Genetic Variants in Antioxidant Genes Modulate the Relationships Among Obesity-Related Oxidative Stress Markers in Mexican Children
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Anthropometric Measurements and Blood Sampling
2.3. DNA Extraction and Genotyping Procedures
2.4. Serum Total Antioxidant Capacity
2.5. Lipid Peroxidation Assay
2.6. Protein Carbonyl Assay
2.7. Statistical Analysis
3. Results
3.1. Characteristics of the Study Population
3.2. Association Between Genetic Variants in Antioxidant Enzymes with Childhood Obesity
3.3. Association Between Oxidative Stress Markers, Serum Total Antioxidant Capacity, and Obesity
3.4. Association Between Serum Total Antioxidant Capacity and Oxidative Stress Markers
3.5. Association Between Genetic Variants in Antioxidant Enzymes, Serum Total Antioxidant Capacity, and Oxidative Stress Markers
3.6. Effect of SOD2 rs4880 and GPX1 rs1050450 in the Association of Serum Total Antioxidant Capacity with Oxidative Stress Markers
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SNPs | Single-nucleotide polymorphisms |
sTAC | Serum total antioxidant capacity |
PC | Protein carbonyl |
TBARS | Thiobarbituric acid reactive substances |
TBA | Thiobarbituric acid |
OS | Oxidative stress |
ROS | Reactive oxygen species |
MDA | Malondialdehyde |
HNE | 4-hydroxy trans-2-nonenal |
ONE | 4-oxo-2-(E)-nonenal |
SOD | Superoxide dismutase |
GPx | Glutathione peroxidase |
CAT | Catalase |
GSH | Reduced glutathione |
BMI | Body mass index |
DPPH | 2,2-diphenyl-1-picrylhydrazyl |
DNPH | 2,4-dinitrophenylhydrazine |
TCA | Trichloroacetic acid |
IMSS | Mexican Social Security Institute |
TMP | 1,1,3,3-tetramethoxypropane |
MAF | Minor allele frequencies |
References
- Shamah-Levy, T.; Gaona-Pineda, E.B.; Cuevas-Nasu, L.; Valenzuela-Bravo, D.G.; Morales-Ruan, C.; Rodríguez-Ramírez, S.; Méndez-Gómez-Humarán, I.; Ávila-Arcos, M.A.; Álvarez-Sánchez, C.; Ávila-Curiel, A. Sobrepeso y obesidad en población escolar y adolescente. Salud Pública Méx. 2024, 66, 404–413. [Google Scholar] [CrossRef]
- de Mello, A.H.; Costa, A.B.; Engel, J.D.G.; Rezin, G.T. Mitochondrial dysfunction in obesity. Life Sci 2018, 192, 26–32. [Google Scholar] [CrossRef]
- Ahmed, B.; Sultana, R.; Greene, M.W. Adipose tissue and insulin resistance in obese. Biomed. Pharmacother. 2021, 137, 111315. [Google Scholar] [CrossRef] [PubMed]
- Hajam, Y.A.; Rani, R.; Ganie, S.Y.; Sheikh, T.A.; Javaid, D.; Qadri, S.S.; Pramodh, S.; Alsulimani, A.; Alkhanani, M.F.; Harakeh, S.; et al. Oxidative Stress in Human Pathology and Aging: Molecular Mechanisms and Perspectives. Cells 2022, 11, 552. [Google Scholar] [CrossRef]
- Hauck, A.K.; Huang, Y.; Hertzel, A.V.; Bernlohr, D.A. Adipose oxidative stress and protein carbonylation. J. Biol. Chem. 2019, 294, 1083–1088. [Google Scholar] [CrossRef]
- Singh, M.; Kapoor, A.; Bhatnagar, A. Oxidative and reductive metabolism of lipid-peroxidation derived carbonyls. Chem. Biol. Interact. 2015, 234, 261–273. [Google Scholar] [CrossRef] [PubMed]
- Hauck, A.K.; Bernlohr, D.A. Oxidative stress and lipotoxicity. J. Lipid Res. 2016, 57, 1976–1986. [Google Scholar] [CrossRef] [PubMed]
- Pisoschi, A.M.; Pop, A. The role of antioxidants in the chemistry of oxidative stress: A review. Eur. J. Med. Chem. 2015, 97, 55–74. [Google Scholar] [CrossRef]
- Rosenblum, J.S.; Gilula, N.B.; Lerner, R.A. On signal sequence polymorphisms and diseases of distribution. Proc. Natl. Acad. Sci. USA 1996, 93, 4471–4473. [Google Scholar] [CrossRef]
- Chang, Y.C.; Yu, Y.H.; Shew, J.Y.; Lee, W.J.; Hwang, J.J.; Chen, Y.H.; Chen, Y.R.; Wei, P.C.; Chuang, L.M.; Lee, W.H. Deficiency of NPGPx, an oxidative stress sensor, leads to obesity in mice and human. EMBO Mol. Med. 2013, 5, 1165–1179. [Google Scholar] [CrossRef]
- Ruperez, A.I.; Gil, A.; Aguilera, C.M. Genetics of oxidative stress in obesity. Int. J. Mol. Sci. 2014, 15, 3118–3144. [Google Scholar] [CrossRef] [PubMed]
- Hernandez-Guerrero, C.; Hernandez-Chavez, P.; Romo-Palafox, I.; Blanco-Melo, G.; Parra-Carriedo, A.; Perez-Lizaur, A. Genetic Polymorphisms in SOD (rs2070424, rs7880) and CAT (rs7943316, rs1001179) Enzymes Are Associated with Increased Body Fat Percentage and Visceral Fat in an Obese Population from Central Mexico. Arch. Med. Res. 2016, 47, 331–339. [Google Scholar] [CrossRef] [PubMed]
- Montano, M.A.; Barrio Lera, J.P.; Gottlieb, M.G.; Schwanke, C.H.; da Rocha, M.I.; Manica-Cattani, M.F.; dos Santos, G.F.; da Cruz, I.B. Association between manganese superoxide dismutase (MnSOD) gene polymorphism and elderly obesity. Mol. Cell. Biochem. 2009, 328, 33–40. [Google Scholar] [CrossRef]
- Lewandowski, L.; Kepinska, M.; Milnerowicz, H. Alterations in Concentration/Activity of Superoxide Dismutases in Context of Obesity and Selected Single Nucleotide Polymorphisms in Genes: SOD1, SOD2, SOD3. Int. J. Mol. Sci. 2020, 21, 5069. [Google Scholar] [CrossRef]
- Vijayan, A.; Chithra, V.; Sandhya, C. Modifiable risk factors, oxidative stress markers, and SOD2 rs4880 SNP in coronary artery disease: An association study. Mol. Biol. Rep. 2024, 51, 805. [Google Scholar] [CrossRef]
- Kuczmarski, R.J.; Ogden, C.L.; Guo, S.S.; Grummer-Strawn, L.M.; Flegal, K.M.; Mei, Z.; Wei, R.; Curtin, L.R.; Roche, A.F.; Johnson, C.L. 2000 CDC Growth Charts for the United States: Methods and development. Vital Health Stat. 2002, 1–190. [Google Scholar]
- Flegal, K.M.; Cole, T.J. Construction of LMS parameters for the Centers for Disease Control and Prevention 2000 growth charts (No. 63). Natl. Health Stat. Rep. 2013, 1–3. [Google Scholar]
- Brand-Williams, W.; Cuvelier, M.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Jentzsch, A.M.; Bachmann, H.; Furst, P.; Biesalski, H.K. Improved analysis of malondialdehyde in human body fluids. Free Radic. Biol. Med. 1996, 20, 251–256. [Google Scholar] [CrossRef]
- Levine, R.L.; Garland, D.; Oliver, C.N.; Amici, A.; Climent, I.; Lenz, A.G.; Ahn, B.W.; Shaltiel, S.; Stadtman, E.R. Determination of carbonyl content in oxidatively modified proteins. Methods Enzym. 1990, 186, 464–478. [Google Scholar] [CrossRef]
- Montano, M.A.; da Cruz, I.B.; Duarte, M.M.; Krewer Cda, C.; da Rocha, M.I.; Manica-Cattani, M.F.; Soares, F.A.; Rosa, G.; Maris, A.F.; Battiston, F.G.; et al. Inflammatory cytokines in vitro production are associated with Ala16Val superoxide dismutase gene polymorphism of peripheral blood mononuclear cells. Cytokine 2012, 60, 30–33. [Google Scholar] [CrossRef]
- Hernandez Guerrero, C.; Hernandez Chavez, P.; Martinez Castro, N.; Parra Carriedo, A.; Garcia Del Rio, S.; Perez Lizaur, A. Glutathione Peroxidase-1 Pro200leu Polymorphism (Rs1050450) Is Associated with Morbid Obesity Independently of the Presence of Prediabetes or Diabetes in Women from Central Mexico. Nutr. Hosp. 2015, 32, 1516–1525. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.F.; Cui, J.; DeStefano, A.L.; Chazaro, I.; Farrer, L.A.; Manolis, A.J.; Gavras, H.; Baldwin, C.T. Polymorphisms in the promoter region of catalase gene and essential hypertension. Dis. Markers 2005, 21, 3–7. [Google Scholar] [CrossRef] [PubMed]
- Ramirez, V.; Galvez-Ontiveros, Y.; de Bobadilla, V.A.F.; Gonzalez-Palacios, P.; Salcedo-Bellido, I.; Samaniego-Sanchez, C.; Alvarez-Cubero, M.J.; Martinez-Gonzalez, L.J.; Zafra-Gomez, A.; Rivas, A. Exploring the role of genetic variability and exposure to bisphenols and parabens on excess body weight in Spanish children. Ecotoxicol. Environ. Saf. 2024, 286, 117206. [Google Scholar] [CrossRef] [PubMed]
- Albuali, W.H. Evaluation of oxidant-antioxidant status in overweight and morbidly obese Saudi children. World J. Clin. Pediatr. 2014, 3, 6–13. [Google Scholar] [CrossRef] [PubMed]
- Rowicka, G.; Dylag, H.; Ambroszkiewicz, J.; Riahi, A.; Weker, H.; Chelchowska, M. Total Oxidant and Antioxidant Status in Prepubertal Children with Obesity. Oxid. Med. Cell. Longev. 2017, 2017, 5621989. [Google Scholar] [CrossRef]
- Codoner-Franch, P.; Pons-Morales, S.; Boix-Garcia, L.; Valls-Belles, V. Oxidant/antioxidant status in obese children compared to pediatric patients with type 1 diabetes mellitus. Pediatr. Diabetes 2010, 11, 251–257. [Google Scholar] [CrossRef]
- Cota-Magana, A.I.; Vazquez-Moreno, M.; Rocha-Aguado, A.; Angeles-Mejia, S.; Valladares-Salgado, A.; Diaz-Flores, M.; Lopez-Diazguerrero, N.E.; Cruz, M. Obesity Is Associated with Oxidative Stress Markers and Antioxidant Enzyme Activity in Mexican Children. Antioxidants 2024, 13, 457. [Google Scholar] [CrossRef]
- Ruperez, A.I.; Mesa, M.D.; Anguita-Ruiz, A.; Gonzalez-Gil, E.M.; Vazquez-Cobela, R.; Moreno, L.A.; Gil, A.; Gil-Campos, M.; Leis, R.; Bueno, G.; et al. Antioxidants and Oxidative Stress in Children: Influence of Puberty and Metabolically Unhealthy Status. Antioxidants 2020, 9, 618. [Google Scholar] [CrossRef]
- Jaksic, M.; Martinovic, M.; Gligorovic-Barhanovic, N.; Vujacic, A.; Djurovic, D.; Nedovic-Vukovic, M. Association between inflammation, oxidative stress, vitamin D, copper and zinc with pre-obesity and obesity in school children from the city of Podgorica, Montenegro. J. Pediatr. Endocrinol. Metab. 2019, 32, 951–957. [Google Scholar] [CrossRef]
- Kilic, E.; Ozer, O.F.; Erek Toprak, A.; Erman, H.; Torun, E.; Kesgin Ayhan, S.; Caglar, H.G.; Selek, S.; Kocyigit, A. Oxidative Stress Status in Childhood Obesity: A Potential Risk Predictor. Med. Sci. Monit. 2016, 22, 3673–3679. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.G.; Zhang, S.M.; Wang, J.Y.; Xiao, W.Q.; Wang, X.Y.; Zhou, J.F. Overweight and obesity-induced oxidative stress in children. Biomed. Environ. Sci. 2006, 19, 353–359. [Google Scholar] [PubMed]
- Paltoglou, G.; Fatouros, I.G.; Valsamakis, G.; Schoina, M.; Avloniti, A.; Chatzinikolaou, A.; Kambas, A.; Draganidis, D.; Mantzou, A.; Papagianni, M.; et al. Antioxidation improves in puberty in normal weight and obese boys, in positive association with exercise-stimulated growth hormone secretion. Pediatr. Res. 2015, 78, 158–164. [Google Scholar] [CrossRef]
- Sfar, S.; Boussoffara, R.; Sfar, M.T.; Kerkeni, A. Antioxidant enzymes activities in obese Tunisian children. Nutr. J. 2013, 12, 18. [Google Scholar] [CrossRef] [PubMed]
- Bitarafan, F.; Khodaeian, M.; Tabatabaei-Malazy, O.; Amoli, M.M. Influence of antioxidants’ gene variants on risk of diabetes mellitus and its complications: A systematic review. Minerva Endocrinol. 2019, 44, 310–325. [Google Scholar] [CrossRef]
- Ahmad, A.A.; Rahimi, Z.; Asadi, S.; Vaisi-Raygani, A.; Kohsari, M. The GPx-1 Gene Variants (rs1050450) in Obesity: Association with the Risk of Obesity and the GPx Activity in Females. Rep. Biochem. Mol. Biol. 2023, 12, 185–194. [Google Scholar] [CrossRef]
- Jablonska, E.; Gromadzinska, J.; Peplonska, B.; Fendler, W.; Reszka, E.; Krol, M.B.; Wieczorek, E.; Bukowska, A.; Gresner, P.; Galicki, M.; et al. Lipid peroxidation and glutathione peroxidase activity relationship in breast cancer depends on functional polymorphism of GPX1. BMC Cancer 2015, 15, 657. [Google Scholar] [CrossRef]
- Cheng, W.; Fu, Y.X.; Porres, J.M.; Ross, D.A.; Lei, X.G. Selenium-dependent cellular glutathione peroxidase protects mice against a pro-oxidant-induced oxidation of NADPH, NADH, lipids, and protein. FASEB J. 1999, 13, 1467–1475. [Google Scholar] [CrossRef]
- Ershova, O.A.; Bairova, T.A.; Kolesnikov, S.I.; Kalyuzhnaya, O.V.; Darenskaya, M.A.; Kolesnikova, L.I. Oxidative Stress and Catalase Gene. Bull. Exp. Biol. Med. 2016, 161, 400–403. [Google Scholar] [CrossRef]
- Norris, E.T.; Wang, L.; Conley, A.B.; Rishishwar, L.; Marino-Ramirez, L.; Valderrama-Aguirre, A.; Jordan, I.K. Genetic ancestry, admixture and health determinants in Latin America. BMC Genom. 2018, 19, 861. [Google Scholar] [CrossRef]
- Tan, L.J.; Zhu, H.; He, H.; Wu, K.H.; Li, J.; Chen, X.D.; Zhang, J.G.; Shen, H.; Tian, Q.; Krousel-Wood, M.; et al. Replication of 6 obesity genes in a meta-analysis of genome-wide association studies from diverse ancestries. PLoS ONE 2014, 9, e96149. [Google Scholar] [CrossRef] [PubMed]
- Hernandez-Guerrero, C.; Parra-Carriedo, A.; Ruiz-de-Santiago, D.; Galicia-Castillo, O.; Buenrostro-Jauregui, M.; Diaz-Gutierrez, C. Genetic polymorphisms of antioxidant enzymes CAT and SOD affect the outcome of clinical, biochemical, and anthropometric variables in people with obesity under a dietary intervention. Genes Nutr. 2018, 13, 1. [Google Scholar] [CrossRef] [PubMed]
Variable | Normal Weight, n = 1675 | Obesity, n = 1271 | p-Value |
---|---|---|---|
Girls, n (%) | 867 (51.8) | 596 (46.9) | 0.009 |
Boys, n (%) | 808 (48.2) | 675 (53.1) | |
Age, years | 9.44 ± 1.96 | 8.49 ± 1.77 | <0.001 |
BMI, kg/m2 | 16.94 ± 3.08 | 24.56 ±2.79 | <0.001 |
BMI z-score | 0.14 ± 0.72 | 1.96 ± 0.65 | <0.001 |
sTAC (mEq Trolox) (a) | 0.51 ± 0.21 | 0.59 ± 0.19 | <0.001 |
TBARS (nmol/mL) (b) | 6.11 ± 3.27 | 6.74 ± 3.8 | 0.053 |
PC (nmol/mL) (c) | 41.07 ± 19.03 | 44.21 ± 16.50 | 0.061 |
SOD2 rs4880 | 0.531 | ||
GG, n (%) | 408 (44.1) | 399 (46.0) | |
GA, n (%) | 414 (44.7) | 384 (44.2) | |
AA, n (%) | 104 (11.2) | 85(9.8) | |
GPX7 rs835337 | 0.281 | ||
GG, n (%) | 469 (57.7) | 491 (61.5) | |
GA, n (%) | 301 (37.0) | 267 (33.5) | |
AA, n (%) | 43 (5.3) | 40 (5.0) | |
GPX1 rs1050450 | 0.868 | ||
GG, n (%) | 1014 (77.5) | 746 (78.2) | |
GA, n (%) | 280 (21.4) | 196 (20.5) | |
AA, n (%) | 15 (1.1) | 12 (1.3) | |
CAT rs1001179 | 0.19 | ||
CC, n (%) | 1148 (87.5) | 827 (86.7) | |
CT, n (%) | 151 (11.5) | 123 (12.9) | |
TT, n (%) | 13 (1.0) | 4 (0.4) |
Genetic Variants | n | Odds Ratio, Confidence Interval (p-Value) | ||
---|---|---|---|---|
SOD2 rs4880 | 1794 | Additive | Dominant | Recessive |
0.93, 0.81–1.08 (0.346) | 0.93, 0.77–1.12 (0.464) | 0.88, 0.65–1.19 (0.401) | ||
GPX7 rs835337 | 1611 | Additive | Dominant | Recessive |
0.89, 0.75–1.05 (0.167) | 0.85, 0.69–1.05 (0.125) | 0.94, 0.60–1.46 (0.766) | ||
GPX1 rs1050450 | 2263 | Additive | Dominant | Recessive |
0.96, 0.80–1.16 (0.698) | 0.95, 0.78–1.17 (0.643) | 1.07, 0.50–2.30 (0.867) | ||
CAT rs1001179 | 2266 | Additive | Dominant | Recessive |
1.02, 0.81–1.28 (0.887) | 1.07, 0.84–1.38 (0.581) | 0.42, 0.14–1.31 (0.135) |
Traits | n | Odds Ratio (OR), 95% Confidence Interval (p-Value) |
---|---|---|
sTAC (mEq Trolox) | 409 | 5.582, 1.999–15.590 (0.001) |
TBARS (nmol/mL) | 481 | 1.069, 1.013–1.127 (0.015) |
PC (nmol/mL) | 452 | 1.007, 0.997–1.018 (0.168) |
Traits | β ± SE (p-Value), n = 409 |
---|---|
TBARS (nmol/mL) | −2.772 ± 0.765 (p < 0.001) |
PC (nmol/mL) | −0.734 ± 4.586 (0.873) |
Trait | SOD2 rs4880 | ||
Additive n = 421 | Dominant n = 218 | Recessive n = 33 | |
sTAC (mEq Trolox) | 0.003 ± 0.018 (0.888) | 0.004 ± 0.022 (0.866) | 0.001 ± 0.043 (0.991) |
TBARS (nmol/mL) | 0.161 ± 0.279 (0.566) | 0.661 ± 0.350 (0.060) | −1.416 ± 0.653 (0.031) |
PC (nmol/mL) | 1.491 ± 1.446 (0.303) | 3.098 ± 1.841 (0.093) | −2.206 ± 3.355 (0.511) |
Trait | GPX7 rs835337 | ||
Additive n = 422 | Dominant n = 154 | Recessive n = 16 | |
sTAC (mEq Trolox) | −0.036 ± 0.020 (0.068) | −0.044 ±0.023 (0.052) | −0.027 ± 0.060 (0.656) |
TBARS (nmol/mL) | 0.137 ± 0.311 (0.660) | 0.408 ± 0.363 (0.261) | −1.420 ± 0.917 (0.122) |
PC (nmol/mL) | 1.477 ± 1.631 (0.366) | 2.609 ± 1.915 (0.174) | −3.438 ± 4.731 (0.468) |
Trait | GPX1 rs1050450 | ||
Additive n = 434 | Dominant n = 69 | Recessive n = 2 | |
sTAC (mEq Trolox) | −0.050 ± 0.030 (0.089) | −0.059 ± 0.031 (0.060) | 0.046 ± 0.143 (0.749) |
TBARS (nmol/mL) | −0.962 ± 0.457 (0.036) | −1.043 ± 0.480 (0.030) | −0.475 ± 2.490 (0.849) |
PC (nmol/mL) | −6.909 ± 2.362 (0.004) | −7.436 ± 2.482 (0.003) | −5.306 ± 12.733 (0.677) |
Trait | CAT rs1001179 | ||
Additive n = 434 | Dominant n = 42 | Recessive n = 3 | |
sTAC (mEq Trolox) | 0.015 ± 0.037 (0.677) | 0.023 ± 0.041 (0.575) | −0.050 ± 0.144 (0.728) |
TBARS (nmol/mL) | −0.848 ± 0.540 (0.117) | −0.929 ± 0.581 (0.110) | −0.910 ± 2.489 (0.715) |
PC (nmol/mL) | −0.832 ± 2.898 (0.774) | 0.341 ± 3.139 (0.914) | −21.773 ± 12.720 (0.088) |
Trait | Recessive Model SOD2 rs4880 | |
GG + GA, n = 388 | AA, n = 33 | |
TBARS (nmol/mL) | −2.563 ± 0.842 (0.003) | 3.634 ± 2.889 (0.226) |
PC (nmol/mL) | −3.288 ± 5.165 (0.525) | 17.180 ± 25.799 (0.514) |
Trait | Dominant Model GPX1 rs1050450 | |
GG, n = 365 | GA + AA, n = 69 | |
TBARS (nmol/mL) | −2.899 ± 0.908 (0.002) | −0.502 ± 1.709 (0.771) |
PC (nmol/mL) | −8.614 ± 5.474 (0.117) | 6.847 ± 11.998 (0.571) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nava-Cabrera, A.; Ramírez-Cruz, A.; Gómez-Zamudio, J.; Pérez-Bautista, A.; Ruiz-Queb, L.E.; Vazquez-Moreno, M.; Cruz, M. Genetic Variants in Antioxidant Genes Modulate the Relationships Among Obesity-Related Oxidative Stress Markers in Mexican Children. Antioxidants 2025, 14, 896. https://doi.org/10.3390/antiox14080896
Nava-Cabrera A, Ramírez-Cruz A, Gómez-Zamudio J, Pérez-Bautista A, Ruiz-Queb LE, Vazquez-Moreno M, Cruz M. Genetic Variants in Antioxidant Genes Modulate the Relationships Among Obesity-Related Oxidative Stress Markers in Mexican Children. Antioxidants. 2025; 14(8):896. https://doi.org/10.3390/antiox14080896
Chicago/Turabian StyleNava-Cabrera, Ana, Armando Ramírez-Cruz, Jaime Gómez-Zamudio, Araceli Pérez-Bautista, Linda Esther Ruiz-Queb, Miguel Vazquez-Moreno, and Miguel Cruz. 2025. "Genetic Variants in Antioxidant Genes Modulate the Relationships Among Obesity-Related Oxidative Stress Markers in Mexican Children" Antioxidants 14, no. 8: 896. https://doi.org/10.3390/antiox14080896
APA StyleNava-Cabrera, A., Ramírez-Cruz, A., Gómez-Zamudio, J., Pérez-Bautista, A., Ruiz-Queb, L. E., Vazquez-Moreno, M., & Cruz, M. (2025). Genetic Variants in Antioxidant Genes Modulate the Relationships Among Obesity-Related Oxidative Stress Markers in Mexican Children. Antioxidants, 14(8), 896. https://doi.org/10.3390/antiox14080896