Antioxidant and Quality Effects of Red Grape Pomace in Barbecued Pork Burgers: Implications for PAH Formation
Abstract
1. Introduction
2. Materials and Methods
2.1. Manufacture of the Ingredient from Red Grape Pomace (RGP)
2.2. Manufacture, and Cooking of Burgers
2.3. Physicochemical Composition of RGP and Burgers
2.4. Analysis of Barbecued Pork Burgers
2.5. Statistical Analysis
3. Results
3.1. Characterization of the Valorized Red Grape Pomace (RGP)
3.2. Effect of the Incorporation of the RGP in Burgers
3.2.1. Composition and Fatty Acid Profile
3.2.2. Color and Lipid Oxidation
3.2.3. Polycyclic Aromatic Hydrocarbons (PAHs)
3.2.4. Volatile Compounds
4. Discussion
4.1. Characterization of the Valorised Red Grape Pomace (RGP)
4.2. Effect of the Incorporation of the RGP in Burgers
4.2.1. Composition and Fatty Acid Profile
4.2.2. Color and Lipid Oxidation
4.2.3. Polycyclic Aromatic Hydrocarbons (PAHs)
4.2.4. Volatile Compounds
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lu, J.; Zhang, Y.; Zhou, H.; Cai, K.; Xu, B. A review of hazards in meat products: Multiple pathways, hazards and mitigation of polycyclic aromatic hydrocarbons. Food Chem. 2024, 445, 138718. [Google Scholar] [CrossRef]
- Palade, L.M.; Negoiță, M.; Adascălului, A.C.; Mihai, A.L. Polycyclic Aromatic Hydrocarbon Occurrence and Formation in Processed Meat, Edible Oils, and Cereal-Derived Products: A Review. Appl. Sci. 2023, 13, 7877. [Google Scholar] [CrossRef]
- Dutta, K.; Shityakov, S.; Zhu, W.; Khalifa, I. High-risk meat and fish cooking methods of polycyclic aromatic hydrocarbons formation and its avoidance strategies. Food Control. 2022, 142, 109253. [Google Scholar] [CrossRef]
- Singh, L.; Varshney, J.G.; Agarwal, T. Polycyclic aromatic hydrocarbons’ formation and occurrence in processed food. Food Chem. 2016, 199, 768–781. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Morales López, G.; Morales Gómez, P.; Haza Duaso, A.I. Hidrocarburos Aromáticos Policíclicos (HAPs) (I): Toxicidad, Exposición de la Población y Alimentos Implicados; Revista Complutense de Ciencias Veterinarias: Madrid, Spain, 2016; Volume 10. [Google Scholar]
- Sampaio, G.R.; Guizellini, G.M.; da Silva, S.A.; de Almeida, A.P.; Pinaffi-Langley, A.C.C.; Rogero, M.M.; de Camargo, A.C.; Torres, E.A.F.S. Polycyclic aromatic hydrocarbons in foods: Biological effects, legislation, occurrence, analytical methods, and strategies to reduce their formation. Int. J. Mol. Sci. 2021, 22, 6010. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.Y.; Yim, D.G.; Lee, D.Y.; Kim, O.Y.; Kang, H.J.; Kim, H.S.; Jang, A.; Park, T.S.; Jin, S.K.; Hur, S.J. Overview of the effect of natural products on reduction of potential carcinogenic substances in meat products. Trends Food Sci. Technol. 2020, 99, 568–579. [Google Scholar] [CrossRef]
- Beres, C.; Costa, G.N.S.; Cabezudo, I.; da Silva-James, N.K.; Teles, A.S.C.; Cruz, A.P.G.; Mellinger-Silva, C.; Tonon, R.V.; Cabral, L.M.C.; Freitas, S.P. Towards integral utilization of grape pomace from winemaking process: A review. Waste Manag. 2017, 68, 581–594. [Google Scholar] [CrossRef]
- Antonić, B.; Jančíková, S.; Dordević, D.; Tremlová, B. Grape pomace valorization: A systematic review and meta-analysis. Foods 2020, 9, 1627. [Google Scholar] [CrossRef]
- Melini, V.; Vescovo, D.; Melini, F.; Raffo, A. Bakery Product Enrichment with Phenolic Compounds as an Unexplored Strategy for the Control of the Maillard Reaction. Appl. Sci. 2024, 14, 2647. [Google Scholar] [CrossRef]
- Betoret, N.; Betoret, E.; Glicerina, V.T. Valorization and Utilization of Food Wastes and By-Products: Recent Trends, Innovative Technologies and Sustainability Challenges. Foods 2024, 13, 9. [Google Scholar] [CrossRef]
- D’Arrigo, M.; Delgado-Adámez, J.; Rocha-Pimienta, J.; Valdés-Sánchez, M.E.; Ramírez-Bernabé, M.R. Integral Use of Red Wine Pomace after Hydrostatic High Pressure: Application of Two Consecutive Cycles of Treatment. Foods 2024, 13, 149. [Google Scholar] [CrossRef]
- D’Arrigo, M.; Petrón, M.J.; Delgado-Adámez, J.; García-Parra, J.J.; Martín-Mateos, M.J.; Ramírez-Bernabé, M.R. Dry-Cured Sausages “Salchichón” Manufactured with a Valorized Ingredient from Red Grape Pomace (Var. Tempranillo). Foods 2024, 13, 3133. [Google Scholar] [CrossRef] [PubMed]
- Ramírez, R.; Delgado, J.; Rocha-Pimienta, J.; Valdés, M.E.; Martín-Mateos, M.J.; Ayuso-Yuste, M.C. Preservation of white wine pomace by high hydrostatic pressure. Heliyon 2023, 9, e21199. [Google Scholar] [CrossRef]
- Martín-Mateos, M.J.; Delgado-Adámez, J.; Moreno-Cardona, D.; Valdés-Sánchez, M.E.; Ramírez-Bernabé, M.R. Application of White-Wine-Pomace-Derived Ingredients in Extending Storage Stability of Fresh Pork Burgers. Foods 2023, 12, 4468. [Google Scholar] [CrossRef]
- Carrapiso, A.I.; Martín-Mateos, M.J.; D’Arrigo, M.; Delgado-Adámez, J.; Saraiva, J.A.; Ramírez-Bernabé, M.R. High-Hydrostatic-Pressure-Stabilized White Grape Pomace to Improve the Oxidative Stability of Dry-Cured Sausages (“Salchichón”). Foods 2024, 13, 687. [Google Scholar] [CrossRef]
- (EX)UNE-EN_1860-2; Appliances, Solid Fuels and Firelighters for Barbecuing—Part 2: Barbecue Charcoal and Barbecue Charcoal Briquettes—Requirements and Test Methods. CEN: Brussels, Belgium, 2024.
- (EX)UNE-EN_ISO_18125:2018; Solid Biofuels—Determination of Calorific Value (ISO 18125:2017). CEN: Brussels, Belgium, 2017.
- AOAC International; Latimer, G.W. Official Methods of Analysis of AOAC International, 20th ed.; AOAC International, Rockville, M.D., Eds.; Oxford University Press: Hong Kong, China, 2016. [Google Scholar]
- Folch, J.; Lees, M.; Sloane-Stanley, G.H. A simple method for the isolation and purification of total lipides fromo animal tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [CrossRef] [PubMed]
- Soest, P.J.; Van Wine, R.H. Use of Detergents in the Analysis of Fibrous Feeds. IV. Determination of Plant Cell-Wall Constituents. J. AOAC Int. 1967, 50, 50–55. [Google Scholar] [CrossRef]
- Lima, V.L.A.G.; Mélo, E.A.; Maciel, M.I.S.; Prazeres, F.G.; Musser, R.S.; Lima, D.E.S. Total phenolic and carotenoid contents in acerola genotypes harvested at three ripening stages. Food Chem. 2005, 90, 565–568. [Google Scholar] [CrossRef]
- Sorensen, G.; Jorgensen, S.S. A critical examination of some experimental variables in the 2.thiobarbituric acid (TBA) test for lipid oxidation in meat products. In Z Lebensm Unters Forsch; Springer: Berlin/Heidelberg, Germany, 1996. [Google Scholar]
- Onopiuk, A.; Kołodziejczak, K.; Marcinkowska-Lesiak, M.; Wojtasik-Kalinowska, I.; Szpicer, A.; Stelmasiak, A.; Poltorak, A. Influence of plant extract addition to marinades on polycyclic aromatic hydrocarbon formation in grilled pork meat. Molecules 2022, 27, 175. [Google Scholar] [CrossRef]
- Hungría, J.; Siles, J.A.; Gil, A.; Gutiérrez, M.C.; Martín, M.A. Revalorization of grape marc waste from liqueur wine: Biomethanization. J. Chem. Technol. Biotechnol. 2019, 94, 1499–1508. [Google Scholar]
- García-Lomillo, J.; González-SanJosé, M.L. Applications of Wine Pomace in the Food Industry: Approaches and Functions. Compr. Rev. Food Sci. Food Saf. 2017, 16, 3–22. [Google Scholar] [CrossRef] [PubMed]
- Cilli, L.P.; Contini, L.R.F.; Sinnecker, P.; Lopes, P.S.; Andreo, M.A.; Neiva, C.R.P.; Nascimento, M.S.; Yoshida, C.M.P.; Venturini, A.C. Effects of grape pomace flour on quality parameters of salmon burger. J. Food Process. Preserv. 2020, 44, e14329. [Google Scholar] [CrossRef]
- Sousa, E.C.; Uchôa-Thomaz, A.M.A.; Carioca, J.O.B.; de Morais, S.M.; de Lima, A.; Martins, C.G.; Alexandrino, C.D.; Ferreira, P.A.T.; Rodrigues, A.L.M.; Rodrigues, S.P.; et al. Chemical composition and bioactive compounds of grape pomace (Vitis vinifera L.), Benitaka variety, grown in the semiarid region of Northeast Brazil. Food Sci. Technol. 2014, 34, 135–142. [Google Scholar] [CrossRef]
- Rondeau, P.; Gambier, F.; Jolibert, F.; Brosse, N. Compositions and chemical variability of grape pomaces from French vineyard. Ind. Crop. Prod. 2013, 43, 251–254. [Google Scholar] [CrossRef]
- Deng, Q.; Penner, M.H.; Zhao, Y. Chemical composition of dietary fiber and polyphenols of five different varieties of wine grape pomace skins. Food Res. Int. 2011, 44, 2712–2720. [Google Scholar] [CrossRef]
- Llobera, A.; Cañellas, J. Dietary fibre content and antioxidant activity of Manto Negro red grape (Vitis vinifera): Pomace and stem. Food Chem. 2007, 101, 659–666. [Google Scholar] [CrossRef]
- Makris, D.P.; Boskou, G.; Andrikopoulos, N.K. Polyphenolic content and in vitro antioxidant characteristics of wine industry and other agri-food solid waste extracts. J. Food Compos. Anal. 2007, 20, 125–132. [Google Scholar] [CrossRef]
- Baiano, A. Recovery of biomolecules from food wastes—A review. Molecules 2014, 19, 14821–14842. [Google Scholar] [CrossRef]
- Jackson, K.H.; Harris, W.S.; Belury, M.A.; Kris-Etherton, P.M.; Calder, P.C. Beneficial effects of linoleic acid on cardiometabolic health: An update. Lipids Health Dis. 2024, 23, 1–8. [Google Scholar] [CrossRef]
- Garmyn, A. Consumer preferences and acceptance of meat products. Foods 2020, 9, 708. [Google Scholar] [CrossRef]
- Mishra, B.P.; Mishra, J.; Paital, B.; Rath, P.K.; Jena, M.K.; Reddy, B.V.V.; Pati, P.K.; Panda, S.K.; Sahoo, D.K. Properties and physiological effects of dietary fiber-enriched meat products: A review. Front. Nutr. 2023, 10, 1275341. [Google Scholar] [CrossRef] [PubMed]
- Trujillo-Mayol, I.; MMadalena, C.S.M.C.; Viegas, O.; Cunha, S.C.; Alarcón-Enos, J.; Pinho, O.; Ferreira, I.M.P.L.V.O. Incorporation of avocado peel extract to reduce cooking-induced hazards in beef and soy burgers: A clean label ingredient. Food Res. Int. 2021, 147, 110434. [Google Scholar] [CrossRef] [PubMed]
- Hes, M. Protein-Lipid Interactions in Different Meat Systems in the Presence of Natural Antioxidants—A Review. Pol. J. Food Nutr. Sci. 2017, 67, 5–17. [Google Scholar] [CrossRef]
- Seczyk, L.; Swieca, M.; Kapusta, I.; Gawlik-Dziki, U. Protein–phenolic interactions as a factor affecting the physicochemical properties of white bean proteins. Molecules 2019, 24, 408. [Google Scholar] [CrossRef]
- Thebaudin, J.Y.; Lefebvre, A.C.; Harrington, M.; Bourgeois, C.M. Dietary fibres: Nutritional and technological interest. Trends Food Sci. Technol. 1997, 8, 41–48. [Google Scholar] [CrossRef]
- Jiménez-Colmenero, F.; Ayo, M.J.; Carballo, J. Physicochemical properties of low sodium frankfurter with added walnut: Effect of transglutaminase combined with caseinate, KCl and dietary fibre as salt replacers. Meat Sci. 2005, 69, 781–788. [Google Scholar] [CrossRef]
- Cofrades, S.; Guerra, M.A.; Carballo, J.; Fernández-Martín, F.; Jiménez Colmenero, F. Plasma protein and soy fiber content effect on bologna sausage properties as influenced by fat level. J. Food Sci. Inst. Food Technol. 2000, 65, 281–287. [Google Scholar] [CrossRef]
- Mancini, S.; Paci, G.; Fratini, F.; Torracca, B.; Nuvoloni, R.; Dal Bosco, A.; Roscini, V.; Preziuso, G. Improving pork burgers quality using Zingiber officinale Roscoe powder (ginger). Meat Sci. 2017, 129, 161–168. [Google Scholar] [CrossRef]
- Martín-Mateos, M.J.; Ortiz, A.; Curbelo, P.; Barraso, C.; León, L.; López-Parra, M.M.; Tejerina, D.; García-Torres, S. New beef burger formulation with added cherry (pico negro variety) as a potential functional ingredient. Appl. Food Res. 2022, 2, 100132. [Google Scholar] [CrossRef]
- Pfukwa, T.M.; Chikwanha, O.C.; Marais, J.; Fawole, O.A.; Manley, M.; Mapiye, C. Oxidative preservative and sensory effects of Harpephyllum caffrum (wild plum) peel extracts in fresh ground beef patties. Food Biosci. 2023, 53, 102684. [Google Scholar] [CrossRef]
- Beya, M.M.; Netzel, M.E.; Sultanbawa, Y.; Smyth, H.E.; Hoffman, L.C. Exploring the potential of Davidson’s plum (Davidsonia pruriens): A promising indigenous edible fruit as biopreservative in raw processed meat products. LWT 2024, 194, 115827. [Google Scholar] [CrossRef]
- Naveena, B.M.; Sen, A.R.; Kingsly, R.P.; Singh, D.B.; Kondaiah, N. Antioxidant activity of pomegranate rind powder extract in cooked chicken patties. Int. J. Food Sci. Technol. 2008, 43, 1807–1812. [Google Scholar] [CrossRef]
- Shah, M.A.; Bosco, S.J.D.; Mir, S.A. Plant extracts as natural antioxidants in meat and meat products. Meat Sci. 2014, 98, 21–33. [Google Scholar] [CrossRef] [PubMed]
- Mitsumoto, M.; O’Grady, M.N.; Kerry, J.P.; Joe Buckley, D. Addition of tea catechins and vitamin C on sensory evaluation, colour and lipid stability during chilled storage in cooked or raw beef and chicken patties. Meat Sci. 2005, 69, 773–779. [Google Scholar] [CrossRef]
- Lara, M.S.; Gutierrez, J.I.; Timón, M.; Andrés, A.I. Evaluation of two natural extracts (Rosmarinus officinalis L. and Melissa officinalis L.) as antioxidants in cooked pork patties packed in MAP. Meat Sci. 2011, 88, 481–488. [Google Scholar] [CrossRef]
- Andrés, A.I.; Petrón, M.J.; Adámez, J.D.; López, M.; Timón, M.L. Food by-products as potential antioxidant and antimicrobial additives in chill stored raw lamb patties. Meat Sci. 2017, 129, 62–70. [Google Scholar] [CrossRef]
- Shahidi, F.; Zhong, Y. Lipid oxidation and improving the oxidative stability. Chem. Soc. Rev. 2010, 39, 4067–4079. [Google Scholar] [CrossRef]
- Musakhanian, J.; Rodier, J.D.; Dave, M. Correction: Oxidative Stability in Lipid Formulations: A Review of the Mechanisms, Drivers, and Inhibitors of Oxidation. AAPS Pharm. Sci. Technol. 2022, 23, 165. [Google Scholar] [CrossRef]
- European Food Safety Authority (EFSA). Polycyclic Aromatic Hydrocarbons in Food—Scientific Opinion of the Panel on Contaminants in the Food Chain. EFSA J. 2008, 6, 1–114. [Google Scholar]
- Liu, C.; Wang, C.; Ye, K.; Bai, Y.; Yu, X.; Li, C.; Zhou, G. Effect of fatty acid on the formation of polycyclic aromatic hydrocarbons (PAHs) and the proposed formation mechanism during electric roasting. Br. Food J. 2019, 121, 3193–3207. [Google Scholar] [CrossRef]
- Kazerouni, N.; Sinha, R.; Hsu, C.-H.; Greenberg, A.; Rothman, N. Analysis of 200 food items for benzo[a]pyrene and estimation of its intake in an epidemiologic study. Food Chem. Toxicol. 2001, 39, 423–436. [Google Scholar] [CrossRef] [PubMed]
- Bulanda, S.; Janoszka, B. Polycyclic Aromatic Hydrocarbons (PAHs) in Roasted Pork Meat and the Effect of Dried Fruits on PAH Content. Int. J. Env. Res. Public Health 2023, 20, 4922. [Google Scholar] [CrossRef] [PubMed]
- Jira, W. A GC/MS method for the determination of carcinogenic polycyclic aromatic hydrocarbons (PAH) in smoked meat products and liquid smokes. Eur. Food Res. Technol. 2004, 218, 208–212. [Google Scholar] [CrossRef]
- Shen, X.; Huang, X.; Tang, X.; Zhan, J.; Liu, S. The Effects of Different Natural Plant Extracts on the Formation of Polycyclic Aromatic Hydrocarbons (PAHs) in Roast Duck. Foods 2022, 11, 2104. [Google Scholar] [CrossRef]
- Brewer, M.S. Natural antioxidants: Sources, compounds, mechanisms of action, and potential applications. Compr. Rev. Food Sci. Food Saf. 2011, 10, 221–247. [Google Scholar] [CrossRef]
- Serpen, A.; Gökmen, V.; Fogliano, V. Total antioxidant capacities of raw and cooked meats. Meat Sci. 2012, 90, 60–65. [Google Scholar] [CrossRef] [PubMed]
- Han, Z.; Zhu, M.; Wan, X.; Zhai, X.; Ho, C.T.; Zhang, L. Food polyphenols and Maillard reaction: Regulation effect and chemical mechanism. Crit. Rev. Food Sci. Nutr. 2024, 64, 4904–4920. [Google Scholar] [CrossRef]
- Du, W.; Jiang, S.; Lei, Y.; Wang, J.; Cui, Z.; Xiang, P.; Chang, Z.; Duan, W.; Shen, G.; Qin, Y.; et al. Occurrence, formation mechanism, and health risk of polycyclic aromatic hydrocarbons in barbecued food. Ecotoxicol. Environ. Saf. 2025, 293, 118046. [Google Scholar] [CrossRef]
- Beriain, M.J.; Gómez, I.; García, S.; Urroz, J.C.; Diéguez, P.M.; Ibáñez, F.C. Hydrogen gas-grilling in meat: Impact on odor profile and contents of polycyclic aromatic hydrocarbons and volatile organic compounds. Foods 2024, 13, 2443. [Google Scholar] [CrossRef]
- Heck, R.T.; Fagundes, M.B.; Cichoski, A.J.; de Menezes, C.R.; Barin, J.S.; Lorenzo, J.M.; Wagner, R.; Campagnol, P.C.B. Volatile compounds and sensory profile of burgers with 50% fat replacement by microparticles of chia oil enriched with rosemary. Meat Sci. 2019, 148, 164–170. [Google Scholar] [CrossRef]
- Sohail, A.; Al-Dalali, S.; Wang, J.; Xie, J.; Shakoor, A.; Asimi, S.; Shah, H.; Patil, P. Aroma compounds identified in cooked meat: A review. Food Res. Int. 2022, 157, 111385. [Google Scholar] [CrossRef]
- Bassam, S.M.; Noleto-Dias, C.; Farag, M.A. Dissecting grilled red and white meat flavor: Its characteristics, production mechanisms, influencing factors and chemical hazards. Food Chem. 2022, 371, 131139. [Google Scholar] [CrossRef]
- Muchtaridi, M.; Az-Zahra, F.; Wongso, H.; Setyawati, L.U.; Novitasari, D.; Ikram, E.H.K. Molecular Mechanism of Natural Food Antioxidants to Regulate ROS in Treating Cancer: A Review. Antioxidants 2024, 13, 207. [Google Scholar] [CrossRef]
- Domínguez, R.; Pateiro, M.; Gagaoua, M.; Barba, F.J.; Zhang, W.; Lorenzo, J.M. A comprehensive review on lipid oxidation in meat and meat products. Antioxidants 2019, 8, 429. [Google Scholar] [CrossRef]
- Xu, X.; Liu, X.; Wang, S.; Zou, Y.; Zhang, J.; Liang, L.; We, C.; Li, Y.; Xu, X.; He, X.; et al. Relationship between PAH4 formation and thermal reaction products in model lipids and possible pathways of PAHs formation. J. Hazard. Mater. 2024, 465, 133374. [Google Scholar] [CrossRef]
- Laguerre, M.; Lecomte, J.; Villeneuve, P. Evaluation of the ability of antioxidants to counteract lipid oxidation: Existing methods, new trends and challenges. Prog. Lipid Res. 2007, 46, 244–282. [Google Scholar] [CrossRef]
- Bleicher, J.; Ebner, E.E.; Bak, K.H. Formation and Analysis of Volatile and Odor Compounds in Meat—A Review. Molecules 2022, 27, 6703. [Google Scholar] [CrossRef]
- Wojtasik-Kalinowska, I.; Szpicer, A.; Binkowska, W.; Hanula, M.; Marcinkowska-Lesiak, M.; Poltorak, A. Effect of Processing on Volatile Organic Compounds Formation of Meat—Review. Appl. Sci. 2023, 13, 705. [Google Scholar] [CrossRef]
- Alarcón, M.; Pérez-Coello, M.S.; Díaz-Maroto, M.C.; Alañón, M.E.; Soriano, A. Effect of winery by-product extracts on oxidative stability, volatile organic compounds and aroma profile of cooked pork model systems during chilled storage. LWT 2021, 152, 112260. [Google Scholar] [CrossRef]
- Ren, A.; Zhang, Y.; Bian, Y.; Liu, Y.-J.; Zhang, Y.-X.; Ren, C.-J.; Zhou, Y.; Zhang, T.; Feng, X.-S. Pyrazines in food samples: Recent update on occurrence, formation, sampling, pretreatment and analysis methods. Food Chem. 2024, 430, 137086. [Google Scholar] [CrossRef]
- Xia, X.; Zhai, Y.; Cui, H.; Zhang, H.; Hayat, K.; Zhang, X.; Ho, C.T. Structural diversity and concentration dependence of pyrazine formation: Exogenous amino substrates and reaction parameters during thermal processing of L-alanyl-L-glutamine Amadori compound. Food Chem. 2022, 390, 133144. [Google Scholar] [CrossRef] [PubMed]
- Bellucci, E.R.B.; Bis-Souza, C.V.; Domínguez, R.; Bermúdez, R.; Barretto, A.C.d.S. Addition of Natural Extracts with Antioxidant Function to Preserve the Quality of Meat Products. Biomolecules 2022, 12, 1506. [Google Scholar] [CrossRef] [PubMed]
Valorized Red Grape Pomace (RGP) | |
---|---|
pH | 3.9 ± 0.0 |
Aw | 0.980 ± 0.003 |
Proximate composition (% WB) | |
Moisture | 57.04 ± 0.6 |
Protein | 4.3 ± 0.6 |
Fat | 3.9 ± 0.2 |
Fiber | 25.4 ± 1.7 |
Fatty acids profile (%) | |
C12:0 | 0.1 ± 0.0 |
C14:0 | 0.1 ± 0.0 |
C16:0 | 9.5 ± 0.0 |
C16:1 | 0.4 ± 0.0 |
C17:0 | 0.1 ± 0.0 |
C17:1 | 0.0 ± 0.0 |
C18:0 | 4.6 ± 0.0 |
C18:1 | 19.4 ± 0.1 |
C18:2 | 64.5 ± 0.0 |
C18:3 | 1.0 ± 0.0 |
C20:0 | 0.2 ± 0.0 |
C20:1 | 0.1 ± 0.0 |
Antioxidant activity (mM Trolox/mL) | 45.3 ± 3.5 |
Phenolic compounds (mg GAE 100g−1) | 486.0 ± 24.5 |
NC | CF | 0.5% RGP | 1% RGP | 3% RGP | p-Value | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Moisture | 57.8 | ± | 0.8 | 55.8 | ± | 1.6 | 57.5 | ± | 2.5 | 55.0 | ± | 2.0 | 56.0 | ± | 2.5 | 0.273 |
Protein | 29.7 | ± | 0.5 | 31.2 | ± | 2.1 | 29.8 | ± | 1.1 | 32.2 | ± | 2.4 | 31.2 | ± | 2.5 | 0.346 |
Fat | 5.7 b | ± | 0.8 | 5.5 b | ± | 1.0 | 6.1 ab | ± | 0.2 | 6.9 a | ± | 0.7 | 6.8 a | ± | 0.3 | 0.005 |
Fatty acids profile (%) | ||||||||||||||||
C12:0 | 0.08 | ± | 0.00 | 0.09 | ± | 0.00 | 0.09 | ± | 0.00 | 0.09 | ± | 0.00 | 0.09 | ± | 0.00 | 0.129 |
C14:0 | 1.29 | ± | 0.02 | 1.31 | ± | 0.01 | 1.30 | ± | 0.02 | 1.30 | ± | 0.02 | 1.29 | ± | 0.02 | 0.358 |
C16:0 | 23.11 a | ± | 0.07 | 23.07 a | ± | 0.05 | 23.16 a | ± | 0.03 | 23.11 a | ± | 0.03 | 22.98 b | ± | 0.08 | 0.001 |
C16:1 | 3.82 ab | ± | 0.15 | 3.72 ab | ± | 0.02 | 3.66 b | ± | 0.03 | 3.78 ab | ± | 0.13 | 3.84 a | ± | 0.02 | 0.045 |
C17:0 | 0.29 | ± | 0.05 | 0.25 | ± | 0.01 | 0.26 | ± | 0.00 | 0.28 | ± | 0.02 | 0.30 | ± | 0.01 | 0.081 |
C17:1 | 0.26 | ± | 0.03 | 0.23 | ± | 0.00 | 0.24 | ± | 0.01 | 0.24 | ± | 0.00 | 0.26 | ± | 0.01 | 0.049 |
C18:0 | 10.55 | ± | 0.11 | 10.57 | ± | 0.05 | 10.62 | ± | 0.13 | 10.63 | ± | 0.06 | 10.54 | ± | 0.05 | 0.360 |
C18:1 | 44.61 a | ± | 0.26 | 44.59 a | ± | 0.20 | 44.42 a | ± | 0.19 | 44.25 a | ± | 0.22 | 43.83 b | ± | 0.09 | 0.000 |
C18:2 | 14.65 b | ± | 0.16 | 14.81 b | ± | 0.27 | 14.91 b | ± | 0.17 | 14.99 b | ± | 0.17 | 15.56 a | ± | 0.13 | 0.000 |
C18:3 | 0.61 | ± | 0.01 | 0.61 | ± | 0.02 | 0.62 | ± | 0.01 | 0.61 | ± | 0.01 | 0.62 | ± | 0.01 | 0.459 |
C20:0 | 0.10 a | ± | 0.02 | 0.10 a | ± | 0.01 | 0.09 ab | ± | 0.01 | 0.09 ab | ± | 0.02 | 0.07 b | ± | 0.01 | 0.028 |
C20:1 | 0.64 a | ± | 0.01 | 0.63 ab | ± | 0.01 | 0.63 ab | ± | 0.01 | 0.63 ab | ± | 0.01 | 0.62 b | ± | 0.01 | 0.022 |
NC | CF | 0.5% RGP | 1% RGP | 3% RGP | p-Value | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CIE L* | 49.8 a | ± | 1.4 | 51.0 a | ± | 1.2 | 48.4 ab | ± | 1.9 | 46.0 b | ± | 1.5 | 46.4 b | ± | 0.5 | 0.000 |
CIE a* | 7.3 b | ± | 0.4 | 7.9 a | ± | 0.1 | 6.1 c | ± | 0.2 | 5.5 d | ± | 0.2 | 4.2 e | ± | 0.4 | 0.000 |
CIE b* | 14.0 a | ± | 0.7 | 14.3 a | ± | 0.7 | 11.9 b | ± | 1.1 | 10.1 c | ± | 1.2 | 9.4 c | ± | 0.6 | 0.000 |
Chroma | 40.1 a | ± | 1.7 | 43.0 a | ± | 1.8 | 36.1 b | ± | 2.5 | 31.5 c | ± | 2.5 | 30.9 c | ± | 1.2 | 0.000 |
Hue | 40.7 a | ± | 1.6 | 43.4 a | ± | 1.8 | 37.0 b | ± | 2.4 | 32.5 c | ± | 2.5 | 32.0 c | ± | 1.2 | 0.000 |
Lipid oxidation | 0.4 a | ± | 0.1 | 0.4 a | ± | 0.2 | 0.1 b | ± | 0.1 | 0.1 b | ± | 0.0 | 0.2 b | ± | 0.0 | 0.000 |
NC | CF | 0.5% RGP | 1% RGP | 3% RGP | p-Value | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Phenanthrene | 0.4 | ± | 0.1 | 0.5 | ± | 0.1 | 0.7 | ± | 0.4 | 0.9 | ± | 0.2 | 0.7 | ± | 0.2 | 0.173 |
Fluorene | 0.1 | ± | 0.0 | 0.1 | ± | 0.0 | 0.1 | ± | 0.1 | 0.1 | ± | 0.0 | 0.1 | ± | 0.0 | 0.605 |
NC | CF | 0.5% RGP | 1% RGP | 3% RGP | p-Value | LRI | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Aldehydes | |||||||||||||||||
Butanal, 2-methyl- | 29.8 | ± | 46.0 | 68.5 | ± | 100.0 | 38.1 | ± | 26.0 | 50.7 | ± | 11.1 | 18.8 | ± | 14.7 | 0.598 | -- |
Hexanal (*) | 2809.5 a | ± | 2142.2 | 368.2 b | ± | 248.0 | 658.7 b | ± | 263.1 | 383.7 b | ± | 163.5 | 506.6 b | ± | 338.6 | 0.003 | 609.1 |
Heptanal (*) | 1.9 | ± | 4.3 | 5.9 | ± | 13.3 | 1.2 | ± | 2.6 | 7.1 | ± | 7.6 | 1.4 | ± | 3.2 | 0.583 | 800.3 |
Benzaldehyde (*) | 3.8 | ± | 8.5 | 9.5 | ± | 9.6 | 13.8 | ± | 2.2 | 12.7 | ± | 4.6 | 109.5 | ± | 215.6 | 0.397 | 966.3 |
2-Decenal, (Z)- | 2.4 b | ± | 5.4 | 17.4 ab | ± | 16.3 | 25.4 ab | ± | 6.1 | 34.8 a | ± | 14.7 | 32.2 a | ± | 22.5 | 0.015 | 1038.5 |
Nonanal (*) | 105.3 | ± | 77.0 | 26.9 | ± | 42.0 | 20.1 | ± | 13.4 | 30.5 | ± | 6.0 | 66.2 | ± | 57.6 | 0.050 | 1112.8 |
Decanal (*) | 0.5 | ± | 1.0 | 3.8 | ± | 6.0 | 1.2 | ± | 1.2 | 5.5 | ± | 2.4 | 3.7 | ± | 6.0 | 0.304 | 1217.1 |
Hexane, 3-methyl | 0.0 b | ± | 0.0 | 19.8 ab | ± | 15.4 | 65.5 a | ± | 51.6 | 31.1 ab | ± | 21.4 | 10.5 b | ± | 8.3 | 0.008 | -- |
Cyclohexane, methyl- | 0.0 b | ± | 0.0 | 25.0 ab | ± | 55.8 | 4.4 b | ± | 9.9 | 70.6 a | ± | 47.9 | 29.8 ab | ± | 29.3 | 0.039 | 699.8 |
Hexane, 2,4-dimethyl | 36.0 b | ± | 52.9 | 79.8 b | ± | 67.1 | 201.7 a | ± | 122.4 | 66.8 b | ± | 43.8 | 59.8 b | ± | 59.3 | 0.018 | 692.0 |
Pentane, 2,3,4-trimethyl- | 62.3 | ± | 85.3 | 53.9 | ± | 42.6 | 112.6 | ± | 71.1 | 58.9 | ± | 58.7 | 59.1 | ± | 43.4 | 0.562 | 677.0 |
Pentane, 2,3,3-trimethyl- | 62.3 | ± | 139.2 | 84.6 | ± | 66.6 | 166.1 | ± | 104.7 | 117.3 | ± | 76.0 | 67.1 | ± | 53.9 | 0.399 | 672.6 |
Hexane, 2,3-dimethyl- | 40.2 | ± | 86.1 | 57.4 | ± | 37.6 | 150.9 | ± | 92.4 | 74.5 | ± | 48.4 | 65.7 | ± | 54.1 | 0.130 | 665.1 |
Heptane, 2-methyl- | 203.3 | ± | 199.7 | 147.4 | ± | 109.2 | 533.8 | ± | 306.3 | 220.5 | ± | 135.7 | 282.3 | ± | 233.0 | 0.066 | 657.4 |
Heptane, 3-methyl- | 0.0 b | ± | 0.0 | 102.1 b | ± | 82.4 | 593.8 a | ± | 349.3 | 154.1 b | ± | 97.5 | 348.3 ab | ± | 304.2 | 0.002 | 648.5 |
Cyclohexane, 1,3-dimethyl-, cis- | 0.0 | ± | 0.0 | 97.9 | ± | 76.4 | 74.8 | ± | 167.3 | 146.7 | ± | 89.1 | 8.3 | ± | 18.5 | 0.097 | 645.1 |
Octane, 2,6-dimethyl | 50.5 | ± | 112.9 | 71.0 | ± | 58.7 | 152.9 | ± | 84.1 | 105.4 | ± | 70.7 | 64.5 | ± | 52.2 | 0.281 | 637.2 |
Cyclohexane, 1,2-dimethyl-, trans- | 0.0 | ± | 0.0 | 27.7 | ± | 21.2 | 41.2 | ± | 39.1 | 39.8 | ± | 25.1 | 24.7 | ± | 20.0 | 0.097 | 618.3 |
3-Ethylhexane | 0.0 b | ± | 0.0 | 18.2 b | ± | 15.2 | 72.4 a | ± | 44.4 | 30.3 ab | ± | 19.1 | 31.7 ab | ± | 27.2 | 0.004 | 707.9 |
Cyclohexane, 1,2-dimethyl-, cis- | 640.3 | ± | 1431.7 | 63.1 | ± | 122.7 | 16.4 | ± | 10.9 | 7.4 | ± | 4.5 | 3.7 | ± | 3.5 | 0.466 | 718.9 |
2-Methyloctane | 0.0 b | ± | 0.0 | 8.6 ab | ± | 5.9 | 21.9 a | ± | 15.1 | 9.3 ab | ± | 8.4 | 8.0 ab | ± | 7.8 | 0.016 | 766.2 |
2,5-Dimethylheptane | 1.2 b | ± | 2.7 | 13.6 ab | ± | 10.4 | 32.3 a | ± | 19.9 | 18.9 ab | ± | 12.7 | 12.1 ab | ± | 10.8 | 0.015 | 772.9 |
Octane, 2,2-dimethyl | 0.0 b | ± | 0.0 | 12.8 ab | ± | 11.1 | 28.0 a | ± | 17.0 | 18.4 ab | ± | 13.4 | 15.1 ab | ± | 14.5 | 0.035 | 778.8 |
1-Octene, 6-methyl- | 0.0 b | ± | 0.0 | 8.5 a | ± | 2.9 | 11.2 a | ± | 7.2 | 6.5 ab | ± | 3.8 | 0.0 b | ± | 0.0 | 0.000 | 788.8 |
Octane, 3,3-dimethyl- | 0.0 b | ± | 0.0 | 7.3 ab | ± | 5.6 | 14.7 a | ± | 8.7 | 9.6 ab | ± | 6.1 | 6.3 ab | ± | 6.0 | 0.016 | 795.2 |
1,3,5-Cycloheptatriene, 3,7,7-trimethyl- | 2.3 | ± | 5.2 | 17.1 | ± | 14.2 | 15.5 | ± | 1.8 | 10.5 | ± | 9.8 | 15.3 | ± | 15.7 | 0.218 | 973.4 |
2,2,4,6,6-Pentamethylheptane | 1572.1 ab | ± | 652.4 | 361.3 b | ± | 413.5 | 1170.2 ab | ± | 514.5 | 324.3 b | ± | 66.8 | 1933.9 a | ± | 1257.0 | 0.005 | 992.9 |
Dodecane | 1.4 b | ± | 3.1 | 5.2 ab | ± | 8.7 | 1.0 b | ± | 1.1 | 11.9 a | ± | 3.1 | 13.5 a | ± | 8.9 | 0.007 | 1210.2 |
Alcohols | |||||||||||||||||
Ethanol (*) | 0.0 | ± | 0.0 | 0.0 | ± | 0.0 | 0.0 | ± | 0.0 | 150.8 | ± | 94.9 | 174.3 | ± | 389.7 | 0.325 | -- |
1,3-Butanediol | 0.0 b | ± | 0.0 | 0.0 b | ± | 0.0 | 29.5 a | ± | 4.7 | 14.3 b | ± | 19.9 | 0.0 b | ± | 0.0 | 0.000 | -- |
1-Butanol, 3-methyl | 2.7 | ± | 5.9 | 12.7 | ± | 28.3 | 23.4 | ± | 52.3 | 28.5 | ± | 63.7 | 542.0 | ± | 716.7 | 0.063 | 687.6 |
3-Pentanol, 2,4-dimethyl | 0.0 b | ± | 0.0 | 51.4 ab | ± | 38.5 | 196.0 a | ± | 119.2 | 18.3 ab | ± | 40.8 | 130.8 ab | ± | 180.6 | 0.029 | 686.2 |
2,3-Butanediol | 74.2 | ± | 150.4 | 41.5 | ± | 20.7 | 87.6 | ± | 42.2 | 52.4 | ± | 33.6 | 91.7 | ± | 87.9 | 0.836 | 626.2 |
2-Isopropyl-5-methyl-1-hexanol | 0.0 b | ± | 0.0 | 15.5 ab | ± | 12.0 | 35.1 a | ± | 22.0 | 24.4 ab | ± | 15.3 | 13.6 ab | ± | 11.6 | 0.012 | 784.6 |
1-Decanol, 2-methyl- | 0.0 c | ± | 0.0 | 6.6 ab | ± | 6.1 | 11.8 a | ± | 2.0 | 8.1 a | ± | 4.8 | 6.0 ab | ± | 4.9 | 0.005 | 798.9 |
2-Nonen-1-ol | 0.0 | ± | 0.0 | 5.6 | ± | 5.1 | 9.3 | ± | 5.9 | 7.7 | ± | 6.3 | 5.1 | ± | 7.8 | 0.146 | 916.4 |
1-Octen-3-ol | 79.5 a | ± | 91.0 | 0.0 b | ± | 0.0 | 0.0 b | ± | 0.0 | 0.0 b | ± | 0.0 | 0.0 b | ± | 0.0 | 0.018 | 980.5 |
Sulfur compounds | |||||||||||||||||
Allyl methyl sulfide | 138.9 | ± | 236.6 | 385.6 | ± | 175.2 | 333.4 | ± | 220.9 | 348.4 | ± | 105.8 | 298.4 | ± | 235.2 | 0.368 | -- |
1-Propene, 3,3′-thiobis- | 1.0 b | ± | 2.2 | 27.9 ab | ± | 10.6 | 52.6 a | ± | 30.7 | 31.5 ab | ± | 21.7 | 22.9 ab | ± | 15.4 | 0.007 | 756.0 |
Disulfide, methyl 2-propenyl | 0.0 | ± | 0.0 | 4.5 | ± | 6.2 | 7.1 | ± | 6.6 | 4.8 | ± | 6.7 | 7.8 | ± | 7.6 | 0.310 | 800.6 |
Tetrahydrofuran, 2,2,4,4-tetramethyl- | 2.5 b | ± | 5.5 | 10.9 b | ± | 24.3 | 5.4 b | ± | 12.1 | 47.8 a | ± | 20.6 | 35.4 ab | ± | 22.1 | 0.002 | 970.7 |
Dihydro-4,4-dimethyl-2(3H)-furanone | 0.0 b | ± | 0.0 | 1.3 b | ± | 2.9 | 0.6 b | ± | 1.4 | 7.6 a | ± | 3.0 | 8.7 a | ± | 6.5 | 0.001 | 988.9 |
Diallyl disulfide | 2.6 | ± | 5.9 | 7.1 | ± | 5.3 | 7.6 | ± | 4.0 | 6.9 | ± | 3.1 | 6.3 | ± | 5.0 | 0.486 | 1087.2 |
Nitrogen compounds | |||||||||||||||||
2,6-Dimethylpyrazine | 4.0 | ± | 8.9 | 5.1 | ± | 7.1 | 0.0 | ± | 0.0 | 0.0 | ± | 0.0 | 0.0 | ± | 0.0 | 0.332 | 913.0 |
Pyrazine, 2-ethyl-6-methyl- | 1.4 | ± | 3.1 | 4.4 | ± | 7.9 | 1.0 | ± | 2.2 | 1.0 | ± | 2.1 | 0.0 | ± | 0.0 | 0.506 | 1001.5 |
Terpenes | |||||||||||||||||
3-Thujene | 1.7 b | ± | 3.8 | 17.0 a | ± | 5.8 | 18.2 a | ± | 6.3 | 14.2 a | ± | 5.4 | 12.9 a | ± | 9.3 | 0.005 | 928.4 |
1R-α-Pinene (*) | 1341.7 | ± | 760.5 | 581.7 | ± | 230.8 | 519.8 | ± | 161.5 | 411.7 | ± | 156.0 | 1036.8 | ± | 1332.1 | 0.216 | 934.0 |
Camphene | 57.1 | ± | 52.0 | 32.4 | ± | 13.9 | 30.4 | ± | 9.5 | 26.3 | ± | 9.1 | 58.1 | ± | 70.4 | 0.573 | 949.1 |
L-(-)-β-Pinene (*) | 1806.5 | ± | 1175.5 | 472.6 | ± | 308.1 | 555.6 | ± | 346.4 | 91.8 | ± | 205.3 | 1292.8 | ± | 2162.2 | 0.151 | 978.1 |
β-Myrcene | 12.9 b | ± | 28.9 | 143.9 a | ± | 60.2 | 145.7 a | ± | 43.7 | 154.0 a | ± | 67.6 | 121.7 a | ± | 88.5 | 0.009 | 995.9 |
α-Phellandrene | 1014.1 | ± | 591.0 | 242.2 | ± | 104.6 | 241.1 | ± | 75.2 | 233.6 | ± | 92.3 | 812.8 | ± | 1304.8 | 0.189 | 1006.5 |
α-terpinene (*) | 4792.9 | ± | 4427.7 | 1285.4 | ± | 841.7 | 1587.9 | ± | 987.0 | 0.0 | ± | 0.0 | 4282.0 | ± | 9574.9 | 0.463 | 1013.9 |
2-Carene | 10.3 | ± | 19.2 | 16.6 | ± | 6.4 | 19.7 | ± | 5.8 | 17.5 | ± | 7.6 | 16.7 | ± | 12.5 | 0.759 | 1021.1 |
β-Cymene | 124.9 | ± | 274.9 | 12.5 | ± | 8.0 | 17.0 | ± | 10.1 | 0.0 | ± | 0.0 | 0.0 | ± | 0.0 | 0.466 | 1027.7 |
o-Cymene | 498.8 | ± | 476.0 | 205.1 | ± | 84.2 | 197.1 | ± | 63.2 | 189.1 | ± | 88.4 | 514.9 | ± | 728.8 | 0.467 | 1030.0 |
D-Limonene (*) | 4330.0 | ± | 2638.9 | 1022.1 | ± | 416.3 | 1060.9 | ± | 312.8 | 892.9 | ± | 393.2 | 3307.5 | ± | 5124.8 | 0.153 | 1034.6 |
3-Carene (*) | 1.0 b | ± | 2.2 | 8.2 ab | ± | 4.4 | 12.1 a | ± | 3.6 | 8.7 ab | ± | 3.0 | 9.5 a | ± | 7.2 | 0.010 | 1066.3 |
p-Mentha-1,4(8)-diene | 275.6 | ± | 301.6 | 40.8 | ± | 15.8 | 46.9 | ± | 14.2 | 37.6 | ± | 17.0 | 122.9 | ± | 182.9 | 0.123 | 1093.0 |
β-Linalool (*) | 1.6 | ± | 3.6 | 8.1 | ± | 5.6 | 6.7 | ± | 1.1 | 7.5 | ± | 3.1 | 4.5 | ± | 3.3 | 0.065 | 1107.9 |
δ-Elemene | 13.0 | ± | 17.1 | 6.3 | ± | 2.3 | 6.6 | ± | 2.3 | 3.9 | ± | 2.0 | 211.7 | ± | 424.7 | 0.359 | 1351.8 |
Copaene | 0.7 b | ± | 1.6 | 8.5 a | ± | 3.5 | 8.5 a | ± | 2.5 | 6.8 ab | ± | 3.5 | 6.5 ab | ± | 5.2 | 0.013 | 1388.9 |
Caryophyllene | 235.8 | ± | 145.3 | 61.5 | ± | 23.5 | 62.8 | ± | 18.6 | 46.3 | ± | 29.4 | 181.7 | ± | 287.3 | 0.176 | 1440.7 |
ketones | |||||||||||||||||
2-Pentanone, 3-methyl- | 16.6 b | ± | 37.0 | 133.0 a | ± | 67.7 | 74.5 ab | ± | 30.2 | 81.6 ab | ± | 31.7 | 27.5 b | ± | 25.8 | 0.002 | -- |
2-Hexanone, 4-methyl- | 0.0 b | ± | 0.0 | 9.0 ab | ± | 7.6 | 4.8 b | ± | 2.8 | 17.4 a | ± | 10.5 | 0.0 b | ± | 0.0 | 0.001 | 792.5 |
Acids | |||||||||||||||||
Acetic acid (*) | 4.3 | ± | 9.7 | 13.7 | ± | 30.7 | 16.1 | ± | 25.1 | 21.8 | ± | 3.9 | 9.4 | ± | 12.4 | 0.669 | -- |
Others | |||||||||||||||||
2-Nitrohexane | 8.7 | ± | 19.5 | 57.0 | ± | 56.7 | 65.2 | ± | 11.5 | 68.8 | ± | 11.1 | 407.5 | ± | 817.6 | 0.444 | -- |
Isopropyl hydroperoxide | 15.9 b | ± | 35.5 | 100.1 a | ± | 47.5 | 0.0 b | ± | 0.0 | 0.0 b | ± | 0.0 | 0.0 b | ± | 0.0 | 0.000 | -- |
Hydroperoxide, hexyl | 72.4 | ± | 155.1 | 0.7 | ± | 1.6 | 0.0 | ± | 0.0 | 0.0 | ± | 0.0 | 6.7 | ± | 11.5 | 0.413 | 774.9 |
Oxime-, methoxy-phenyl-_ | 1342.2 | ± | 1148.8 | 0.0 | ± | 0.0 | 0.0 | ± | 0.0 | 0.0 | ± | 0.0 | 513.0 | ± | 1147.1 | 0.033 | 912.7 |
Heptane, 3-[(1,1-dimethylethoxy)methyl]- | 1.0 | ± | 2.2 | 3.8 | ± | 3.6 | 3.2 | ± | 1.9 | 3.4 | ± | 2.0 | 0.0 | ± | 0.0 | 0.057 | 1051.9 |
α,4-Dimethylstyrene | 0.0 b | ± | 0.0 | 1.4 ab | ± | 0.8 | 3.5 a | ± | 2.3 | 0.0 b | ± | 0.0 | 2.1 ab | ± | 3.0 | 0.022 | 1089.8 |
Capric ether | 0.3 b | ± | 0.7 | 2.6 ab | ± | 0.9 | 4.7 a | ± | 2.8 | 2.1 ab | ± | 0.5 | 3.8 a | ± | 2.9 | 0.015 | 1154.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petrón, M.J.; Martín-Mateos, M.J.; Sánchez-Ordóñez, M.; Godoy, B.; Ramírez-Bernabé, M.R. Antioxidant and Quality Effects of Red Grape Pomace in Barbecued Pork Burgers: Implications for PAH Formation. Antioxidants 2025, 14, 832. https://doi.org/10.3390/antiox14070832
Petrón MJ, Martín-Mateos MJ, Sánchez-Ordóñez M, Godoy B, Ramírez-Bernabé MR. Antioxidant and Quality Effects of Red Grape Pomace in Barbecued Pork Burgers: Implications for PAH Formation. Antioxidants. 2025; 14(7):832. https://doi.org/10.3390/antiox14070832
Chicago/Turabian StylePetrón, María Jesús, María Jesús Martín-Mateos, Miriam Sánchez-Ordóñez, Belén Godoy, and María Rosario Ramírez-Bernabé. 2025. "Antioxidant and Quality Effects of Red Grape Pomace in Barbecued Pork Burgers: Implications for PAH Formation" Antioxidants 14, no. 7: 832. https://doi.org/10.3390/antiox14070832
APA StylePetrón, M. J., Martín-Mateos, M. J., Sánchez-Ordóñez, M., Godoy, B., & Ramírez-Bernabé, M. R. (2025). Antioxidant and Quality Effects of Red Grape Pomace in Barbecued Pork Burgers: Implications for PAH Formation. Antioxidants, 14(7), 832. https://doi.org/10.3390/antiox14070832