damage from O3 and PM. | Reduces heavy metal toxicity by enhancing antioxidant enzyme activity. | Indirect ROS quenching via antioxidant enzyme activation. | Increases membrane stability and reduces oxidative damage. | Boosts SOD and CAT activity. | [126] |
35 | Quinolizidine | Accumulates in response to ozone (O3) to protect against oxidative stress. | Chelating metals like cadmium and nickel. | Indirect ROS quenching via secondary metabolite production. | Improve stress tolerance through alkaloid biosynthesis. | Activates secondary metabolite pathways for stress tolerance. | [122] |
36 | Piperidine | Mitigates oxidative stress from O3 and nitrogen oxides (NOx). | Reduces heavy metal toxicity by chelating metals like lead and cadmium. | Indirect ROS quenching via alkaloid production. | Strengthen stress tolerance through alkaloid biosynthesis. | Activates alkaloid biosynthesis pathways. | [122] |
37 | Aromadendrene | Protects against oxidative damage from O3 and PM. | Lessens HM toxicity by enhancing antioxidant capacity. | Indirect ROS quenching via terpenoid production. | Enhances membrane stability and reduces oxidative damage. | Boosts the activity of antioxidant enzymes like SOD and CAT. | [126] |
38 | Capsaicin | Reduces oxidative stress from O3 and PM. | Scavenging ROS generated by metals like cadmium and Pb. | Direct ROS scavenger. | Boosts stress tolerance through phenolic compound biosynthesis. | Activates the phenylpropanoid pathway for antioxidant production. | [128] |
39 | Pyridine | Mitigates oxidative stress from O3 and nitrogen oxides (NOx). | Chelating metals like nickel and cadmium. | Indirect ROS quenching via alkaloid production. | Improve stress tolerance through alkaloid biosynthesis. | Activates alkaloid biosynthesis pathways. | [122] |
40 | Pyrimidine | Protects against oxidative damage from O3 and PM. | Enhances antioxidant enzyme activity against HM. | Indirect ROS quenching via nucleotide metabolism. | Increase stress tolerance through nucleotide biosynthesis. | Activates nucleotide metabolism pathways for stress tolerance. | [122] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rao, M.J.; Duan, M.; Ikram, M.; Zheng, B. ROS Regulation and Antioxidant Responses in Plants Under Air Pollution: Molecular Signaling, Metabolic Adaptation, and Biotechnological Solutions. Antioxidants 2025, 14, 907. https://doi.org/10.3390/antiox14080907
Rao MJ, Duan M, Ikram M, Zheng B. ROS Regulation and Antioxidant Responses in Plants Under Air Pollution: Molecular Signaling, Metabolic Adaptation, and Biotechnological Solutions. Antioxidants. 2025; 14(8):907. https://doi.org/10.3390/antiox14080907
Chicago/Turabian StyleRao, Muhammad Junaid, Mingzheng Duan, Muhammad Ikram, and Bingsong Zheng. 2025. "ROS Regulation and Antioxidant Responses in Plants Under Air Pollution: Molecular Signaling, Metabolic Adaptation, and Biotechnological Solutions" Antioxidants 14, no. 8: 907. https://doi.org/10.3390/antiox14080907
APA StyleRao, M. J., Duan, M., Ikram, M., & Zheng, B. (2025). ROS Regulation and Antioxidant Responses in Plants Under Air Pollution: Molecular Signaling, Metabolic Adaptation, and Biotechnological Solutions. Antioxidants, 14(8), 907. https://doi.org/10.3390/antiox14080907