Variation in Arterial Stiffness and Markers of Oxidative Stress in Patients with Type 2 Diabetes Mellitus from Different Ethnic Groups
Abstract
1. Introduction
2. Materials and Methods
2.1. Clinical and Anthropometric Assessments
2.2. Vascular Stiffness Index
2.3. Biochemical Measurements
2.4. Markers of Oxidative Metabolism and Defence
2.5. Statistical Analysis
3. Results
3.1. Demographic, Anthropometric and Clinical
3.2. Vascular Stiffness and Oxidative Stress Status
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Global Report on Diabetes; World Health Organization: Geneva, Switzerland, 2021. [Google Scholar]
- Young, B.A.; Maynard, C.; Boyko, E.J. Racial differences in diabetic nephropathy, cardiovascular disease, and mortality in a national population of veterans. Diabetes Care 2003, 26, 2392–2399. [Google Scholar] [CrossRef] [PubMed]
- Wright, A.K.; Kontopantelis, E.; Emsley, R.; Buchan, I.; Sattar, N.; Rutter, M.K.; Ashcroft, D.M. Life expectancy and cause-specific mortality in type 2 diabetes: A population-based cohort study quantifying relationships in ethnic subgroups. Diabetes Care 2017, 40, 338–345. [Google Scholar] [CrossRef] [PubMed]
- Safar, M.E. Arterial stiffness as a risk factor for clinical hypertension. Nat. Rev. Cardiol. 2018, 15, 97–105. [Google Scholar] [CrossRef] [PubMed]
- Mattace-Raso, F.; Hofman, A.; Verwoert, G.C.; Wittemana, J.C.M.; Wilkinson, I.; Cockcroft, J.; McEniery, C.; Yasmin, L.S.; Boutouyrie, P.; Bozec, E.; et al. Determinants of pulse wave velocity in healthy people and in the presence of cardiovascular risk factors: ‘establishing normal and reference values’. Eur. Heart J. 2010, 31, 2338–2350. [Google Scholar]
- Jia, G.; Aroor, A.R.; DeMarco, V.G.; Martinez-Lemus, L.A.; Meininger, G.A.; Sowers, J.R. Vascular stiffness in insulin resistance and obesity. Front. Physiol. 2015, 6, 231. [Google Scholar] [CrossRef]
- Earle, K.A.; Ng, L.; White, S.; Zitouni, K. Sex differences in vascular stiffness and relationship to the risk of renal functional decline in patients with type 2 diabetes. Diabetes Vasc. Dis. Res. 2017, 14, 304–309. [Google Scholar] [CrossRef]
- DeLoach, S.S.; Townsend, R.R. Vascular stiffness: Its measurement and significance for epidemiologic and outcome studies. Clin. J. Am. Soc. Nephrol. 2008, 3, 184–192. [Google Scholar] [CrossRef]
- Mitchell, G.F.; Hwang, S.J.; Vasan, R.S.; Larson, M.G.; Pencina, M.J.; Hamburg, N.M.; Vita, J.A.; Levy, D.; Benjamin, E.J. Arterial stiffness and cardiovascular events: The Framingham Heart Study. Circulation 2010, 121, 505–511. [Google Scholar] [CrossRef]
- Elias, M.F.; Davey, A.; Dore, G.A.; Gillespie, A.; Abhayaratna, W.P.; Robbins, M.A. Deterioration in renal function is associated with increased arterial stiffness. Am. J. Hypertens. 2014, 27, 207–214. [Google Scholar] [CrossRef]
- Mourad, J.J.; Pannier, B.; Blacher, J.; Rudnichi, A.; Benetos, A.; London, G.M.; Safar, M.E. Creatinine clearance, pulse wave velocity, carotid compliance and essential hypertension. Kidney Int. 2001, 59, 1834–1841. [Google Scholar] [CrossRef]
- Niu, J.; Wang, K.; Kolattukudy, P.E. Cerium oxide nanoparticles inhibit oxidative stress and nuclear factor-κB activation in H9c2 cardiomyocytes exposed to cigarette smoke extract. J. Pharmacol. Exp. Ther. 2011, 338, 53–61. [Google Scholar] [CrossRef] [PubMed]
- Al-Aubaidy, H.A.; Jelinek, H.F. Oxidative DNA damage and obesity in type 2 diabetes mellitus. Eur. J. Endocrinol. 2011, 164, 899–904. [Google Scholar] [CrossRef] [PubMed]
- Fountoulakis, N.; Miyamoto, Y.; Pavkov, M.E.; Karalliedde, J.; Maltese, G. Pathophysiology of vascular ageing and the effect of novel cardio-renal protective medications in preventing progression of chronic kidney disease in people living with diabetes. Diabet. Med. 2025, 42, e15464. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Guo, C.; Li, X.; Wang, R.; Yu, J.; Ye, M.; Mao, L.; Zhang, S.; Zheng, S. Association between Oxidative DNA Damage and Risk of Colorectal Cancer: Sensitive Determination of Urinary 8-Hydroxy-2′-deoxyguanosine by UPLC-MS/MS Analysis. Sci. Rep. 2016, 6, 32581. [Google Scholar] [CrossRef]
- Earle, K.A.; Zitouni, K.; Pepe, J.; Karaflou, M.; Godbold, J., Jr. Modulation of endogenous antioxidant defense and the progression of kidney disease in multi-heritage groups of patients with type 2 diabetes: PRospective EValuation of Early Nephropathy and its Treatment (PREVENT). J. Transl. Med. 2016, 14, 234. [Google Scholar] [CrossRef]
- Millasseau, S.C.; Kelly, R.P.; Ritter, J.M.; Chowienczyk, P.J. Determination of age-related increases in large artery stiffness by digital pulse contour analysis. Clin. Sci. 2002, 103, 371–377. [Google Scholar] [CrossRef]
- Kelly, F.J.; Rodgers, W.; Handel, J.; Smith, S.; Hall, M.A. Time course of vitamin E repletion in the preterm infant. Br. J. Nutr 1990, 63, 631–638. [Google Scholar] [CrossRef]
- Sloth, J.; Larsen, E. The application of ICP dynamic reaction cell mass spectrometry for measurement of selenium isotopes, isotope ratios and chromatographic detection of selenoamino acids. J. Anal. At. Spectrom. 2000, 15, 669–672. [Google Scholar] [CrossRef]
- Sieniawska, C.; Mensikov, R.; Delves, H.T. Determination of total selenium in serum, whole blood and erythrocytes by ICP-MS. J. Anal. At. Spectrom. 1999, 14, 109–112. [Google Scholar] [CrossRef]
- Jordan, P.; Brubacher, D.; Moser, U.; Stähelin, H.B.; Gey, K.F. Vitamin E and vitamin A concentrations in plasma adjusted for cholesterol and triglycerides by multiple regression. Clin. Chem. 1995, 41, 924–927. [Google Scholar] [CrossRef]
- Gao, X.; Jia, M.; Zhang, Y.; Breitling, L.P.; Brenner, H. DNA methylation changes of whole blood cells in response to active smoking exposure in adults: A systematic review of DNA methylation studies. Clin. Epigenetics 2015, 7, 113. [Google Scholar] [CrossRef] [PubMed]
- Ring, M.; Eriksson, M.J.; Fritz, T.; Nyberg, G.; Östenson, C.G.; Krook, A.; Zierath, J.R.; Caidahl, K. Influence of physical activity and gender on arterial function in type 2 diabetes, normal and impaired glucose tolerance. Diabetes Vasc. Dis. Res. 2015, 12, 315–324. [Google Scholar] [CrossRef] [PubMed]
- Cruickshank, K.; Riste, L.; Anderson, S.G.; Wright, J.S.; Dunn, G.; Gosling, R.G. Aortic pulse-wave velocity and its relationship to mortality in diabetes and glucose intolerance: An integrated index of vascular function? Circulation 2002, 106, 2085–2090. [Google Scholar] [CrossRef] [PubMed]
- Zitouni, K.; Steyn, M.; Earle, K.A. Residual renal and cardiovascular disease risk in conventionally-treated patients with type 2 diabetes: The potential of non-traditional biomarkers. Minerva Medica 2018, 109, 103–115. [Google Scholar] [CrossRef]
- Colhoun, H.M.; Marcovecchio, M.L. Biomarkers of diabetic kidney disease. Diabetologia 2018, 61, 996–1011. [Google Scholar] [CrossRef]
- Kapuku, G.; Treiber, F.; Raouane, F.; Halbert, J.; Davis, H.; Young-Mayes, S.; Robinson, V.; Harshfield, G. Race/ethnicity determines the relationships between oxidative stress markers and blood pressure in individuals with high cardiovascular disease risk. J. Hum. Hypertens. 2017, 31, 70–75. [Google Scholar] [CrossRef]
- Goldenberg, R.M.; Teoh, H.; Verma, S. Glucagon-like peptide-1/glucose-dependent insulinotropic polypeptide receptor co-agonists for cardioprotection, type 2 diabetes and obesity: A review of mechanisms and clinical data. Curr. Opin. Cardiol. 2023, 38, 539–545. [Google Scholar] [CrossRef] [PubMed]
- Dabour, M.S.; George, M.Y.; Daniel, M.R.; Blaes, A.H.; Zordoky, B.N. The Cardioprotective and Anticancer Effects of SGLT2 Inhibitors: JACC: CardioOncology State-of-the-Art Review. JACC CardioOncol. 2024, 6, 159–182. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Nishikawa, T.; Edelstein, D.; Du, X.L.; Yamagishi, S.; Matsumura, T.; Kaneda, Y.; Yorek, M.A.; Beebe, D.; Oates, P.J.; Hammes, H.P.; et al. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature 2000, 404, 787–790. [Google Scholar] [CrossRef]
- Duggett, N.A.; Griffiths, L.A.; McKenna, O.E.; de Santis, V.; Yongsanguanchai, N.; Mokori, E.B.; Flatters, S.J. Oxidative stress in the development, maintenance and resolution of paclitaxel-induced painful neuropathy. Neuroscience 2016, 333, 13–26. [Google Scholar] [CrossRef]
- Chance, B.; Sies, H.; Boveris, A. Hydroperoxide metabolism in mammalian organs. Physiol. Rev. 1979, 59, 527–605. [Google Scholar] [CrossRef] [PubMed]
- Graille, M.; Wild, P.; Sauvain, J.J.; Hemmendinger, M.; Guseva-Canu, I.; Hopf, N.B. Urinary 8-OHdG as a Biomarker for Oxidative Stress: A Systematic Literature Review and Meta-Analysis. Int. J. Mol. Sci 2020, 21, 3743. [Google Scholar] [CrossRef] [PubMed]
- Stehouwer, C.D.; Henry, R.M.; Ferreira, I. Arterial stiffness in diabetes and the metabolic syndrome: A pathway to cardiovascular disease. Diabetologia 2008, 51, 527–539. [Google Scholar] [CrossRef]
- Mazzone, T.; Chait, A.; Plutzky, J. Cardiovascular disease risk in type 2 diabetes mellitus: Insights from mechanistic studies. Lancet 2008, 371, 1800–1809. [Google Scholar] [CrossRef]
- Hinokio, Y.; Suzuki, S.; Hirai, M.; Suzuki, C.; Suzuki, M.; Toyota, T. Urinary excretion of 8-oxo-7, 8-dihydro-2′-deoxyguanosine as a predictor of the development of diabetic nephropathy. Diabetologia 2002, 45, 877–882. [Google Scholar] [CrossRef]
- Nishikawa, T.; Sasahara, T.; Kiritoshi, S.; Sonoda, K.; Senokuchi, T.; Matsuo, T.; Kukidome, D.; Wake, N.; Matsumura, T.; Miyamura, N.; et al. Evaluation of urinary 8-hydroxydeoxy-guanosine as a novel biomarker of macrovascular complications in type 2 diabetes. Diabetes Care 2003, 26, 1507–1512. [Google Scholar] [CrossRef]
- Xu, G.W.; Yao, Q.H.; Weng, Q.F.; Su, B.L.; Zhang, X.; Xiong, J.H. Study of urinary 8-hydroxydeoxyguanosine as a biomarker of oxidative DNA damage in diabetic nephropathy patients. J. Pharm. Biomed. Anal. 2004, 36, 101–104. [Google Scholar] [CrossRef]
- Dong, Q.Y.; Cui, Y.; Chen, L.; Song, J.; Sun, L. Urinary 8-hydroxydeoxyguanosine levels in diabetic retinopathy patients. Eur. J. Ophthalmol. 2008, 18, 94–98. [Google Scholar] [CrossRef]
- Ye, X.; Jiang, R.; Zhang, Q.; Wang, R.; Yang, C.; Ma, J.; Du, H. Increased 8-hydroxy-2′-deoxyguanosine in leukocyte DNA from patients with type 2 diabetes and microangiopathy. Int. J. Med. Res 2016, 44, 472–482. [Google Scholar] [CrossRef]
- Kruger, R.; Gafane-Matemane, L.F.; Kagura, J. Racial differences of early vascular aging in children and adolescents. Pediatr. Nephrol. 2021, 36, 1087–1108. [Google Scholar] [CrossRef] [PubMed]
- Said, M.A.; Eppinga, R.N.; Lipsic, E.; Verweij, N.; van der Harst, P. Relationship of Arterial Stiffness Index and Pulse Pressure with Cardiovascular Disease and Mortality. J. Am. Heart Assoc. 2018, 7, e007621. [Google Scholar] [CrossRef] [PubMed]
- Park, C.M.; Tillin, T.; March, K.; Jones, S.; Whincup, P.H.; Mayet, J.; Chaturvedi, N.; Hughes, A.D. Adverse effect of diabetes and hyperglycaemia on arterial stiffness in Europeans, South Asians, and African Caribbeans in the SABRE study. J. Hypertens. 2016, 34, 282–289. [Google Scholar] [CrossRef] [PubMed]
- Wong, N.D.; Sattar, N. Cardiovascular risk in diabetes mellitus: Epidemiology, assessment and prevention. Nat. Rev. Cardiol. 2023, 20, 685–695. [Google Scholar] [CrossRef] [PubMed]
- Risom, L.; Moller, P.; Loft, S. Oxidative stress-induced DNA damage by particulate air pollution. Mutat. Res./Fundam. Mol. Mech. Mutagen. 2005, 592, 119–137. [Google Scholar] [CrossRef]
Clinical Variables | Missing Data White/Minor, Black, or Asian | White (n = 69) | Minor, Black, or Asian (n = 101) |
---|---|---|---|
Age (years) | 0/0 | 61.0 ± 7.93 | 60.52 ± 7.56 |
Diabetes duration (years) | 1/7 | 8.0 (3.3–12.0) | 9.0 (5.0–17.3) * |
Gender: Male (%) | 0/0 | 60.9 | 43.6 * |
Smoking history: Yes/No/former-smoker (%) | 3/2 | 15/39/45 | 4.0/72/24 *** |
Retinopathy (%) † | 19/17 | 40.0 | 43 |
Body mass Index (Kg/m2) | 1/0 | 32.0 ± 5.4 | 29.4 ± 6.2 ** |
Systolic blood pressure (mmHg) | 1/2 | 142)(133–151) | 136 (128–151) * |
Diastolic blood pressure (mmHg) | 1/2 | 81 (77–87) | 82 (87–89) * |
ean Arterial pressure (mmHg) | 1/2 | 102.5 ± 9.0 | 100.8 ± 10.1 |
HbA1c (mmol/mol) | 1/2 | 49 (44–59) | 55 (48–67) ** |
HbA1c (%) | 1/2 | 6.6 (6.1–7.6) | 7.2 (6.5–8.3) ** |
Total Cholesterol (mmol/L) | 0/1 | 4.2 ± 0.9 | 4.0 ± 0.8 |
Triglycerides (mmol/L) | 0/1 | 1.5 (1.0–2.1) | 1.3 (0.9–1.7) * |
HDL-Cholesterol (mmol/L) | 0/1 | 1.27 ± 0.34 | 1.26 ± 0.35 |
LDL-Cholesterol (mmol/L) | 2/1 | 2.1 ± 0.8 | 2.1 ± 0.6 |
eGFR CKD-EPI (mL min−11.73 m−2) | 0/1 | 93 (80–102) | 92 (80–100) |
Urinary Albumin/creatinine ratio (mg/mol) | 0/5 | 0.8 (0.0–3.3) | 0.8 (0.0–3.2) |
Glutathione peroxidase activity (U/L) | 2/3 | 289.4 ± 102.0 | 413.1 ± 98.52 **** |
Superoxide dismutase activity (U/L) | 1/3 | 37.5 (1.0–72.5) | 75.6 (20.3–118.8) *** |
Selenium (µmol/L) | 1/2 | 1.16 ± 0.27 | 1.32 ± 0.24 **** |
α-Tocopherol: total cholesterol (µmol/mmol) | 1/3 | 8.6 ± 3.6 | 9.0 ± 2.1 |
Univariable Models (Unadjusted Effects) | Full Multivariable Model (n = 121) Adjusted R-Squared: 0.21 | Reduced Multivariable Model (n = 132) Adjusted R-Squared: 0.19 | |||||
---|---|---|---|---|---|---|---|
Predictor | Estimate (95% CI) | p-value | Estimate (95% CI) | p | Estimate (95% CI) | p | |
Mean arterial blood pressure (mmHg) (n = 142) | 0.0213 (0.0105, 0.0321) | 0.0002 | 0.0174 (0.0051, 0.0296) | 0.0060 | 0.0205 (0.0100, 0.0311) | 0.0002 | |
Age (years) (n = 144) | −0.0157 (−0.0297, −0.0017) | 0.028 | −0.00463 (−0.01961, 0.01035) | 0.54 | |||
Smoking (current smoker) (n = 131) | 0.0598 (−0.3509, 0.4706) | 0.77 | −0.114 (−0.571, 0.343) | 0.62 | |||
HbA1c (mmol/mol) (n = 142) | 0.000685 (−0.005577, 0.006947) | 0.83 | 0.00452 (−0.00174, 0.01078) | 0.16 | |||
Diabetes duration(years) (n = 137) | −0.0115 (−0.0251, 0.0021) | 0.096 | −0.0115 (−0.0252, 0.0021) | 0.096 | |||
GPx-3 activity (U/L) (n = 141) | −0.000600 (−0.001590, 0.000389) | 0.23 | 0.000237 (−0.000892, 0.001366) | 0.68 | 0.000223 (−0.000844, 0.001290) | 0.68 | |
BMI (Kg/m2) (n = 144) | 0.0317 (0.0148, 0.0485) | 0.0003 | 0.0138 (−0.0050, 0.0325) | 0.15 | |||
Sex (female) (n = 144) | −0.233 (−0.447, −0.019) | 0.033 | −0.269 (−0.499, −0.039) | 0.022 | −0.225 (−0.441, −0.010) | 0.041 | |
Ln (8-OHdG/creatinine) (n = 134) | Minor, Black and Asian ethnicity | −0.101 (−0.220, 0.018) | 0.095 | −0.0900 (−0.2111, 0.0310) | 0.14 | −0.0610 (−0.1750, 0.0529) | 0.29 |
White ethnicity | 0.201 (0.000, 0.402) | 0.050 | 0.219 (0.006, 0.433) | 0.044 | 0.226 (0.035, 0.418) | 0.021 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zitouni, K.; Steyn, M.; Lewis, J.; Kelly, F.J.; Cook, P.; Earle, K.A. Variation in Arterial Stiffness and Markers of Oxidative Stress in Patients with Type 2 Diabetes Mellitus from Different Ethnic Groups. Antioxidants 2025, 14, 858. https://doi.org/10.3390/antiox14070858
Zitouni K, Steyn M, Lewis J, Kelly FJ, Cook P, Earle KA. Variation in Arterial Stiffness and Markers of Oxidative Stress in Patients with Type 2 Diabetes Mellitus from Different Ethnic Groups. Antioxidants. 2025; 14(7):858. https://doi.org/10.3390/antiox14070858
Chicago/Turabian StyleZitouni, Karima, Mia Steyn, Joanna Lewis, Frank J. Kelly, Paul Cook, and Kenneth A. Earle. 2025. "Variation in Arterial Stiffness and Markers of Oxidative Stress in Patients with Type 2 Diabetes Mellitus from Different Ethnic Groups" Antioxidants 14, no. 7: 858. https://doi.org/10.3390/antiox14070858
APA StyleZitouni, K., Steyn, M., Lewis, J., Kelly, F. J., Cook, P., & Earle, K. A. (2025). Variation in Arterial Stiffness and Markers of Oxidative Stress in Patients with Type 2 Diabetes Mellitus from Different Ethnic Groups. Antioxidants, 14(7), 858. https://doi.org/10.3390/antiox14070858