Modulation of Redox-Sensitive Cardiac Ion Channels
Abstract
1. Introduction
2. Ion Channel Basis of Cardiac Excitation and Conduction
Ion Current | Ion Carried | Principal Subunit (s) | Physiological Role | Reference(s) |
---|---|---|---|---|
INa | Na+ | SCN5A | Rapid depolarization (Phase 0) and impulse conduction | [38] |
ICa,L | Ca2+ | CACNLIA1 | Plateau (Phase 2) and Ca2+ entry for excitation–contraction | [39,40,41] |
Ito1 | K+ | Kv1.2, Kv1.4 Kv1.5, Kv2.1 Kv4.2, Kv4.3 | Early repolarization (Phase 1), spike-and-dome morphology | [32,42] |
Ito2 | K+ | — | Calcium-activated early repolarization | [32] |
IKur | K+ | Kv1.5 | Ultrarapid repolarization controls atrial AP duration | [43] |
IKr | K+ | (hERG) Kv11.1 | Rapid delayed repolarization (Phase 3) | [44] |
IKs | K+ | Kv7.1(KvLQT1) + KCNE1 | Slow delayed repolarization (Phase 3); repolarization reserve | [45] |
IK1 | K+ | Kir2 | Maintains resting potential (Phase 4) and final repolarization | [46] |
3. Redox Biology in Cardiomyocytes
3.1. Antioxidant Defense Mechanisms in Cardiomyocytes
3.2. Redox Regulation and Cardiac Disease
4. Redox-Dependent Regulation of Cardiac Ion Channels
4.1. Redox-Sensitive Ion Channels in the Heart:
4.1.1. Redox Regulation of Cardiac Potassium Channels
4.1.2. Redox Control of Cardiac Sodium Channels
4.1.3. Redox Regulation of Cardiac Calcium Channels
4.1.4. Redox Regulation of Other Ion Channels
5. Therapeutic Strategies Targeting Redox-Sensitive Ion Channels in Cardiac Disease
6. Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AP | Action Potential |
Ca2+ | Calcium Ion |
CICR | Calcium-Induced Calcium Release |
DTT | Dithiothreitol |
ECC | Excitation–Contraction Coupling |
GSSG | Glutathione Disulfide |
H2O2 | Hydrogen Peroxide |
IF | Funny Current (Pacemaker “If” Current) |
INa | Fast Sodium Current |
ICa,L | L-Type Calcium Current |
ICa,T | T-Type Calcium Current |
IK1 | Inward Rectifier Potassium Current |
IKr | Rapid Delayed Rectifier Potassium Current |
IKs | Slow Delayed Rectifier Potassium Current |
IKur | Ultrarapid Delayed Rectifier Potassium Current |
Ito | Transient Outward Potassium Current |
ROS | Reactive Oxygen Species |
RyR2 | Ryanodine Receptor Type 2 |
SA | Sinoatrial (Node) |
SCD | Sudden Cardiac Death |
SR | Sarcoplasmic Reticulum |
SERCA | Sarco/Endoplasmic Reticulum Ca2+-ATPase |
TRPC6 | Transient Receptor Potential Canonical 6 |
References
- Uttara, B.; Singh, A.V.; Zamboni, P.; Mahajan, R.T. Oxidative Stress and Neurodegenerative Diseases: A Review of Upstream and Downstream Antioxidant Therapeutic Options. Curr. Neuropharmacol. 2009, 7, 65–74. [Google Scholar] [CrossRef] [PubMed]
- Mandal, M.; Sarkar, M.; Khan, A.; Biswas, M.; Masi, A.; Rakwal, R.; Agrawal, G.K.; Srivastava, A.; Sarkar, A. Reactive Oxygen Species (ROS) and Reactive Nitrogen Species (RNS) in plants—Maintenance of structural individuality and functional blend. Adv. Redox Res. 2022, 5, 100039. [Google Scholar] [CrossRef]
- Juan, C.A.; Pérez de la Lastra, J.M.; Plou, F.J.; Pérez-Lebeña, E. The Chemistry of Reactive Oxygen Species (ROS) Revisited: Outlining Their Role in Biological Macromolecules (DNA, Lipids and Proteins) and Induced Pathologies. Int. J. Mol. Sci. 2021, 22, 4642. [Google Scholar] [CrossRef] [PubMed]
- Bhatti, J.S.; Bhatti, G.K.; Reddy, P.H. Mitochondrial dysfunction and oxidative stress in metabolic disorders—A step towards mitochondria based therapeutic strategies. Biochim. Biophys. Acta (BBA)—Mol. Basis Dis. 2017, 1863, 1066–1077. [Google Scholar] [CrossRef]
- Kozlov, A.V.; Javadov, S.; Sommer, N. Cellular ROS and Antioxidants: Physiological and Pathological Role. Antioxidants 2024, 13, 602. [Google Scholar] [CrossRef] [PubMed]
- Rauf, A.; Khalil, A.A.; Awadallah, S.; Khan, S.A.; Abu-Izneid, T.; Kamran, M.; Hemeg, H.A.; Mubarak, M.S.; Khalid, A.; Wilairatana, P. Reactive oxygen species in biological systems: Pathways, associated diseases, and potential inhibitors—A review. Food Sci. Nutr. 2024, 12, 675–693. [Google Scholar] [CrossRef]
- Dash, U.C.; Bhol, N.K.; Swain, S.K.; Samal, R.R.; Nayak, P.K.; Raina, V.; Panda, S.K.; Kerry, R.G.; Duttaroy, A.K.; Jena, A.B. Oxidative stress and inflammation in the pathogenesis of neurological disorders: Mechanisms and implications. Acta Pharm. Sin. B 2024. [Google Scholar] [CrossRef]
- Liang, J.; Wu, M.; Chen, C.; Mai, M.; Huang, J.; Zhu, P. Roles of Reactive Oxygen Species in Cardiac Differentiation, Reprogramming, and Regenerative Therapies. Oxidative Med. Cell. Longev. 2020, 2020, 2102841. [Google Scholar] [CrossRef]
- Zorov, D.B.; Juhaszova, M.; Sollott, S.J. Mitochondrial Reactive Oxygen Species (ROS) and ROS-Induced ROS Release. Physiol. Rev. 2014, 94, 909–950. [Google Scholar] [CrossRef]
- D’Oria, R.; Schipani, R.; Leonardini, A.; Natalicchio, A.; Perrini, S.; Cignarelli, A.; Laviola, L.; Giorgino, F. The Role of Oxidative Stress in Cardiac Disease: From Physiological Response to Injury Factor. Oxidative Med. Cell. Longev. 2020, 2020, 5732956. [Google Scholar] [CrossRef]
- Voorhees, A.P.; Han, H.-C. Biomechanics of Cardiac Function. Compr. Physiol. 2015, 5, 1623–1644. [Google Scholar] [CrossRef] [PubMed]
- del Monte-Nieto, G.; Fischer, J.W.; Gorski, D.J.; Harvey, R.P.; Kovacic, J.C. Basic Biology of Extracellular Matrix in the Cardiovascular System, Part 1/4: JACC Focus Seminar. J. Am. Coll. Cardiol. 2020, 75, 2169–2188. [Google Scholar] [CrossRef] [PubMed]
- Aggarwal, N.T.; Makielski, J.C. Redox Control of Cardiac Excitability. Antioxid. Redox Signal. 2013, 18, 432–468. [Google Scholar] [CrossRef] [PubMed]
- Bers, D. Cardiac excitation–contraction coupling. Nature 2002, 415, 198–205. [Google Scholar] [CrossRef]
- Eisner, D.A.; Caldwell, J.L.; Kistamás, K.; Trafford, A.W. Calcium and Excitation-Contraction Coupling in the Heart. Circ. Res. 2017, 121, 181–195. [Google Scholar] [CrossRef]
- Amin, A.S.; Tan, H.L.; Wilde, A.A.M. Cardiac ion channels in health and disease. Heart Rhythm 2010, 7, 117–126. [Google Scholar] [CrossRef]
- Grant, A.O. Cardiac Ion Channels. Circ. Arrhythmia Electrophysiol. 2009, 2, 185–194. [Google Scholar] [CrossRef]
- Varró, A.; Tomek, J.; Nagy, N.; Virág, L.; Passini, E.; Rodriguez, B.; Baczkó, I. Cardiac transmembrane ion channels and action potentials: Cellular physiology and arrhythmogenic behavior. Physiol. Rev. 2021, 101, 1083–1176. [Google Scholar] [CrossRef]
- Landstrom, A.P.; Dobrev, D.; Wehrens, X.H.T. Calcium Signaling and Cardiac Arrhythmias. Circ. Res. 2017, 120, 1969–1993. [Google Scholar] [CrossRef]
- Lei, M.; Salvage, S.C.; Jackson, A.P.; Huang, C.L.-H. Cardiac arrhythmogenesis: Roles of ion channels and their functional modification. Front. Physiol. 2024, 15, 1342761. [Google Scholar] [CrossRef]
- Orfali, R.; Alwatban, A.Z.; Orfali, R.S.; Lau, L.; Chea, N.; Alotaibi, A.M.; Nam, Y.W.; Zhang, M. Oxidative stress and ion channels in neurodegenerative diseases. Front. Physiol. 2024, 15, 1320086. [Google Scholar] [CrossRef] [PubMed]
- Mahmoud, A.; Junejo, R. Oxidative Stress in Cardiovascular Diseases. In Biomarkers of Oxidative Stress; Andreescu, S., Henkel, R., Khelfi, A., Eds.; Springer: Cham, Switzerland, 2024; Available online: https://link.springer.com/chapter/10.1007/978-3-031-69962-7_3 (accessed on 22 February 2025).
- Madamanchi, N.R.; Vendrov, A.; Runge, M.S. Oxidative Stress and Vascular Disease. Arterioscler. Thromb. Vasc. Biol. 2005, 25, 29–38. [Google Scholar] [CrossRef] [PubMed]
- Dubois-Deruy, E.; Peugnet, V.; Turkieh, A.; Pinet, F. Oxidative Stress in Cardiovascular Diseases. Antioxidants 2020, 9, 864. [Google Scholar] [CrossRef]
- Jongsma, H.J. Sudden cardiac death: A matter of faulty ion channels? Curr. Biol. 1998, 8, R568–R571. [Google Scholar] [CrossRef] [PubMed]
- Gräni, C.; Benz, D.C.; Gupta, S.; Windecker, S.; Kwong, R.Y. Sudden Cardiac Death in Ischemic Heart Disease: From Imaging Arrhythmogenic Substrate to Guiding Therapies. JACC Cardiovasc. Imaging 2020, 13, 2223–2238. [Google Scholar] [CrossRef]
- Olejnickova, V.; Kocka, M.; Kvasilova, A.; Kolesova, H.; Dziacky, A.; Gidor, T.; Gidor, L.; Sankova, B.; Gregorovicova, M.; Gourdie, R.G.; et al. Gap Junctional Communication via Connexin43 between Purkinje Fibers and Working Myocytes Explains the Epicardial Activation Pattern in the Postnatal Mouse Left Ventricle. Int. J. Mol. Sci. 2021, 22, 2475. [Google Scholar] [CrossRef]
- Andelova, K.; Egan Benova, T.; Szeiffova Bacova, B.; Sykora, M.; Prado, N.J.; Diez, E.R.; Hlivak, P.; Tribulova, N. Cardiac Connexin-43 Hemichannels and Pannexin1 Channels: Provocative Antiarrhythmic Targets. Int. J. Mol. Sci. 2021, 22, 260. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, Z.-Z.; Chen, N.-H. Connexin 43 Phosphorylation: Implications in Multiple Diseases. Molecules 2023, 28, 4914. [Google Scholar] [CrossRef]
- Zaza, A. Control of the cardiac action potential: The role of repolarization dynamics. J. Mol. Cell. Cardiol. 2010, 48, 106–111. [Google Scholar] [CrossRef]
- Thong, E.; Ahmed, A.; MacLeod, K.T. An Introduction to the Cardiac Action Potentials. In Heart of the Matter: Key Concepts in Cardiovascular Science; Terracciano, C., Guymer, S., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 49–59. [Google Scholar] [CrossRef]
- Cheng, J.; Kodama, I. Two components of delayed rectifier K+ current in heart: Molecular basis, functional diversity, and contribution to repolarization. Acta Pharmacol. Sin. 2004, 25, 137–145. [Google Scholar]
- MacDonald, E.A.; Madl, J.; Greiner, J.; Ramadan, A.F.; Wells, S.M.; Torrente, A.G.; Kohl, P.; Rog-Zielinska, E.A.; Quinn, T.A. Sinoatrial Node Structure, Mechanics, Electrophysiology and the Chronotropic Response to Stretch in Rabbit and Mouse. Front. Physiol. 2020, 11, 809. [Google Scholar] [CrossRef]
- Zamponi, G.W.; Striessnig, J.; Koschak, A.; Dolphin, A.C. The Physiology, Pathology, and Pharmacology of Voltage-Gated Calcium Channels and Their Future Therapeutic Potential. Pharmacol. Rev. 2015, 67, 821–870. [Google Scholar] [CrossRef] [PubMed]
- DiFrancesco, D. The Role of the Funny Current in Pacemaker Activity. Circ. Res. 2010, 106, 434–446. [Google Scholar] [CrossRef] [PubMed]
- Jeevaratnam, K.; Chadda, K.R.; Huang, C.L.-H.; Camm, A.J. Cardiac Potassium Channels: Physiological Insights for Targeted Therapy. J. Cardiovasc. Pharmacol. Ther. 2018, 23, 119–129. [Google Scholar] [CrossRef]
- Griendling, K.K.; FitzGerald, G.A. Oxidative Stress and Cardiovascular Injury. Circulation 2003, 108, 1912–1916. [Google Scholar] [CrossRef]
- Jones, D.K.; Ruben, P.C. Biophysical defects in voltage-gated sodium channels associated with Long QT and Brugada syndromes. Channels 2008, 2, 70–80. [Google Scholar] [CrossRef]
- Linz, K.W.; Meyer, R. Control of L-type calcium current during the action potential of guinea-pig ventricular myocytes. J. Physiol. 1998, 513, 425. [Google Scholar] [CrossRef] [PubMed]
- Bodi, I.; Mikala, G.; Koch, S.E.; Akhter, S.A.; Schwartz, A. The L-type calcium channel in the heart: The beat goes on. J. Clin. Investig. 2005, 115, 3306. [Google Scholar] [CrossRef]
- Ono, K.; Iijima, T. Pathophysiological Significance of T-type Ca2+ Channels: Properties and Functional Roles of T-type Ca2+ Channels in Cardiac Pacemaking. J. Pharmacol. Sci. 2005, 99, 197–204. [Google Scholar] [CrossRef]
- Verkerk, A.; Veerman, C.; Zegers, J.; Wilders, R. Effects of the Transient Outward Potassium Current on Action Potential Upstroke Velocities Tested Using the Dynamic Clamp Technique. In Proceedings of the 2016 Computing in Cardiology Conference (CinC), Vancouver, BC, Canada, 11–14 September 2016. [Google Scholar] [CrossRef]
- Wettwer, E.; Hála, O.; Christ, T.; Heubach, J.F.; Dobrev, D.; Knaut, M.; Varró, A.; Ravens, U. Role of IKur in Controlling Action Potential Shape and Contractility in the Human Atrium. Circulation 2004, 110, 2299–2306. [Google Scholar] [CrossRef]
- Köpfer, D.A.; Hahn, U.; Ohmert, I.; Vriend, G.; Pongs, O.; de Groot, B.L.; Zachariae, U. A Molecular Switch Driving Inactivation in the Cardiac K+ Channel hERG. PLoS ONE 2012, 7, e41023. [Google Scholar] [CrossRef] [PubMed]
- Henrion, U.; Strutz-Seebohm, N.; Duszenko, M.; Lang, F.; Seebohm, G. Long QT Syndrome-associated Mutations in the Voltage Sensor of IKs Channels. Cell. Physiol. Biochem. 2009, 24, 11–16. [Google Scholar] [CrossRef]
- Dhamoon, A.S.; Jalife, J. The inward rectifier current (IK1) controls cardiac excitability and is involved in arrhythmogenesis. Heart Rhythm 2005, 2, 316–324. [Google Scholar] [CrossRef] [PubMed]
- Santos, C.X.C.; Raza, S.; Shah, A.M. Redox signaling in the cardiomyocyte: From physiology to failure. Int. J. Biochem. Cell Biol. 2016, 74, 145–151. [Google Scholar] [CrossRef]
- Mandelker, L. Introduction to oxidative stress and mitochondrial dysfunction. Vet. Clin. N. Am. Small Anim. Pract. 2008, 38, 1–30. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharyya, A.; Chattopadhyay, R.; Mitra, S.; Crowe, S.E. Oxidative Stress: An Essential Factor in the Pathogenesis of Gastrointestinal Mucosal Diseases. Physiol. Rev. 2014, 94, 329–354. [Google Scholar] [CrossRef] [PubMed]
- Palma, F.R.; Gantner, B.N.; Sakiyama, M.J.; Kayzuka, C.; Shukla, S.; Lacchini, R.; Cunniff, B.; Bonini, M.G. ROS production by mitochondria: Function or dysfunction? Oncogene 2024, 43, 295–303. [Google Scholar] [CrossRef]
- Miranda, M.R.; Vestuto, V.; Moltedo, O.; Manfra, M.; Campiglia, P.; Pepe, G. The Ion Channels Involved in Oxidative Stress-Related Gastrointestinal Diseases. Oxygen 2023, 3, 336–365. [Google Scholar] [CrossRef]
- Epifantseva, I.; Shaw, R.M. Intracellular trafficking pathways of Cx43 gap junction channels. Biochim. Biophys. Acta (BBA)—Biomembr. 2018, 1860, 40–47. [Google Scholar] [CrossRef]
- Schulz, R.; Görge, P.M.; Görbe, A.; Ferdinandy, P.; Lampe, P.D.; Leybaert, L. Connexin 43 is an emerging therapeutic target in ischemia/reperfusion injury, cardioprotection and neuroprotection. Pharmacol. Ther. 2015, 153, 90–106. [Google Scholar] [CrossRef]
- Krishnendu, M.R.; Singh, S. Reactive oxygen species: Advanced detection methods and coordination with nanozymes. Chem. Eng. J. 2025, 511, 161296. [Google Scholar] [CrossRef]
- Snezhkina, A.V.; Kudryavtseva, A.V.; Kardymon, O.L.; Savvateeva, M.V.; Melnikova, N.V.; Krasnov, G.S.; Dmitriev, A.A. ROS Generation and Antioxidant Defense Systems in Normal and Malignant Cells. Oxidative Med. Cell. Longev. 2019, 2019, 6175804. [Google Scholar] [CrossRef] [PubMed]
- Jomova, K.; Raptova, R.; Alomar, S.Y.; Alwasel, S.H.; Nepovimova, E.; Kuca, K.; Valko, M. Reactive oxygen species, toxicity, oxidative stress, and antioxidants: Chronic diseases and aging. Arch. Toxicol. 2023, 97, 2499–2574. [Google Scholar] [CrossRef] [PubMed]
- Koch, R.E.; Hill, G.E. An assessment of techniques to manipulate oxidative stress in animals. Funct. Ecol. 2017, 31, 9–21. [Google Scholar] [CrossRef]
- Sack, M.N.; Fyhrquist, F.Y.; Saijonmaa, O.J.; Fuster, V.; Kovacic, J.C. Basic Biology of Oxidative Stress and the Cardiovascular System: Part 1 of a 3-Part Series. JACC 2017, 70, 196–211. [Google Scholar] [CrossRef]
- Wang, Y.; Branicky, R.; Noë, A.; Hekimi, S. Superoxide dismutases: Dual roles in controlling ROS damage and regulating ROS signaling. J. Cell Biol. 2018, 217, 1915–1928. [Google Scholar] [CrossRef]
- Ardanaz, N.; Yang, X.-P.; Cifuentes, M.E.; Haurani, M.J.; Kyle, J.W.; Liao, T.-D.; Carretero, O.A.; Pagano, P.J. Lack of glutathione peroxidase-1 accelerates cardiac-specific hypertrophy and dysfunction in angiotensin II hypertension. Hypertension 2010, 55, 116–123. [Google Scholar] [CrossRef]
- Pendergrass, K.D.; Varghese, S.T.; Maiellaro-Rafferty, K.; Brown, M.E.; Taylor, W.R.; Davis, M.E. Temporal Effects of Catalase Overexpression on Healing After Myocardial Infarction. Circ. Heart Fail. 2011, 4, 98–106. [Google Scholar] [CrossRef]
- Barteková, M.; Adameová, A.; Görbe, A.; Ferenczyová, K.; Pecháňová, O.; Lazou, A.; Dhalla, N.S.; Ferdinandy, P.; Giricz, Z. Natural and synthetic antioxidants targeting cardiac oxidative stress and redox signaling in cardiometabolic diseases. Free. Radic. Biol. Med. 2021, 169, 446–477. [Google Scholar] [CrossRef]
- Moreno, C.; Macías, Á.; Prieto, Á.; de la Cruz, A.; González, T.; Valenzuela, C. Effects of n−3 Polyunsaturated Fatty Acids on Cardiac Ion Channels. Front. Physiol. 2012, 3, 245. [Google Scholar] [CrossRef]
- Lubos, E.; Loscalzo, J.; Handy, D.E. Glutathione Peroxidase-1 in Health and Disease: From Molecular Mechanisms to Therapeutic Opportunities. Antioxid. Redox Signal. 2011, 15, 1957–1997. [Google Scholar] [CrossRef]
- Kunsch, C.; Medford, R.M. Oxidative Stress as a Regulator of Gene Expression in the Vasculature. Circ. Res. 1999, 85, 753–766. [Google Scholar] [CrossRef]
- Tsutsui, H.; Kinugawa, S.; Matsushima, S. Oxidative stress and heart failure. Am. J. Physiol. Heart Circ. Physiol. 2011, 301, H2181–H2190. [Google Scholar] [CrossRef] [PubMed]
- Duan, D.; Fan, T.; Zhang, L.; Li, L.; Wang, H.; Guo, M.; Feng, Y. The Correlation Between Cardiac Oxidative Stress and Inflammatory Cytokine Response Following Myocardial Infarction. Clin. Appl. Thromb. 2023, 29, 10760296231211907. [Google Scholar] [CrossRef] [PubMed]
- van der Pol, A.; van Gilst, W.H.; Voors, A.A.; van der Meer, P. Treating oxidative stress in heart failure: Past, present and future. Eur. J. Heart Fail. 2019, 21, 425–435. [Google Scholar] [CrossRef]
- Batty, M.; Bennett, M.R.; Yu, E. The Role of Oxidative Stress in Atherosclerosis. Cells 2022, 11, 3843. [Google Scholar] [CrossRef]
- Barrera, G. Oxidative Stress and Lipid Peroxidation Products in Cancer Progression and Therapy. Int. Sch. Res. Not. 2012, 2012, 137289. [Google Scholar] [CrossRef]
- de Almeida, A.J.P.O.; de Oliveira, J.C.P.L.; da Silva Pontes, L.V.; de Souza Júnior, J.F.; Gonçalves, T.A.F.; Dantas, S.H.; de Almeida Feitosa, M.S.; Silva, A.O.; de Medeiros, I.A. ROS: Basic Concepts, Sources, Cellular Signaling, and its Implications in Aging Pathways. Oxidative Med. Cell. Longev. 2022, 2022, 1225578. [Google Scholar] [CrossRef] [PubMed]
- Valaitienė, J.; Laučytė-Cibulskienė, A. Oxidative Stress and Its Biomarkers in Cardiovascular Diseases. Artery Res. 2024, 30, 18. [Google Scholar] [CrossRef]
- Seddon, M.; Looi, Y.H.; Shah, A.M. Oxidative stress and redox signalling in cardiac hypertrophy and heart failure. Heart Br. Card. Soc. 2007, 93, 903–907. [Google Scholar] [CrossRef]
- Yan, Q.; Liu, S.; Sun, Y.; Chen, C.; Yang, S.; Lin, M.; Long, J.; Yao, J.; Lin, Y.; Yi, F.; et al. Targeting oxidative stress as a preventive and therapeutic approach for cardiovascular disease. J. Transl. Med. 2023, 21, 519. [Google Scholar] [CrossRef]
- Checa, J.; Aran, J.M. Reactive Oxygen Species: Drivers of Physiological and Pathological Processes. J. Inflamm. Res. 2020, 13, 1057–1073. [Google Scholar] [CrossRef] [PubMed]
- Hong, Y.; Boiti, A.; Vallone, D.; Foulkes, N.S. Reactive Oxygen Species Signaling and Oxidative Stress: Transcriptional Regulation and Evolution. Antioxidants 2024, 13, 312. [Google Scholar] [CrossRef] [PubMed]
- Man, K.N.M.; Bartels, P.; Henderson, P.B.; Kim, K.; Shi, M.; Zhang, M.; Ho, S.-Y.; Nieves-Cintron, M.; Navedo, M.F.; Horne, M.C.; et al. α1-Adrenergic receptor–PKC–Pyk2–Src signaling boosts L-type Ca2+ channel CaV1.2 activity and long-term potentiation in rodents. eLife 2023, 12, e79648. [Google Scholar] [CrossRef]
- Regulation of Sodium Channel Activity by Phosphorylation. Available online: https://www.researchgate.net/publication/47448017_Regulation_of_Sodium_Channel_Activity_by_Phosphorylation (accessed on 5 May 2025).
- Gada, K.D.; Logothetis, D.E. PKC regulation of ion channels: The involvement of PIP2. J. Biol. Chem. 2022, 298, 102035. [Google Scholar] [CrossRef]
- Park, M.-H.; Park, S.-I.; Kim, J.-H.; Yu, J.; Lee, E.H.; Seo, S.R.; Jo, S.-H. The acute effects of hydrocortisone on cardiac electrocardiography, action potentials, intracellular calcium, and contraction: The role of protein kinase C. Mol. Cell. Endocrinol. 2019, 494, 110488. [Google Scholar] [CrossRef] [PubMed]
- Qi, M.-M.; Qian, L.-L.; Wang, R.-X. Modulation of SK Channels: Insight Into Therapeutics of Atrial Fibrillation. Heart Lung Circ. 2021, 30, 1130–1139. [Google Scholar] [CrossRef]
- Scherer, D.; Seyler, C.; Xynogalos, P.; Scholz, E.; Thomas, D.; Backs, J.; Andrassy, M.; Völkers, M.; Karle, C.; Katus, H.; et al. Inhibition of Cardiac Kir Current (IK1) by Protein Kinase C Critically Depends on PKCβ and Kir2.2. PLoS ONE 2016, 11, e0156181. [Google Scholar] [CrossRef]
- Foster, M.W.; Hess, D.T.; Stamler, J.S. Protein S-nitrosylation in health and disease: A current perspective. Trends Mol. Med. 2009, 15, 391–404. [Google Scholar] [CrossRef]
- Ferrer-Sueta, G.; Campolo, N.; Trujillo, M.; Bartesaghi, S.; Carballal, S.; Romero, N.; Alvarez, B.; Radi, R. Biochemistry of Peroxynitrite and Protein Tyrosine Nitration. Chem. Rev. 2018, 118, 1338–1408. [Google Scholar] [CrossRef]
- Saurin, A.T.; Neubert, H.; Brennan, J.P.; Eaton, P. Widespread sulfenic acid formation in tissues in response to hydrogen peroxide. Proc. Natl. Acad. Sci. USA 2004, 101, 17982–17987. [Google Scholar] [CrossRef] [PubMed]
- Akbarali, H. Oxidative Stress and Ion Channels. In Systems Biology of Free Radicals and Antioxidants; Springer: Berlin/Heidelberg, Germany, 2014; pp. 355–373. [Google Scholar] [CrossRef]
- Paulsen, C.E.; Carroll, K.S. Cysteine-Mediated Redox Signaling: Chemistry, Biology, and Tools for Discovery. Chem. Rev. 2013, 113, 4633–4679. [Google Scholar] [CrossRef]
- Kiselyov, K.; Muallem, S. ROS and intracellular ion channels. Cell Calcium 2016, 60, 108–114. [Google Scholar] [CrossRef] [PubMed]
- Rozanski, G.J.; Xu, Z. Sulfhydryl modulation of K+ channels in rat ventricular myocytes. J. Mol. Cell. Cardiol. 2002, 34, 1623–1632. [Google Scholar] [CrossRef]
- Li, X.; Xu, Z.; Li, S.; Rozanski, G.J. Redox regulation of Ito remodeling in diabetic rat heart | American Journal of Physiology-Heart and Circulatory Physiology. Am. Physiol. Soc. 2005, 288, H1417–H1424. [Google Scholar]
- Yan, X.; Ma, J.; Zhang, P. Modulation of KATP currents in rat ventricular myocytes by hypoxia and a redox reaction. Acta Pharmacol. Sin. 2009, 30, 1399–1414. [Google Scholar] [CrossRef]
- Liang, H.; Li, X.; Li, S.; Zheng, M.-Q.; Rozanski, G.J. Oxidoreductase regulation of Kv currents in rat ventricle. J. Mol. Cell. Cardiol. 2008, 44, 1062–1071. [Google Scholar] [CrossRef]
- Svoboda, L.K.; Reddie, K.G.; Zhang, L.; Vesely, E.D.; Williams, E.S.; Schumacher, S.M.; O’Connell, R.P.; Shaw, R.; Day, S.M.; Anumonwo, J.M.; et al. Redox-Sensitive Sulfenic Acid Modification Regulates Surface Expression of the Cardiovascular Voltage-Gated Potassium Channel Kv1.5. Circ. Res. 2012, 111, 842–853. [Google Scholar] [CrossRef]
- Baronas, V.A.; Yang, R.Y.; Kurata, H.T. Extracellular redox sensitivity of Kv1.2 potassium channels. Sci. Rep. 2017, 7, 9142. [Google Scholar] [CrossRef]
- Terentyeva, R.; Hamilton, S.; Veress, R.; Perger, F.; Gorr, M.W.; Gyorke, S.; Radwanski, P.; Belevych, A.E.; Terentyev, D.A. Restoration of mitochondrial Ca2+ and redox homeostasis by enhancement of SK channels rescues Ca2+cycling in HFpEF. Biophys. J. 2023, 122, 376a. [Google Scholar] [CrossRef]
- Tang, X.D.; Garcia, M.L.; Heinemann, S.H.; Hoshi, T. Reactive oxygen species impair Slo1 BK channel function by altering cysteine-mediated calcium sensing. Nat. Struct. Mol. Biol. 2004, 11, 171–178. [Google Scholar] [CrossRef]
- Zhang, M.-M.; Gajewiak, J.; Azam, L.; Bulaj, G.; Olivera, B.M.; Yoshikami, D. Probing the Redox States of Sodium Channel Cysteines at the Binding Site of μO§-Conotoxin GVIIJ. Biochemistry 2015, 54, 3911–3920. [Google Scholar] [CrossRef]
- Elies, J.; Dallas, M.L.; Boyle, J.P.; Scragg, J.L.; Duke, A.; Steele, D.S.; Peers, C. Inhibition of the Cardiac Na+ Channel Nav1.5 by Carbon Monoxide. J. Biol. Chem. 2014, 289, 16421–16429. [Google Scholar] [CrossRef]
- Vendrov, A.E.; Stevenson, M.D.; Lozhkin, A.; Hayami, T.; Holland, N.A.; Yang, X.; Moss, N.; Pan, H.; Wickline, S.A.; Stockand, J.D.; et al. Renal NOXA1/NOX1 Signaling Regulates Epithelial Sodium Channel and Sodium Retention in Angiotensin II-induced Hypertension. Antioxid. Redox Signal. 2022, 36, 550–566. [Google Scholar] [CrossRef]
- Campbell, D.L.; Stamler, J.S.; Strauss, H.C. Redox modulation of L-type calcium channels in ferret ventricular myocytes. Dual mechanism regulation by nitric oxide and S-nitrosothiols. J. Gen. Physiol. 1996, 108, 277–293. [Google Scholar] [CrossRef] [PubMed]
- Oda, S.; Numaga-Tomita, T.; Kitajima, N.; Toyama, T.; Harada, E.; Shimauchi, T.; Nishimura, A.; Ishikawa, T.; Kumagai, Y.; Birnbaumer, L.; et al. TRPC6 counteracts TRPC3-Nox2 protein complex leading to attenuation of hyperglycemia-induced heart failure in mice. Sci. Rep. 2017, 7, 7511. [Google Scholar] [CrossRef] [PubMed]
- Muralidharan, P.; Cserne Szappanos, H.; Ingley, E.; Hool, L. Evidence for redox sensing by a human cardiac calcium channel. Sci. Rep. 2016, 6, 19067. [Google Scholar] [CrossRef] [PubMed]
- Mahapatra, C.; Thakkar, R.; Kumar, R. Modulatory Impact of Oxidative Stress on Action Potentials in Pathophysiological States: A Comprehensive Review. Antioxidants 2024, 13, 1172. [Google Scholar] [CrossRef]
- Tamargo, J.; Caballero, R.; Gómez, R.; Valenzuela, C.; Delpón, E. Pharmacology of Cardiac Potassium Channels. Cardiovasc. Res. 2004, 62, 9–33. [Google Scholar] [CrossRef]
- Sahoo, N.; Hoshi, T.; Heinemann, S.H. Oxidative Modulation of Voltage-Gated Potassium Channels. Antioxid. Redox Signal. 2014, 21, 933–952. [Google Scholar] [CrossRef]
- Sands, Z. Voltage-gated ion channels. In Biological Membrane Ion Channels; Chung, S.H., Andersen, O.S., Krishnamurthy, V., Eds.; Springer: New York, NY, USA, 2007; Volume 15. [Google Scholar]
- Huang, J.; Pan, X.; Yan, N. Structural biology and molecular pharmacology of voltage-gated ion channels. Nat. Rev. Mol. Cell Biol. 2024, 25, 904–925. [Google Scholar] [CrossRef] [PubMed]
- Kane, G.C.; Liu, X.K.; Yamada, S.; Olson, T.M.; Terzic, A. Cardiac KATP channels in health and disease. J. Mol. Cell. Cardiol. 2005, 38, 937–943. [Google Scholar] [CrossRef] [PubMed]
- Hussein, R.A.; Ahmed, M.; Heinemann, S.H. Selenomethionine mis-incorporation and redox-dependent voltage-gated sodium channel gain of function. J. Neurochem. 2023, 167, 262–276. [Google Scholar] [CrossRef]
- Gonzalez, D.R.; Treuer, A.; Sun, Q.-A.; Stamler, J.S.; Hare, J.M. S-nitrosylation of cardiac ion channels. J. Cardiovasc. Pharmacol. 2009, 54, 188–195. [Google Scholar] [CrossRef]
- Bers, D. Calcium Fluxes Involved in Control of Cardiac Myocyte Contraction. Circ. Res. 2000, 87, 275–281. [Google Scholar] [CrossRef]
- Burgoyne, J.R.; Mongue-Din, H.; Eaton, P.; Shah, A.M. Redox Signaling in Cardiac Physiology and Pathology. Circ. Res. 2012, 111, 1091–1106. [Google Scholar] [CrossRef]
- Berndt, N.; Hoffmann, S.; Benda, J.; Holzhütter, H.-G. The influence of the chloride currents on action potential firing and volume regulation of excitable cells studied by a kinetic model. J. Theor. Biol. 2011, 276, 42–49. [Google Scholar] [CrossRef]
- Bogeski, I.; Niemeyer, B.A. Redox Regulation of Ion Channels. Antioxid. Redox Signal. 2014, 21, 859–862. [Google Scholar] [CrossRef] [PubMed]
- Akabas, M.H. Chloride Channels. In eLS; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2020; pp. 1–9. [Google Scholar] [CrossRef]
- Wang, Z.; Choi, K. Pharmacological modulation of chloride channels as a therapeutic strategy for neurological disorders. Front. Physiol. 2023, 14, 1122444. [Google Scholar] [CrossRef]
- Jeong, E.-M.; Liu, M.; Sturdy, M.; Gao, G.; Varghese, S.T.; Sovari, A.A.; Dudley, S.C. Metabolic stress, reactive oxygen species, and arrhythmia. J. Mol. Cell. Cardiol. 2012, 52, 454–463. [Google Scholar] [CrossRef]
- Wulff, H.; Castle, N.A.; Pardo, L.A. Voltage-gated potassium channels as therapeutic targets. Nat. Rev. Drug Discov. 2009, 8, 982–1001. [Google Scholar] [CrossRef]
- Aldini, G.; Altomare, A.; Baron, G.; Vistoli, G.; Carini, M.; Borsani, L.; Sergio, F. N-Acetylcysteine as an antioxidant and disulphide breaking agent: The reasons why. Free Radic. Res. 2018, 52, 751–762. [Google Scholar] [CrossRef]
- Armstrong, P.W.; Pieske, B.; Anstrom, K.J.; Ezekowitz, J.; Hernandez, A.F.; Butler, J.; Lam, C.S.P.; Ponikowski, P.; Voors, A.A.; Jia, G.; et al. Vericiguat in Patients with Heart Failure and Reduced Ejection Fraction. N. Engl. J. Med. 2020, 382, 1883–1893. [Google Scholar] [CrossRef]
- Himmel, H.; Lagrutta, A.; Vömel, M.; Amin, R.P.; Imredy, J.P.; Johnson, T.; Vinzing, M.; Prescott, J.; Blaustein, R.O. Nonclinical Cardiovascular Assessment of the Soluble Guanylate Cyclase Stimulator Vericiguat. J. Pharmacol. Exp. Ther. 2023, 386, 26–34. [Google Scholar] [CrossRef] [PubMed]
- Tamargo, J.; Caballero, R.; Gómez, R.; Delpón, E. Cardiac electrophysiological effects of nitric oxide. Cardiovasc. Res. 2010, 87, 593–600. [Google Scholar] [CrossRef]
- Morcos, R.; Vijayaraman, P.; Cano, Ó.; Zanon, F.; Ponnusamy, S.S.; Herweg, B.; Sharma, P.S.; Jastrzebski, M.; Molina-Lerma, M.; Whinnett, Z.I.; et al. Left bundle branch area pacing compared with biventricular pacing for cardiac resynchronization therapy in patients with left ventricular ejection fraction ≤50%: Results from the International Collaborative LBBAP Study (I-CLAS). Heart Rhythm 2025, in press. [CrossRef] [PubMed]
- Huang, W. Left Bundle Branch Pacing: State of the Art and Future Directions. Circulation 2025, 151, 1131–1133. [Google Scholar] [CrossRef] [PubMed]
- Sandner, P.; Follmann, M.; Becker-Pelster, E.; Hahn, M.G.; Meier, C.; Freitas, C.; Roessig, L.; Stasch, J.-P. Soluble GC stimulators and activators: Past, present and future. Br. J. Pharmacol. 2024, 181, 4130–4151. [Google Scholar] [CrossRef]
- Hu, D.; Li, Y.; Li, R.; Wang, M.; Zhou, K.; He, C.; Wei, Q.; Qian, Z. Recent advances in reactive oxygen species (ROS)-responsive drug delivery systems for photodynamic therapy of cancer. Acta Pharm. Sin. B 2024, 14, 5106–5131. [Google Scholar] [CrossRef]
Channel Type | Species | Experimental Design | Channel/Subtype | Redox Modification | Related Disease | Effect on Ion Channel | Reference |
---|---|---|---|---|---|---|---|
K+ channels | Rats | Patch clamp electrophysiology | Transient outward potassium current (Ito) | Oxidized glutathione (GSSG), 5,5-dithiobis-(2-nitrobenzoic acid) | Ischemia and reperfusion * | Oxidative stress decreases Ito amplitude, reversible by reducing agents | [89] |
Rats | Animal model; spectrophotometric assays; patch clamp electrophysiology | Transient outward potassium current (Ito) | Thioredoxin and glutaredoxin systems | Diabetic cardiomyopathy * | Diabetes alters redox systems, affecting K+ channel remodeling | [90] | |
Rat ventricular myocytes | Patch clamp; GSSG/H2O2 vs. GSH/DTT | KATP | GSSG/H2O2 activates IKATP reversed by GSH/DTT | Ischemia-reperfusion injury | Activation via PKC, PKG, CaMKII | [91] | |
Rats | Animal model and in vitro, patch clamp electrophysiology | (Ipeak and Iss) | Diamide, thioredoxin, and glutaredoxin systems | __ | Oxidative stress decreases K+ currents, regulated by redox systems | [92] | |
Mouse ventricular myocytes | In vitro cellular study; patch clamp electrophysiology; Western blotting | Kv1.5 (KCNA5) | Sulfenic acid modification | Atrial fibrillation and hypoxic pulmonary hypertension | Sulfenic acid modification of Kv1.5 reduces channel surface expression | [93] | |
HEK293 cells | Patch clamp with DTT/GSSG | Kv1.2 | Disulfide bond toggling | Arrhythmia | Redox shifts activation voltage | [94] | |
Rat | Ex vivo hypertrophic hearts; myocyte patch clamp; mito ROS | SK channels (Small conductance Ca2-activated K+ channels) | Prevents RyR2 cysteine oxidation | Heart failure/hypertrophy | SK activation lowers mitochondrial ROS and prevents cysteine oxidation on RyR2 | [95] | |
HEK293 cells | Inside-out patch + H2O2 | BK/Slo1 (Big conductance Ca2+activated K+ channels) | Cysteine oxidation | Hypertension | ROS inhibit BK via Ca2+-sensing cysteines | [96] | |
Na+ channels | Xenopus oocytes | Two-electrode voltage clamp with μO§-conotoxin | Voltage-gated Na+ channel (NaV1.2/1.6) | Disulfide bond formation at Cys910 | Arrhythmia model * | Cys910 redox state controls channel–toxin binding | [97] |
HEK293 cells (human Nav1.5) | Heterologous expression; whole-cell patch clamp; CO donor (CORM-2) application; mitochondrial ROS assays | Voltage-gated Na+ channel (NaV1.5) | Mitochondrial ROS-mediated cysteine oxidation | Ischemia-related arrhythmias * | Carbon monoxide triggers mitochondrial ROS that oxidize Nav1.5 cysteines, reducing peak Na+ current | [98] | |
Mouse | Ang II infusion; BP telemetry; ROS assay | ENaC (epithelial Na+ channel) | NOX1-derived ROS ↑ | Hypertension | Noxa1 deletion reduces ENaC activation | [99] | |
Ca2+ channels | Ferret | Patch clamp electrophysiology | L-type calcium channel | SIN-1 (NO and O2− donor); S-nitrosothiols | __ | NO and S-nitrosothiols modulate L-type Ca2+ channel activity | [100] |
Mouse | TRPC6 knockout vs. mice; transverse aortic constriction; ROS assays | TRPC6 (Transient Receptor Potential Canonical 6) | Disrupts TRPC3–Nox2, lowers ROS | Diabetic heart failure | TRPC6 limits ROS, preserves function | [101] | |
HEK293 cells | Proteoliposome experiments; patch clamp electrophysiology | L-type calcium channel (Cav1.2) | Thiol-modifying agents (DTT, DTNB) | Ischemia | Oxidative stress modifies Cav1.2 open probability via specific cysteine residues | [102] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Orfali, R.; Gamal El-Din, A.H.; Karthick, V.; Lamis, E.; Xiao, V.; Ramanishka, A.; Alwatban, A.; Alkhamees, O.; Alaseem, A.; Nam, Y.-W.; et al. Modulation of Redox-Sensitive Cardiac Ion Channels. Antioxidants 2025, 14, 836. https://doi.org/10.3390/antiox14070836
Orfali R, Gamal El-Din AH, Karthick V, Lamis E, Xiao V, Ramanishka A, Alwatban A, Alkhamees O, Alaseem A, Nam Y-W, et al. Modulation of Redox-Sensitive Cardiac Ion Channels. Antioxidants. 2025; 14(7):836. https://doi.org/10.3390/antiox14070836
Chicago/Turabian StyleOrfali, Razan, Al Hassan Gamal El-Din, Varnika Karthick, Elisanjer Lamis, Vanna Xiao, Alena Ramanishka, Abdullah Alwatban, Osama Alkhamees, Ali Alaseem, Young-Woo Nam, and et al. 2025. "Modulation of Redox-Sensitive Cardiac Ion Channels" Antioxidants 14, no. 7: 836. https://doi.org/10.3390/antiox14070836
APA StyleOrfali, R., Gamal El-Din, A. H., Karthick, V., Lamis, E., Xiao, V., Ramanishka, A., Alwatban, A., Alkhamees, O., Alaseem, A., Nam, Y.-W., & Zhang, M. (2025). Modulation of Redox-Sensitive Cardiac Ion Channels. Antioxidants, 14(7), 836. https://doi.org/10.3390/antiox14070836