Restoring Glutathione Homeostasis in Glycation-Related Eye Diseases: Mechanistic Insights and Therapeutic Interventions Beyond VEGF Inhibition
Abstract
1. Introduction
2. Cellular and Molecular Aspects of Glycation
2.1. Glycation Stress
2.2. AGEs
2.3. Glycation-Related Enzymes
3. Cellular and Molecular Aspects of GSH Homeostasis
3.1. GSH Biosynthesis and Degradation
3.2. GSH-Mediated Antioxidant Defense and Redox Regulation
4. GSH Homeostasis in Glycation-Related Eye Diseases
4.1. In Vitro Studies
4.2. Ex Vivo Studies
4.3. In Vivo Studies
4.4. Clinical Studies
5. Discussion
5.1. Mechanistic Insights into GSH Depletion and Redox Imbalance in Glycation-Related Eye Diseases
5.2. Therapeutic Strategies to Restore GSH Homeostasis Under Glycation Stress
5.2.1. GSH Supply and Synthesis
- Approach 1: Supplementation with GSH precursors
- Approach 2: Exogenous GSH administration
- Approach 3: Activation of the Nrf2 pathway
5.2.2. GSH Recycling
- Approach 4: Activation of GR
- Approach 5: Inhibition of AR
- Approach 6: Activation of the pentose phosphate pathway (PPP)
5.2.3. Mitigation of Glycation Stress
- Approach 7: Activation of GLO system
- Approach 8: Inhibition of AGE formation
5.2.4. Mitigation of Oxidative/Nitrosative Stress
- Approach 9: Direct scavenging of ROS/RNS
- Approach 10: Inhibition of ROS/RNS-generating enzymes
5.3. Targeting GSH Homeostasis vs. VEGF
5.4. Limitations of Current Studies and Future Directions
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
3-DG | 3-deoxyglucosone |
A2E | N-retinylidene-N-retinylethanolamine |
AGD | aminoguanidine |
AGE | advanced glycation end-product |
AGE-R | advanced glycation end-product receptor |
AKR | aldo-keto reductase |
ALDH | aldehyde dehydrogenase |
AMD | age-related macular degeneration |
AMPK | adenosine monophosphate-activated protein kinase |
AOPP | advanced oxidation protein product |
AR | aldose reductase |
ARE | antioxidant response element |
BSA | bovine serum albumin |
CAT | catalase |
CEL | Nε-(carboxyethyl)lysine |
ChaC | glutathione-specific γ-glutamylcyclotransferase |
CML | Nε-(carboxymethyl)lysine |
DCs | diabetic cataracts |
dG | deoxyguanosine |
DHA | dehydroascorbate |
DN | diabetic neuropathy |
DNA | deoxyribonucleic acid |
DR | diabetic retinopathy |
EMT | epithelial–mesenchymal transition |
EGCG | epigallocatechin gallate |
ER | endoplasmic reticulum |
FL | fructoselysine |
FR3K | fructosamine-3-kinase |
G6PDH | glucose-6-phosphate dehydrogenase |
GCL | γ-glutamylcysteine ligase |
GFAP | glial fibrillary acidic protein |
GGT | γ-glutamyl transpeptidase |
GGCT | γ-glutamylcyclotransferase |
GLO | glyoxalase |
GO | glyoxal |
GPx | glutathione peroxidase |
GR | glutathione reductase |
Grx | glutaredoxin |
GS | glutathione synthetase |
GSH | glutathione |
GSNOR | S-nitrosoglutathione reductase |
GSSG | glutathione disulfide |
GST | glutathione S-transferase |
H1 | hydroimidazolone-1 |
HO-1 | heme oxygenase-1 |
HCCG | S-[N-hydroxy-N-(4-chlorophenyl)carbamoyl]glutathione |
IL | interleukin |
JNK | c-Jun N-terminal kinase |
MAPK | mitogen-activated protein kinase |
MCP | monocyte chemoattractant protein |
MDA | malondialdehyde |
MG | methylglyoxal |
MMP | matrix metalloproteinase |
MPO | myeloperoxidase |
MRP | multidrug resistance-associated protein |
NC | nucleophilic compound |
NF-κB | nuclear factor kappa-light-chain-enhancer of activated B cells |
NOS | nitric oxide synthase |
NOX | NADPH oxidase |
Nrf2 | nuclear factor erythroid 2-related factor 2 |
OGA | O-linked N-acetylglucosaminidase |
OGT | O-linked N-acetylglucosamine transferase |
PARK | Parkinsonism-associated deglycase |
PEDF | pigment epithelium-derived factor |
PPAR-γ | peroxisome proliferator-activated receptor gamma |
PPP | pentose phosphate pathway |
PUFA | polyunsaturated fatty acid |
PUGNAc | O-(2-Acetamido-2-deoxy-D-glucopyranosylidene)amino-N-phenylcarbamate |
PYM | pyridoxamine |
Prx | peroxiredoxin |
RAGE | receptor for advanced glycation end-products |
RCS | reactive carbonyl species |
RNS | reactive nitrogen species |
ROS | reactive oxygen species |
RPE | retinal pigment epithelium |
SDH | sorbitol dehydrogenase |
siRNA | small interfering RNA |
SOD | superoxide dismutase |
STZ | streptozotocin |
TNF | tumor necrosis factor |
TTase | thioltransferase |
VEGF | vascular endothelial growth factor |
XO | xanthine oxidase |
References
- Lam, N.V. Adult Eye Conditions: Diabetic Retinopathy and Age-Related Macular Degeneration. FP Essent. 2022, 519, 24–28. [Google Scholar] [PubMed]
- Cvekl, A.; Vijg, J. Aging of the eye: Lessons from cataracts and age-related macular degeneration. Ageing Res. Rev. 2024, 99, 102407. [Google Scholar] [CrossRef] [PubMed]
- Castro-Castaneda, C.R.; Altamirano-Lamarque, F.; Ortega-Macias, A.G.; Santa Cruz-Pavlovich, F.J.; Gonzalez-De la Rosa, A.; Armendariz-Borunda, J.; Santos, A.; Navarro-Partida, J. Nutraceuticals: A Promising Therapeutic Approach in Ophthalmology. Nutrients 2022, 14, 5014. [Google Scholar] [CrossRef]
- Bejarano, E.; Taylor, A. Too sweet: Problems of protein glycation in the eye. Exp. Eye Res. 2019, 178, 255–262. [Google Scholar] [CrossRef]
- Yamagishi, S.; Maeda, S.; Matsui, T.; Ueda, S.; Fukami, K.; Okuda, S. Role of advanced glycation end products (AGEs) and oxidative stress in vascular complications in diabetes. Biochim. et Biophys. Acta 2012, 1820, 663–671. [Google Scholar] [CrossRef]
- Singh, V.P.; Bali, A.; Singh, N.; Jaggi, A.S. Advanced glycation end products and diabetic complications. Korean J. Physiol. Pharmacol. Off. J. Korean Physiol. Soc. Korean Soc. Pharmacol. 2014, 18, 1–14. [Google Scholar] [CrossRef]
- Twarda-Clapa, A.; Olczak, A.; Białkowska, A.M.; Koziołkiewicz, M. Advanced Glycation End-Products (AGEs): Formation, Chemistry, Classification, Receptors, and Diseases Related to AGEs. Cells 2022, 11, 1312. [Google Scholar] [CrossRef]
- Salazar, J.; Navarro, C.; Ortega, Á.; Nava, M.; Morillo, D.; Torres, W.; Hernández, M.; Cabrera, M.; Angarita, L.; Ortiz, R.; et al. Advanced Glycation End Products: New Clinical and Molecular Perspectives. Int. J. Environ. Res. Public Health 2021, 18, 7236. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.Y.; Ha, N.G.; Lee, W.J.; Boo, Y.C. Synthetic and Natural Agents Targeting Advanced Glycation End-Products for Skin Anti-Aging: A Comprehensive Review of Experimental and Clinical Studies. Antioxidants 2025, 14, 498. [Google Scholar] [CrossRef]
- Nagaraj, R.H.; Linetsky, M.; Stitt, A.W. The pathogenic role of Maillard reaction in the aging eye. Amino Acids 2012, 42, 1205–1220. [Google Scholar] [CrossRef]
- Giblin, F.J. Glutathione: A vital lens antioxidant. J. Ocul. Pharmacol. Ther. 2000, 16, 121–135. [Google Scholar] [CrossRef]
- He, Y.; Zhou, C.; Huang, M.; Tang, C.; Liu, X.; Yue, Y.; Diao, Q.; Zheng, Z.; Liu, D. Glyoxalase system: A systematic review of its biological activity, related-diseases, screening methods and small molecule regulators. Biomed. Pharmacother. 2020, 131, 110663. [Google Scholar] [CrossRef]
- Georgiou-Siafis, S.K.; Tsiftsoglou, A.S. The Key Role of GSH in Keeping the Redox Balance in Mammalian Cells: Mechanisms and Significance of GSH in Detoxification via Formation of Conjugates. Antioxidants 2023, 12, 1953. [Google Scholar] [CrossRef]
- Lim, J.C.; Jiang, L.; Lust, N.G.; Donaldson, P.J. Minimizing Oxidative Stress in the Lens: Alternative Measures for Elevating Glutathione in the Lens to Protect against Cataract. Antioxidants 2024, 13, 1193. [Google Scholar] [CrossRef]
- Kumar, R.S.; Anthrayose, C.V.; Iyer, K.V.; Vimala, B.; Shashidhar, S. Lipid peroxidation and diabetic retinopathy. Indian. J. Med. Sci. 2001, 55, 133–138. [Google Scholar] [PubMed]
- Pescosolido, N.; Barbato, A.; Giannotti, R.; Komaiha, C.; Lenarduzzi, F. Age-related changes in the kinetics of human lenses: Prevention of the cataract. Int. J. Ophthalmol. 2016, 9, 1506–1517. [Google Scholar] [CrossRef] [PubMed]
- Babel, R.A.; Dandekar, M.P. A Review on Cellular and Molecular Mechanisms Linked to the Development of Diabetes Complications. Curr. Diabetes Rev. 2021, 17, 457–473. [Google Scholar] [CrossRef] [PubMed]
- Fan, X.; Monnier, V.M.; Whitson, J. Lens glutathione homeostasis: Discrepancies and gaps in knowledge standing in the way of novel therapeutic approaches. Exp. Eye Res. 2017, 156, 103–111. [Google Scholar] [CrossRef]
- Lim, J.C.; Suzuki-Kerr, H.; Nguyen, T.X.; Lim, C.J.J.; Poulsen, R.C. Redox Homeostasis in Ocular Tissues: Circadian Regulation of Glutathione in the Lens? Antioxidants 2022, 11, 1516. [Google Scholar] [CrossRef]
- Fournet, M.; Bonté, F.; Desmoulière, A. Glycation Damage: A Possible Hub for Major Pathophysiological Disorders and Aging. Aging Dis. 2018, 9, 880–900. [Google Scholar] [CrossRef]
- Zhang, Q.; Ames, J.M.; Smith, R.D.; Baynes, J.W.; Metz, T.O. A perspective on the Maillard reaction and the analysis of protein glycation by mass spectrometry: Probing the pathogenesis of chronic disease. J. Proteome Res. 2009, 8, 754–769. [Google Scholar] [CrossRef] [PubMed]
- Nowotny, K.; Grune, T. Degradation of oxidized and glycoxidized collagen: Role of collagen cross-linking. Arch. Biochem. Biophys. 2014, 542, 56–64. [Google Scholar] [CrossRef]
- Kinoshita, S.; Mera, K.; Ichikawa, H.; Shimasaki, S.; Nagai, M.; Taga, Y.; Iijima, K.; Hattori, S.; Fujiwara, Y.; Shirakawa, J.I.; et al. N(ω)-(Carboxymethyl)arginine Is One of the Dominant Advanced Glycation End Products in Glycated Collagens and Mouse Tissues. Oxid. Med. Cell. Longev. 2019, 2019, 9073451. [Google Scholar] [CrossRef]
- Uceda, A.B.; Mariño, L.; Casasnovas, R.; Adrover, M. An overview on glycation: Molecular mechanisms, impact on proteins, pathogenesis, and inhibition. Biophys. Rev. 2024, 16, 189–218. [Google Scholar] [CrossRef]
- Crisan, M.; Taulescu, M.; Crisan, D.; Cosgarea, R.; Parvu, A.; Cãtoi, C.; Drugan, T. Expression of advanced glycation end-products on sun-exposed and non-exposed cutaneous sites during the ageing process in humans. PLoS ONE 2013, 8, e75003. [Google Scholar] [CrossRef] [PubMed]
- Isami, F.; West, B.J.; Nakajima, S.; Yamagishi, S.I. Association of advanced glycation end products, evaluated by skin autofluorescence, with lifestyle habits in a general Japanese population. J. Int. Med. Res. 2018, 46, 1043–1051. [Google Scholar] [CrossRef]
- van de Zande, S.C.; de Vries, J.K.; van den Akker-Scheek, I.; Zwerver, J.; Smit, A.J. A physically active lifestyle is related to a lower level of skin autofluorescence in a large population with chronic-disease (LifeLines cohort). J. Sport Health Sci. 2022, 11, 260–265. [Google Scholar] [CrossRef] [PubMed]
- Zgutka, K.; Tkacz, M.; Tomasiak, P.; Tarnowski, M. A Role for Advanced Glycation End Products in Molecular Ageing. Int. J. Mol. Sci. 2023, 24, 9881. [Google Scholar] [CrossRef]
- Perrone, A.; Giovino, A.; Benny, J.; Martinelli, F. Advanced Glycation End Products (AGEs): Biochemistry, Signaling, Analytical Methods, and Epigenetic Effects. Oxid. Med. Cell. Longev. 2020, 2020, 3818196. [Google Scholar] [CrossRef]
- Bellier, J.; Nokin, M.J.; Lardé, E.; Karoyan, P.; Peulen, O.; Castronovo, V.; Bellahcène, A. Methylglyoxal, a potent inducer of AGEs, connects between diabetes and cancer. Diabetes Res. Clin. Pract. 2019, 148, 200–211. [Google Scholar] [CrossRef]
- Ott, C.; Jacobs, K.; Haucke, E.; Navarrete Santos, A.; Grune, T.; Simm, A. Role of advanced glycation end products in cellular signaling. Redox Biol. 2014, 2, 411–429. [Google Scholar] [CrossRef] [PubMed]
- Simm, A.; Wagner, J.; Gursinsky, T.; Nass, N.; Friedrich, I.; Schinzel, R.; Czeslik, E.; Silber, R.E.; Scheubel, R.J. Advanced glycation endproducts: A biomarker for age as an outcome predictor after cardiac surgery? Exp. Gerontol. 2007, 42, 668–675. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, N.; Thornalley, P.J. Advanced glycation endproducts: What is their relevance to diabetic complications? Diabetes Obes. Metab. 2007, 9, 233–245. [Google Scholar] [CrossRef] [PubMed]
- Rabbani, N.; Thornalley, P.J. Advanced glycation end products in the pathogenesis of chronic kidney disease. Kidney Int. 2018, 93, 803–813. [Google Scholar] [CrossRef]
- Zhu, J.; Wang, Z.; Lv, C.; Li, M.; Wang, K.; Chen, Z. Advanced Glycation End Products and Health: A Systematic Review. Ann. Biomed. Eng. 2024, 52, 3145–3156. [Google Scholar] [CrossRef]
- Casselmann, C.; Reimann, A.; Friedrich, I.; Schubert, A.; Silber, R.E.; Simm, A. Age-dependent expression of advanced glycation end product receptor genes in the human heart. Gerontology 2004, 50, 127–134. [Google Scholar] [CrossRef]
- Lee, E.J.; Kim, J.Y.; Oh, S.H. Advanced glycation end products (AGEs) promote melanogenesis through receptor for AGEs. Sci. Rep. 2016, 6, 27848. [Google Scholar] [CrossRef]
- Serban, A.I.; Stanca, L.; Geicu, O.I.; Munteanu, M.C.; Dinischiotu, A. RAGE and TGF-β1 Cross-Talk Regulate Extracellular Matrix Turnover and Cytokine Synthesis in AGEs Exposed Fibroblast Cells. PLoS ONE 2016, 11, e0152376. [Google Scholar] [CrossRef]
- Takahashi, A.; Takabatake, Y.; Kimura, T.; Maejima, I.; Namba, T.; Yamamoto, T.; Matsuda, J.; Minami, S.; Kaimori, J.Y.; Matsui, I.; et al. Autophagy Inhibits the Accumulation of Advanced Glycation End Products by Promoting Lysosomal Biogenesis and Function in the Kidney Proximal Tubules. Diabetes 2017, 66, 1359–1372. [Google Scholar] [CrossRef]
- Lages, N.F.; Cordeiro, C.; Sousa Silva, M.; Ponces Freire, A.; Ferreira, A.E. Optimization of time-course experiments for kinetic model discrimination. PLoS ONE 2012, 7, e32749. [Google Scholar] [CrossRef]
- Shortall, K.; Djeghader, A.; Magner, E.; Soulimane, T. Insights into Aldehyde Dehydrogenase Enzymes: A Structural Perspective. Front. Mol. Biosci. 2021, 8, 659550. [Google Scholar] [CrossRef] [PubMed]
- Schumacher, D.; Morgenstern, J.; Oguchi, Y.; Volk, N.; Kopf, S.; Groener, J.B.; Nawroth, P.P.; Fleming, T.; Freichel, M. Compensatory mechanisms for methylglyoxal detoxification in experimental & clinical diabetes. Mol. Metab. 2018, 18, 143–152. [Google Scholar] [CrossRef]
- Singh, M.; Kapoor, A.; Bhatnagar, A. Physiological and Pathological Roles of Aldose Reductase. Metabolites 2021, 11, 655. [Google Scholar] [CrossRef] [PubMed]
- Amani, S.; Fatima, S. Glycation With Fructose: The Bitter Side of Nature’s Own Sweetener. Curr. Diabetes Rev. 2020, 16, 962–970. [Google Scholar] [CrossRef]
- Ahmad, S.; Ahmad, M.F.A.; Khan, S.; Alouffi, S.; Khan, M.; Prakash, C.; Khan, M.W.A.; Ansari, I.A. Exploring aldose reductase inhibitors as promising therapeutic targets for diabetes-linked disabilities. Int. J. Biol. Macromol. 2024, 280, 135761. [Google Scholar] [CrossRef] [PubMed]
- Van Schaftingen, E.; Collard, F.; Wiame, E.; Veiga-da-Cunha, M. Enzymatic repair of Amadori products. Amino Acids 2012, 42, 1143–1150. [Google Scholar] [CrossRef]
- Mencke, P.; Boussaad, I.; Romano, C.D.; Kitami, T.; Linster, C.L.; Krüger, R. The Role of DJ-1 in Cellular Metabolism and Pathophysiological Implications for Parkinson’s Disease. Cells 2021, 10, 347. [Google Scholar] [CrossRef]
- Advedissian, T.; Deshayes, F.; Poirier, F.; Viguier, M.; Richarme, G. The Parkinsonism-associated protein DJ-1/Park7 prevents glycation damage in human keratinocyte. Biochem. Biophys. Res. Commun. 2016, 473, 87–91. [Google Scholar] [CrossRef]
- Forman, H.J.; Zhang, H.; Rinna, A. Glutathione: Overview of its protective roles, measurement, and biosynthesis. Mol. Asp. Med. 2009, 30, 1–12. [Google Scholar] [CrossRef]
- Lin, H.; Wang, L.; Jiang, X.; Wang, J. Glutathione dynamics in subcellular compartments and implications for drug development. Curr. Opin. Chem. Biol. 2024, 81, 102505. [Google Scholar] [CrossRef]
- Jyotsana, N.; Ta, K.T.; DelGiorno, K.E. The Role of Cystine/Glutamate Antiporter SLC7A11/xCT in the Pathophysiology of Cancer. Front. Oncol. 2022, 12, 858462. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.C. Glutathione synthesis. Biochim. Et Biophys. Acta-Gen. Subj. 2013, 1830, 3143–3153. [Google Scholar] [CrossRef]
- Mitrić, A.; Castellano, I. Targeting gamma-glutamyl transpeptidase: A pleiotropic enzyme involved in glutathione metabolism and in the control of redox homeostasis. Free Radic. Biol. Med. 2023, 208, 672–683. [Google Scholar] [CrossRef] [PubMed]
- He, Z.; Sun, X.; Wang, S.; Bai, D.; Zhao, X.; Han, Y.; Hao, P.; Liu, X.S. Ggct (γ-glutamyl cyclotransferase) plays an important role in erythrocyte antioxidant defense and red blood cell survival. Br. J. Haematol. 2021, 195, 267–275. [Google Scholar] [CrossRef]
- Kihira, Y.; Fujimura, Y.; Tomita, S.; Sato, E. Signaling pathways upregulating glutathione-specific γ-glutamylcyclotransferase 1 by 3-(5′hydroxymethyl-2′-furyl)-1-benzylindazole. Mol. Med. Rep. 2023, 28, 216. [Google Scholar] [CrossRef]
- Bachhawat, A.K.; Yadav, S. The glutathione cycle: Glutathione metabolism beyond the γ-glutamyl cycle. IUBMB Life 2018, 70, 585–592. [Google Scholar] [CrossRef]
- Flohé, L.; Toppo, S.; Orian, L. The glutathione peroxidase family: Discoveries and mechanism. Free Radic. Biol. Med. 2022, 187, 113–122. [Google Scholar] [CrossRef] [PubMed]
- Pannala, V.R.; Bazil, J.N.; Camara, A.K.S.; Dash, R.K. A biophysically based mathematical model for the catalytic mechanism of glutathione reductase. Free Radic. Biol. Med. 2013, 65, 1385–1397. [Google Scholar] [CrossRef]
- Xiao, Z.; La Fontaine, S.; Bush, A.I.; Wedd, A.G. Molecular Mechanisms of Glutaredoxin Enzymes: Versatile Hubs for Thiol–Disulfide Exchange between Protein Thiols and Glutathione. J. Mol. Biol. 2019, 431, 158–177. [Google Scholar] [CrossRef]
- Gallogly, M.M.; Mieyal, J.J. Mechanisms of reversible protein glutathionylation in redox signaling and oxidative stress. Curr. Opin. Pharmacol. 2007, 7, 381–391. [Google Scholar] [CrossRef]
- Musaogullari, A.; Chai, Y.C. Redox Regulation by Protein S-Glutathionylation: From Molecular Mechanisms to Implications in Health and Disease. Int. J. Mol. Sci. 2020, 21, 8113. [Google Scholar] [CrossRef] [PubMed]
- Aloke, C.; Onisuru, O.O.; Achilonu, I. Glutathione S-transferase: A versatile and dynamic enzyme. Biochem. Biophys. Res. Commun. 2024, 734, 150774. [Google Scholar] [CrossRef]
- Wang, J.-Q.; Yang, Y.; Cai, C.-Y.; Teng, Q.-X.; Cui, Q.; Lin, J.; Assaraf, Y.G.; Chen, Z.-S. Multidrug resistance proteins (MRPs): Structure, function and the overcoming of cancer multidrug resistance. Drug Resist. Updates 2021, 54, 100743. [Google Scholar] [CrossRef]
- Jones, D.P. Disruption of mitochondrial redox circuitry in oxidative stress. Chem.-Biol. Interact. 2006, 163, 38–53. [Google Scholar] [CrossRef]
- Fridovich, I. Superoxide radical and superoxide dismutases. Annu. Rev. Biochem. 1995, 64, 97–112. [Google Scholar] [CrossRef] [PubMed]
- Perkins, A.; Nelson, K.J.; Parsonage, D.; Poole, L.B.; Karplus, P.A. Peroxiredoxins: Guardians against oxidative stress and modulators of peroxide signaling. Trends Biochem. Sci. 2015, 40, 435–445. [Google Scholar] [CrossRef] [PubMed]
- Park, J.B.; Levine, M. Purification, cloning and expression of dehydroascorbic acid-reducing activity from human neutrophils: Identification as glutaredoxin. Biochem. J. 1996, 315 Pt 3, 931–938. [Google Scholar] [CrossRef]
- Zhitkovich, A. Ascorbate: Antioxidant and biochemical activities and their importance for in vitro models. Arch. Toxicol. 2021, 95, 3623–3631. [Google Scholar] [CrossRef]
- Boo, Y.C. Ascorbic Acid (Vitamin C) as a Cosmeceutical to Increase Dermal Collagen for Skin Antiaging Purposes: Emerging Combination Therapies. Antioxidants 2022, 11, 1663. [Google Scholar] [CrossRef]
- Panday, S.; Talreja, R.; Kavdia, M. The role of glutathione and glutathione peroxidase in regulating cellular level of reactive oxygen and nitrogen species. Microvasc. Res. 2020, 131, 104010. [Google Scholar] [CrossRef]
- Barnett, S.D.; Buxton, I.L.O. The role of S-nitrosoglutathione reductase (GSNOR) in human disease and therapy. Crit. Rev. Biochem. Mol. Biol. 2017, 52, 340–354. [Google Scholar] [CrossRef] [PubMed]
- Paget, C.; Lecomte, M.; Ruggiero, D.; Wiernsperger, N.; Lagarde, M. Modification of enzymatic antioxidants in retinal microvascular cells by glucose or advanced glycation end products. Free Radic. Biol. Med. 1998, 25, 121–129. [Google Scholar] [CrossRef] [PubMed]
- Lehman, T.D.; Ortwerth, B.J. Inhibitors of advanced glycation end product-associated protein cross-linking. Biochim. Et Biophys. Acta 2001, 1535, 110–119. [Google Scholar] [CrossRef] [PubMed]
- Shin, A.H.; Oh, C.J.; Park, J.W. Glycation-induced inactivation of antioxidant enzymes and modulation of cellular redox status in lens cells. Arch. Pharm. Res. 2006, 29, 577–581. [Google Scholar] [CrossRef]
- Fan, X.; Monnier, V.M. Inhibition of crystallin ascorbylation by nucleophilic compounds in the hSVCT2 mouse model of lenticular aging. Investig. Ophthalmol. Vis. Sci. 2008, 49, 4945–4952. [Google Scholar] [CrossRef]
- Sheikpranbabu, S.; Haribalaganesh, R.; Gurunathan, S. Pigment epithelium-derived factor inhibits advanced glycation end-products-induced cytotoxicity in retinal pericytes. Diabetes Metab. 2011, 37, 505–511. [Google Scholar] [CrossRef]
- Papastavrou, N.; Chatzopoulou, M.; Pegklidou, K.; Nicolaou, I. 1-Hydroxypyrazole as a bioisostere of the acetic acid moiety in a series of aldose reductase inhibitors. Bioorg. Med. Chem. 2013, 21, 4951–4957. [Google Scholar] [CrossRef]
- Yang, J.; Cai, L.; Zhang, S.; Zhu, X.; Zhou, P.; Lu, Y. Silica-based cerium (III) chloride nanoparticles prevent the fructose-induced glycation of alpha-crystallin and H2O2-induced oxidative stress in human lens epithelial cells. Arch. Pharm. Res. 2014, 37, 404–411. [Google Scholar] [CrossRef]
- Liu, G.D.; Xu, C.; Feng, L.; Wang, F. The augmentation of O-GlcNAcylation reduces glyoxal-induced cell injury by attenuating oxidative stress in human retinal microvascular endothelial cells. Int. J. Mol. Med. 2015, 36, 1019–1027. [Google Scholar] [CrossRef]
- Sampath, C.; Zhu, Y.; Sang, S.; Ahmedna, M. Bioactive compounds isolated from apple, tea, and ginger protect against dicarbonyl induced stress in cultured human retinal epithelial cells. Phytomedicine 2016, 23, 200–213. [Google Scholar] [CrossRef]
- Fu, D.; Yu, J.Y.; Connell, A.R.; Yang, S.; Hookham, M.B.; McLeese, R.; Lyons, T.J. Beneficial Effects of Berberine on Oxidized LDL-Induced Cytotoxicity to Human Retinal Muller Cells. Investig. Ophthalmol. Vis. Sci. 2016, 57, 3369–3379. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Kim, H.J.; Sparrow, J.R. Quercetin and cyanidin-3-glucoside protect against photooxidation and photodegradation of A2E in retinal pigment epithelial cells. Exp. Eye Res. 2017, 160, 45–55. [Google Scholar] [CrossRef] [PubMed]
- Mantha, N.; Burra, S.; Rajagopal, K.; Sreedhara, A. Protein Stability and Photostability under In Vitro Vitreal Conditions—Implications for Long Acting Delivery of Protein Therapeutics for Ocular Disease. Pharm. Res. 2020, 37, 85. [Google Scholar] [CrossRef] [PubMed]
- Jeon, G.Y.; Nam, M.H.; Lee, K.W. Inhibitory effect of caffeic acid on advanced glycation end product-induced renal fibrosis in vitro: A potential therapeutic target. J. Food Sci. 2021, 86, 579–586. [Google Scholar] [CrossRef]
- Liu, Q.; Wang, X.; Yan, H. Effect of thioltransferase on oxidative stress induced by high glucose and advanced glycation end products in human lens epithelial cells. Int. J. Ophthalmol. 2021, 14, 965–972. [Google Scholar] [CrossRef]
- Abu-Kheit, R.; Kotev-Emeth, S.; Hiram-Bab, S.; Gabet, Y.; Savion, N. S-allylmercapto-N-acetylcysteine protects bone cells from oxidation and improves femur microarchitecture in healthy and diabetic mice. Exp. Biol. Med. 2022, 247, 1489–1500. [Google Scholar] [CrossRef]
- Ho, K.L.; Yong, P.H.; Wang, C.W.; Lim, S.H.; Kuppusamy, U.R.; Arumugam, B.; Ngo, C.T.; Ng, Z.X. In vitro anti-inflammatory activity and molecular docking of Peperomia pellucida (L.) Kunth extract via the NF-kappaB and PPAR-gamma signalling in human retinal pigment epithelial cells. Bioorg. Chem. 2024, 153, 107969. [Google Scholar] [CrossRef]
- Zhu, S.; Zhang, M.; Qu, Z.; Xu, S.; Peng, J.; Jiang, F. Moscatilin alleviates oxidative stress and inflammatory response of Muller cells in diabetic retinopathy through suppressing the p38 mitogen-activated protein kinase/c-Jun N-terminal kinase and nuclear factor kappa-B signaling pathways. J. Cell Commun. Signal. 2025, 19, e12059. [Google Scholar] [CrossRef]
- Bernardoni, B.L.; D’Agostino, I.; Scianò, F.; La Motta, C. The challenging inhibition of Aldose Reductase for the treatment of diabetic complications: A 2019-2023 update of the patent literature. Expert. Opin. Ther. Pat. 2024, 34, 1085–1103. [Google Scholar] [CrossRef]
- Shamsi, F.A.; Sharkey, E.; Creighton, D.; Nagaraj, R.H. Maillard reactions in lens proteins: Methylglyoxal-mediated modifications in the rat lens. Exp. Eye Res. 2000, 70, 369–380. [Google Scholar] [CrossRef]
- Padival, S.; Nagaraj, R.H. Pyridoxamine inhibits maillard reactions in diabetic rat lenses. Ophthalmic Res. 2006, 38, 294–302. [Google Scholar] [CrossRef] [PubMed]
- Abdelkader, H.; Longman, M.; Alany, R.G.; Pierscionek, B. On the Anticataractogenic Effects of L-Carnosine: Is It Best Described as an Antioxidant, Metal-Chelating Agent or Glycation Inhibitor? Oxid. Med. Cell. Longev. 2016, 2016, 3240261. [Google Scholar] [CrossRef]
- Alghamdi, A.H.S.; Mohamed, H.; Sledge, S.M.; Borchman, D. Absorbance and Light Scattering of Lenses Organ Cultured with Glucose. Curr. Eye Res. 2018, 43, 1233–1238. [Google Scholar] [CrossRef] [PubMed]
- Nandi, S.K.; Rankenberg, J.; Rakete, S.; Nahomi, R.B.; Glomb, M.A.; Linetsky, M.D.; Nagaraj, R.H. Glycation-mediated protein crosslinking and stiffening in mouse lenses are inhibited by carboxitin in vitro. Glycoconj. J. 2021, 38, 347–359. [Google Scholar] [CrossRef] [PubMed]
- Birlouez-Aragon, I.; Alloussi, S.; Morawiec, M.; Fevrier, C. The effects of 5% and 25% galactose diets on lens polyols, glutathione and protein glycation in male and female pigs. Curr. Eye Res. 1989, 8, 449–457. [Google Scholar] [CrossRef]
- Nagaraj, R.H.; Prabhakaram, M.; Ortwerth, B.J.; Monnier, V.M. Suppression of pentosidine formation in galactosemic rat lens by an inhibitor of aldose reductase. Diabetes 1994, 43, 580–586. [Google Scholar] [CrossRef]
- Taylor, A.; Lipman, R.D.; Jahngen-Hodge, J.; Palmer, V.; Smith, D.; Padhye, N.; Dallal, G.E.; Cyr, D.E.; Laxman, E.; Shepard, D.; et al. Dietary calorie restriction in the Emory mouse: Effects on lifespan, eye lens cataract prevalence and progression, levels of ascorbate, glutathione, glucose, and glycohemoglobin, tail collagen breaktime, DNA and RNA oxidation, skin integrity, fecundity, and cancer. Mech. Ageing Dev. 1995, 79, 33–57. [Google Scholar] [CrossRef]
- Sailaja Devi, M.M.; Suresh, Y.; Das, U.N. Preservation of the antioxidant status in chemically-induced diabetes mellitus by melatonin. J. Pineal Res. 2000, 29, 108–115. [Google Scholar] [CrossRef]
- Suryanarayana, P.; Krishnaswamy, K.; Reddy, G.B. Effect of curcumin on galactose-induced cataractogenesis in rats. Mol. Vis. 2003, 9, 223–230. [Google Scholar]
- Yan, H.; Guo, Y.; Zhang, J.; Ding, Z.; Ha, W.; Harding, J.J. Effect of carnosine, aminoguanidine, and aspirin drops on the prevention of cataracts in diabetic rats. Mol. Vis. 2008, 14, 2282–2291. [Google Scholar]
- Suresha, B.S.; Sattur, A.P.; Srinivasan, K. Beneficial influence of fungal metabolite nigerloxin on eye lens abnormalities in experimental diabetes. Can. J. Physiol. Pharmacol. 2012, 90, 387–394. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Cui, X.; Wang, J.; Yang, J.; Sun, X.; Li, X.; Zhu, Q.; Li, W. Rhizome of Anemarrhena asphodeloides counteracts diabetic ophthalmopathy progression in streptozotocin-induced diabetic rats. Phytother. Res. 2013, 27, 1243–1250. [Google Scholar] [CrossRef]
- Balakumar, M.; Saravanan, N.; Prabhu, D.; Regin, B.; Reddy, G.B.; Mohan, V.; Rema, M.; Balasubramanyam, M. Benefits of early glycemic control by insulin on sensory neuropathy and cataract in diabetic rats. Indian J. Exp. Biol. 2013, 51, 56–64. [Google Scholar]
- Suresha, B.S.; Srinivasan, K. Antioxidant potential of fungal metabolite nigerloxin during eye lens abnormalities in galactose-fed rats. Curr. Eye Res. 2013, 38, 1064–1071. [Google Scholar] [CrossRef] [PubMed]
- Sai Varsha, M.K.; Raman, T.; Manikandan, R. Inhibition of diabetic-cataract by vitamin K1 involves modulation of hyperglycemia-induced alterations to lens calcium homeostasis. Exp. Eye Res. 2014, 128, 73–82. [Google Scholar] [CrossRef]
- Yang, J.; Gong, X.; Fang, L.; Fan, Q.; Cai, L.; Qiu, X.; Zhang, B.; Chang, J.; Lu, Y. Potential of CeCl3@mSiO2 nanoparticles in alleviating diabetic cataract development and progression. Nanomedicine 2017, 13, 1147–1155. [Google Scholar] [CrossRef] [PubMed]
- Lei, X.; He, J.; Ren, C.; Zhou, Y.; Chen, X.; Dou, J. Protective effects of the Chinese herbal medicine prescription Zhujing pill on retina of streptozotocin-induced diabetic rats. Biomed. Pharmacother. 2018, 98, 643–650. [Google Scholar] [CrossRef]
- Demirbolat, I.; Ekinci, C.; Nuhoglu, F.; Kartal, M.; Yildiz, P.; Gecer, M.O. Effects of Orally Consumed Rosa damascena Mill. Hydrosol on Hematology, Clinical Chemistry, Lens Enzymatic Activity, and Lens Pathology in Streptozotocin-Induced Diabetic Rats. Molecules 2019, 24, 4069. [Google Scholar] [CrossRef]
- Yang, M.; Chen, Y.; Zhao, T.; Wang, Z. Effect of astaxanthin on metabolic cataract in rats with type 1 diabetes mellitus. Exp. Mol. Pathol. 2020, 113, 104372. [Google Scholar] [CrossRef]
- Wojnar, W.; Zych, M.; Borymski, S.; Kaczmarczyk-Sedlak, I. Chrysin Reduces Oxidative Stress but Does Not Affect Polyol Pathway in the Lenses of Type 1 Diabetic Rats. Antioxidants 2020, 9, 160. [Google Scholar] [CrossRef]
- Zych, M.; Wojnar, W.; Kielanowska, M.; Folwarczna, J.; Kaczmarczyk-Sedlak, I. Effect of Berberine on Glycation, Aldose Reductase Activity, and Oxidative Stress in the Lenses of Streptozotocin-Induced Diabetic Rats In Vivo-A Preliminary Study. Int. J. Mol. Sci. 2020, 21, 4278. [Google Scholar] [CrossRef] [PubMed]
- Jiang, B.; Geng, Q.; Li, T.; Mohammad Firdous, S.; Zhou, X. Morin attenuates STZ-induced diabetic retinopathy in experimental animals. Saudi J. Biol. Sci. 2020, 27, 2139–2142. [Google Scholar] [CrossRef]
- Reihanifar, T.; Sahin, M.; Stefek, M.; Ceylan, A.F.; Karasu, C. Cemtirestat, an aldose reductase inhibitor and antioxidant compound, induces ocular defense against oxidative and inflammatory stress in rat models for glycotoxicity. Cell Biochem. Funct. 2023, 41, 622–632. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, M.U.; Brinkmann Frye, E.; Degenhardt, T.P.; Thorpe, S.R.; Baynes, J.W. N-epsilon-(carboxyethyl)lysine, a product of the chemical modification of proteins by methylglyoxal, increases with age in human lens proteins. Biochem. J. 1997, 324 Pt 2, 565–570. [Google Scholar] [CrossRef]
- Ramakrishnan, S.; Rajesh, M.; Sulochana, K.N. Eales’ disease: Oxidant stress and weak antioxidant defence. Indian J. Ophthalmol. 2007, 55, 95–102. [Google Scholar] [CrossRef] [PubMed]
- Hashim, Z.; Zarina, S. Osmotic stress induced oxidative damage: Possible mechanism of cataract formation in diabetes. J. Diabetes Complicat. 2012, 26, 275–279. [Google Scholar] [CrossRef]
- Babizhayev, M.A.; Strokov, I.A.; Nosikov, V.V.; Savel’yeva, E.L.; Sitnikov, V.F.; Yegorov, Y.E.; Lankin, V.Z. The Role of Oxidative Stress in Diabetic Neuropathy: Generation of Free Radical Species in the Glycation Reaction and Gene Polymorphisms Encoding Antioxidant Enzymes to Genetic Susceptibility to Diabetic Neuropathy in Population of Type I Diabetic Patients. Cell Biochem. Biophys. 2015, 71, 1425–1443. [Google Scholar] [CrossRef]
- Gehl, Z.; Bakondi, E.; Resch, M.D.; Hegedus, C.; Kovacs, K.; Lakatos, P.; Szabo, A.; Nagy, Z.; Virag, L. Diabetes-induced oxidative stress in the vitreous humor. Redox Biol. 2016, 9, 100–103. [Google Scholar] [CrossRef]
- Mynampati, B.K.; Ghosh, S.; Muthukumarappa, T.; Ram, J. Evaluation of antioxidants and argpyrimidine in normal and cataractous lenses in north Indian population. Int. J. Ophthalmol. 2017, 10, 1094–1100. [Google Scholar] [CrossRef]
- Ruamviboonsuk, V.; Grzybowski, A. The Roles of Vitamins in Diabetic Retinopathy: A Narrative Review. J. Clin. Med. 2022, 11, 6490. [Google Scholar] [CrossRef]
- Bohm, E.W.; Buonfiglio, F.; Voigt, A.M.; Bachmann, P.; Safi, T.; Pfeiffer, N.; Gericke, A. Oxidative stress in the eye and its role in the pathophysiology of ocular diseases. Redox Biol. 2023, 68, 102967. [Google Scholar] [CrossRef] [PubMed]
- Nita, M.; Grzybowski, A. The Role of the Reactive Oxygen Species and Oxidative Stress in the Pathomechanism of the Age-Related Ocular Diseases and Other Pathologies of the Anterior and Posterior Eye Segments in Adults. Oxidat. Med. Cell. Longev. 2016, 2016, 3164734. [Google Scholar] [CrossRef]
- Kumar, P.A.; Kumar, M.S.; Reddy, G.B. Effect of glycation on alpha-crystallin structure and chaperone-like function. Biochem. J. 2007, 408, 251–258. [Google Scholar] [CrossRef]
- Kubo, E.; Urakami, T.; Fatma, N.; Akagi, Y.; Singh, D.P. Polyol pathway-dependent osmotic and oxidative stresses in aldose reductase-mediated apoptosis in human lens epithelial cells: Role of AOP2. Biochem. Biophys. Res. Commun. 2004, 314, 1050–1056. [Google Scholar] [CrossRef] [PubMed]
- Kushwah, N.; Bora, K.; Maurya, M.; Pavlovich, M.C.; Chen, J. Oxidative Stress and Antioxidants in Age-Related Macular Degeneration. Antioxidants 2023, 12, 1379. [Google Scholar] [CrossRef]
- Nowak, J.Z. Oxidative stress, polyunsaturated fatty acids-derived oxidation products and bisretinoids as potential inducers of CNS diseases: Focus on age-related macular degeneration. Pharmacol. Rep. 2013, 65, 288–304. [Google Scholar] [CrossRef]
- Callan, A.; Heckman, J.; Tah, G.; Lopez, S.; Valdez, L.; Tsin, A. VEGF in Diabetic Retinopathy and Age-Related Macular Degeneration. Int. J. Mol. Sci. 2025, 26, 4992. [Google Scholar] [CrossRef] [PubMed]
- Gáll, T.; Pethő, D.; Erdélyi, K.; Egri, V.; Balla, J.G.; Nagy, A.; Nagy, A.; Póliska, S.; Gram, M.; Gábriel, R.; et al. Heme: A link between hemorrhage and retinopathy of prematurity progression. Redox Biol. 2024, 76, 103316. [Google Scholar] [CrossRef]
- Yamada, K.H. A novel approach in preventing vascular leakage and angiogenesis in wet age-related macular degeneration. Neural Regen. Res. 2022, 17, 1751–1752. [Google Scholar] [CrossRef]
- Kang, Q.; Yang, C. Oxidative stress and diabetic retinopathy: Molecular mechanisms, pathogenetic role and therapeutic implications. Redox Biol. 2020, 37, 101799. [Google Scholar] [CrossRef]
- Clark, S.J.; Bishop, P.N. The eye as a complement dysregulation hotspot. Semin. Immunopathol. 2018, 40, 65–74. [Google Scholar] [CrossRef] [PubMed]
- Marchesi, N.; Capierri, M.; Pascale, A.; Barbieri, A. Different Therapeutic Approaches for Dry and Wet AMD. Int. J. Mol. Sci. 2024, 25, 13053. [Google Scholar] [CrossRef]
- Sinha, R.; Sinha, I.; Calcagnotto, A.; Trushin, N.; Haley, J.S.; Schell, T.D.; Richie, J.P., Jr. Oral supplementation with liposomal glutathione elevates body stores of glutathione and markers of immune function. Eur. J. Clin. Nutr. 2018, 72, 105–111. [Google Scholar] [CrossRef]
- Li, F.; Cui, L.; Yu, D.; Hao, H.; Liu, Y.; Zhao, X.; Pang, Y.; Zhu, H.; Du, W. Exogenous glutathione improves intracellular glutathione synthesis via the γ-glutamyl cycle in bovine zygotes and cleavage embryos. J. Cell. Physiol. 2019, 234, 7384–7394. [Google Scholar] [CrossRef]
- Tang, B.L. Neuroprotection by glucose-6-phosphate dehydrogenase and the pentose phosphate pathway. J. Cell. Biochem. 2019, 120, 14285–14295. [Google Scholar] [CrossRef] [PubMed]
- Ge, T.; Yang, J.; Zhou, S.; Wang, Y.; Li, Y.; Tong, X. The Role of the Pentose Phosphate Pathway in Diabetes and Cancer. Front. Endocrinol. 2020, 11, 365. [Google Scholar] [CrossRef]
- Fuloria, S.; Subramaniyan, V.; Karupiah, S.; Kumari, U.; Sathasivam, K.; Meenakshi, D.U.; Wu, Y.S.; Guad, R.M.; Udupa, K.; Fuloria, N.K. A Comprehensive Review on Source, Types, Effects, Nanotechnology, Detection, and Therapeutic Management of Reactive Carbonyl Species Associated with Various Chronic Diseases. Antioxidants 2020, 9, 1075. [Google Scholar] [CrossRef]
- Davies, S.S.; Zhang, L.S. Reactive Carbonyl Species Scavengers-Novel Therapeutic Approaches for Chronic Diseases. Curr. Pharmacol. Rep. 2017, 3, 51–67. [Google Scholar] [CrossRef] [PubMed]
- Newsholme, P.; Cruzat, V.F.; Keane, K.N.; Carlessi, R.; de Bittencourt, P.I.H., Jr. Molecular mechanisms of ROS production and oxidative stress in diabetes. Biochem. J. 2016, 473, 4527–4550. [Google Scholar] [CrossRef]
- Chen, S.; Chen, H.; Du, Q.; Shen, J. Targeting Myeloperoxidase (MPO) Mediated Oxidative Stress and Inflammation for Reducing Brain Ischemia Injury: Potential Application of Natural Compounds. Front. Physiol. 2020, 11, 433. [Google Scholar] [CrossRef]
- Tewari, D.; Sah, A.N.; Bawari, S.; Nabavi, S.F.; Dehpour, A.R.; Shirooie, S.; Braidy, N.; Fiebich, B.L.; Vacca, R.A.; Nabavi, S.M. Role of Nitric Oxide in Neurodegeneration: Function, Regulation, and Inhibition. Curr. Neuropharmacol. 2021, 19, 114–126. [Google Scholar] [CrossRef] [PubMed]
- Bortolotti, M.; Polito, L.; Battelli, M.G.; Bolognesi, A. Xanthine oxidoreductase: One enzyme for multiple physiological tasks. Redox Biol. 2021, 41, 101882. [Google Scholar] [CrossRef] [PubMed]
- Cipriano, A.; Viviano, M.; Feoli, A.; Milite, C.; Sarno, G.; Castellano, S.; Sbardella, G. NADPH Oxidases: From Molecular Mechanisms to Current Inhibitors. J. Med. Chem. 2023, 66, 11632–11655. [Google Scholar] [CrossRef]
- González, P.; Lozano, P.; Ros, G.; Solano, F. Hyperglycemia and Oxidative Stress: An Integral, Updated and Critical Overview of Their Metabolic Interconnections. Int. J. Mol. Sci. 2023, 24, 9352. [Google Scholar] [CrossRef]
- Sies, H.; Berndt, C.; Jones, D.P. Oxidative Stress. Annu. Rev. Biochem. 2017, 86, 715–748. [Google Scholar] [CrossRef]
- Lushchak, V.I. Glutathione homeostasis and functions: Potential targets for medical interventions. J. Amino Acids 2012, 2012, 736837. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Liu, W.Q.; Broussy, S.; Han, B.; Fang, H. Recent advances of anti-angiogenic inhibitors targeting VEGF/VEGFR axis. Front. Pharmacol. 2023, 14, 1307860. [Google Scholar] [CrossRef]
- Heloterä, H.; Kaarniranta, K. A Linkage between Angiogenesis and Inflammation in Neovascular Age-Related Macular Degeneration. Cells 2022, 11, 3453. [Google Scholar] [CrossRef]
Precursor Substrate | Molecular Target Sites | |||||
---|---|---|---|---|---|---|
Lysine Residues | Arginine Residues | Cysteine Residues | Collagen | Histone Proteins/DNA | Phospholipids/PUFA | |
Glucose | CML, CEL | Glucosepane | Histone glycation (CML) | Lipid peroxidation–AGEs | ||
Fructose | FL, CML | Crosslinks | Nucleosomal AGE adducts | |||
Galactose | CML, CEL | Pentosidin, Argpyrimidine | Galactose crosslinks | Nucleosomal AGEs | ||
MG | CEL, Argpyrimidine | MG-H1, Argpyrimidine | MG–cysteine | MG crosslinks | MG-dG | MG–phospholipid adducts |
GO | CML | GO-H1 | GO–thioesters | GO–collagen | GO-dG | GO–lipid adducts |
3-DG | 3-DG-CML | 3-DG-H1 | Crosslinks | 3-DG–DNA adduct | ||
Glyceraldehyde | Glycer-AGEs | Glycer-Argpyrimidine | Glycer-crosslinks | DNA oxidation products | ||
Glycolaldehyde | CML, CEL | Argpyrimidine | Glyco-thioesters | Crosslinks | DNA adducts | |
Ribose | Rib-CML, Rib-CEL | Rib-H1, Rib-Argpyrimidine | Ribose crosslinks | Rib–DNA adducts, histone glycation | ||
Ascorbate (oxidized) | CML, CEL | Argpyrimidine | Thiol oxidation products | Ascorbyl-collagen adducts | DNA strand breaks | Ascorbyl–lipid adducts |
Acetoacetate | CEL | Cysteine adducts | Acetoacetate-derived crosslinks | |||
HNE, MDA | HNE-CML, MDA-CEL | Michael adducts | Collagen stiffening | MDA-dG, HNE–DNA adducts | HNE–phospholipid adducts |
Reaction Types | Reactions | Enzymes | Functions |
---|---|---|---|
Non-enzymatic | GSH + ROS (e.g., •OH, ¹O2) ⟶ Oxidation products of GSH + Less reactive products of ROS | Scavenging of ROS | |
Enzymatic | 2 GSH + H2O2 ⟶ GSSG + 2 H2O | GPx | Detoxification of H2O2 and lipid hydroperoxides |
Enzymatic | GSSG + NADPH + H+ ⟶ 2 GSH + NADP+ | GR | Regeneration of GSH |
Enzymatic | 2GSH + DHA ⟶ GSSG + Ascorbate | Grx | Regeneration of ascorbate |
Enzymatic | GSH + Protein-SH ⟶ Protein-SSG | Grx | S-glutathionylation and redox signaling |
Enzymatic | GSH + Protein-SSG ⟶ GSSG + Protein-SH | Grx | Deglutathionylation and reduction of protein–glutathione mixed disulfides |
Enzymatic | 2 GSH + Protein-S-S-Protein ⟶ GSSG + 2 Protein-SH | Grx | Reduction of interprotein disulfides |
Non-enzymatic | 2 GSH + DHA ⟶ Ascorbate + GSSG | Regeneration of ascorbate | |
Enzymatic | 2 GSH + DHA ⟶ Ascorbate + GSSG | Grx | Regeneration of ascorbate |
Non-enzymatic | GSH + RNS (e.g., ONOO⁻) ⟶ Oxidation products of GSH + Less reactive products of RNS | Scavenging of RNS | |
Non-enzymatic | GSH + •NO ⟶ GSNO | Buffering of •NO | |
Enzymatic | GSNO + NADH + H+ ⟶ [GSNHOH] + NAD+ [GSNHOH] + GSH ⟶ GSSG + NH2OH | GSNOR | Detoxification of GSNO |
Enzymatic | GSH + RCS (e.g., Glycolaldehyde) ⟶ GSH conjugates | GST | Detoxification of electrophilic RCS compounds |
Non-enzymatic | GSH + MG ⟶ Hemithioacetal GSH + GO ⟶ Hemithioacetal | Initial trapping of reactive aldehydes | |
Enzymatic | GSH + MG ⟶ S-lactoylglutathione GSH + GO ⟶ S-glycolylglutathione | GLO1 | Detoxification of reactive aldehydes |
Enzymatic | S-lactoylglutathione + H2O ⟶ Lactate + GSH S-glycolylglutathione + H2O ⟶ Glycolate + GSH | GLO2 | Completion of the detoxification cycle of reactive aldehydes |
Experimental Models | Glycation Inducers | Induced Changes | Interventions | Outcomes or Findings | References |
---|---|---|---|---|---|
Bovine retinal microvascular endothelial cells and pericytes | a. High glucose b. AGE-BSA | a. GPx activity (↓) in endothelial cells b. CAT (↑), SOD (↑) in pericytes | Paget et al., 1998 [72] | ||
Bovine lens proteins | a. Threose | a. Protein crosslinking (↑) | a. AGD b. Semicarbazide c. Phenylene diamine d. Cysteine e. GSH f. Sodium metabisulfite | a–f. Crosslinking (↓), sodium metabisulfite is most potent | Lehman and Ortwerth, 2001 [73] |
Human lens epithelial cells (HLE-B3) | a. High glucose (50–100 mM) | a. GSH (↓), lipid peroxidation (↑), antioxidant enzymes (↓) | Shin et al., 2006 [74] | ||
Calf lens protein homogenates | a. DHA (1 mM) b. Ascorbate (25 mM) | a,b. CML (↑), CEL (↑), pentosidine (↑), fluorescent crosslinks (↑) | a. AGD b. PYM c. Penicillamine d. NC-I e. NC-II | a–e. Fluorescent AGEs (↓), pentosidine (↓), CML (↓), CEL (↓) | Fan and Monnier, 2008 [75] |
Porcine retinal pericytes | a. AGEs | a. ROS (↑), apoptosis (↑), SOD (↓), GSH (↓) | a. PEDF | a. ROS (↓), SOD (↑), GSH (↑), apoptosis (↓) via Src pathway | Sheikpranbabu et al., 2011 [76] |
In vitro enzyme assay | a. AR pathway (glucose-derived) | a. ROS (↑), GSH (↓) | a. 1-Hydroxypyrazole-based AR inhibitors | a. AR activity (↓), antioxidant profile (↑) | Papastavrou et al., 2013 [77] |
Human lens epithelial cells | a. Fructose | a. AGE (↑), ROS (↑), GSH (↓) | a. Silica-based CeCl3 nanoparticles b. AGD c. Carnosine | a. AGE (↓), ROS (↓), GSH (↑), better than AGD and carnosine b. AGE (↓) c. AGE (↓) | Yang et al., 2014 [78] |
Human retinal endothelial cells (HRECs) | a. GO | a. ROS (↑), GSH (↓), GPx (↓), SOD (↓) | a. PUGNAc b. OGT siRNA | a. ROS (↓), GSH (↑), GPx (↑), SOD (↑), apoptosis (↓) b. ROS (↑), antioxidant defense (↓), apoptosis (↑) | Liu et al., 2015 [79] |
Human retinal epithelial cells | a. Dicarbonyl stress (GO, MG) | a. ROS (↑), GSH (↓), MDA (↑) | a. (−)-EGCG and catechin (green tea); phloretin and phloridzin (apple); 6-shogaol and 6-gingerol (ginger) | a. ROS (↓), GSH (↑), MDA (↓) | Sampath et al., 2016 [80] |
Human Müller cells | a. Highly oxidized glycated low-density lipoprotein | a. ROS (↑), apoptosis (↑), GPx (↓), inflammation (↑) | a. Berberine b. Berberine + AMPK inhibitor | a. Oxidative stress (↓), inflammation (↓), apoptosis (↓), AMPK (↑) b. The effects of berberine were blocked by AMPK inhibition | Fu et al., 2016 [81] |
Human retinal pigment epithelial cells | a. Light-induced photo-oxidation of A2E (retinal fluorophore) | a. ROS (↑), GSH (↓), MG adducts (↑), RAGE (↑) | a. Quercetin b. Cyanidin-3-glucoside | a. Photo-oxidation (↓), ROS (↓), GSH (↑) b. Similar effects as quercetin | Wang et al., 2017 [82] |
In vitro vitreal simulation | a. Riboflavin b. Ascorbate | a. ROS (↑), AGE (↑), protein degradation (↑) | a. GSH | a. Light-induced damage (↓) | Mantha et al., 2020 [83] |
Human kidney epithelial cells (HK-2) | a. AGE (100 µg mL−1) | a. ROS (↑), GSH (↓), fibrosis markers (↑) | a. Caffeic acid | a. ROS (↓), GSH (↑), fibrosis and EMT markers (↓), via β-catenin pathway | Jeon et al., 2021 [84] |
Human lens epithelial cells | a. High glucose b. AGE-BSA | a. ROS (↑), GSH (↓), GSSG to total GSH ratio (↑), SOD, CAT (↓) | a. TTase knockdown | a. Oxidative damage (↑), TTase protects lens cells | Liu et al., 2021 [85] |
Rat bone marrow stromal cells (BMSCs) | a. Glyco-BSA b. Rib-BSA c. H2O2 | a-c. Cell survival (↓), ROS (↑) | a. S-Allyl mercapto-N-acetylcysteine (0.2 mM) | a. Cell survival (↑), ROS (↓) | Abu-Kheit et al., 2022 [86] |
Adult retinal pigment epithelial cells (ARPE-19) | a. High glucose (34, 68 mM) b. AGE (with 17–68 mM glucose) | a. NF-κB (↑), VEGF (↑), IL-8, MCP-1, MMP-2 (↑), GPx (↓), PPAR-γ (↓), soluble RAGE (↓) b. Same as a | a. Methanol extract of Peperomia pellucida (3 mg mL−1) b. Its ethyl acetate fraction (4 mg mL−1) | a. NF-κB (↓), pro-inflammatory markers (↓), GPx (↑), PPAR-γ (↑), soluble RAGE (↑) b. Similar to a | Ho et al., 2024 [87] |
Mouse retinal Müller cells | a. High glucose (35 mM) | a. Cell viability (↓), ROS (↑), MDA (↑), SOD (↓), CAT (↓), GSH/GSSG (↓), RAGE (↑), TNF-α (↑), IL-1β (↑), IL-6 (↑), MMP-2 (↑), MMP-9 (↑), VEGF (↑), NF-κB (↑), phosphorylation of p38-MAPK and JNK (↑) | a. Moscatilin (0.1–1 μM) | a. Cell viability (↓), oxidative stress (↓), inflammatory markers (↓), NF-κB pathway (↓), p38-MAPK/JNK pathway (↓) | Zhu et al., 2025 [88] |
Experimental Models | Glycation Inducers | Induced Changes | Interventions | Outcomes or Findings | References |
---|---|---|---|---|---|
Rat lens | a. Glyceraldehyde | a. MG (↑), MG-AGEs (↑), GSH (↓) | a. HCCG diester | a. MG (↑), MG-AGEs (↓), partial protection of GSH | Shamsi et al., 2000 [90] |
Rat lens | a. High glucose | b. GSH (↓) | a. PYM | a. No effects on GSH | Padival and Nagaraj, 2006 [91] |
Human lens epithelial cells and porcine lenses | a. High galactose | a. AGE (↑), GSH (↓), protein aggregation (↑) | a. Carnosine | a. AGE (↓), lens opacification (↓) | Abdelkader et al., 2016 [92] |
Human and rat lenses | a. 55 mM glucose | a. GSH (↓), AR (↓), CAT (↓), RAGE (↑), opacity (↑) | Alghamdi et al., 2018 [93] | ||
Mouse lens | a. Erythrulose | a. AGE (↑), protein crosslinking (↑), lens stiffness (↑), GSH (↓) | a. Carboxitin | a. AGE (↓), crosslinking (↓), GSH (↑), mechanical stiffness (↓) | Nandi et al., 2021 [94] |
Experimental Models | Glycation Inducers | Induced Changes | Interventions | Outcomes or Findings | References |
---|---|---|---|---|---|
Pigs | a. 5% galactose diet b. 25% galactose diet | a. GSH (↓), protein glycation (↑) b. GSH (↓), protein glycation (↑) | Birlouez-Aragon et al., 1989 [95] | ||
Sprague Dawley rats | a. 33% galactose diet | a. GSH (↓), pentosidine (↑) | a. Sorbinil | a. GSH (↑), pentosidine (↓), fluorescence (↓) | Nagaraj et al., 1994 [96] |
Emory mice (a strain derived from CFW mice, specifically bred to develop bilateral cataracts) | a. Normal aging | a. Glucose (↑), ascorbate (↓), GSH (↓, 22-month-old mice), glycation (↑) | a. Calorie restriction (40%) | a. Cataract progression (↓), glycohemoglobin (↓), GSH (↑, 22-month-old mice) | Taylor et al., 1995 [97] |
Wistar rats | a. Alloxan-induced diabetes | a. GSH (↓), SOD (↓), lipid peroxidation (↑) | a. Melatonin | a. GSH (↑), antioxidant enzyme levels (↑) | Sailaja Devi et al., 2000 [98] |
Sprague Dawley rats | a. 30% galactose diet | a. Lipid peroxidation (↑), AGE fluorescence (↑), GSH (↓), protein aggregation (↑) | a. Curcumin 0.002% b. Curcumin 0.01% | a. DC onset/ maturation (↓), lipid peroxidation (↓), AGE (↓) b. Less effective | Suryanarayana et al., 2003 [99] |
Sprague Dawley rats | a. STZ-induced diabetes | a. AGEs (pentosidine) (↑), GSH (↓), GLO1 (↓), AR (↑) | a. PYM | a. AGE (argpyrimidine and pentosidine) (↓), GLO1 (↑), AR (↑), no effects on GSH | Padival and Nagaraj, 2006 [91] |
hSVCT2 transgenic mice | a. Ascorbate-accelerated aging | a. CML (↑), CEL (↑), pentosidine (↑), fluorescent crosslinks (↑) | a. AGD b. PYM c. Penicillamine d. NC-I e. NC-II | d–e. Pentosidine (↓), fluorescence (↓) | Fan and Monnier, 2008 [75] |
Sprague Dawley rats | a. STZ-induced diabetes | a. AGEs (↑), GSH (↓), CAT (↓), GR (↓) | a. Carnosine drops b. AGD drops c. Aspirin drops | a–c. AGE (↓), GSH (↑), enzyme activity (↑), DC progression (↓, carnosine most effective) | Yan et al., 2008 [100] |
Wistar rats | a. STZ-induced diabetes | a. AGEs (↑), GSH (↓), SOD, GST, GPx (↓), AR (↑), SDH (↑) | a. Nigerloxin (fungal metabolite) | a. AGE (↓), antioxidant enzymes (↑), polyol pathway enzymes (↓), DC (↓) | Suresha et al., 2012 [101] |
Wistar rats | a. STZ-induced diabetes | a. AGE (↑), sorbitol (↑), MDA (↑), SOD (↓), GPx (↓) | a. Ethanol extract of the rhizome of Anemarrhena asphodeloides | a. AGE (↓), MDA (↓), SOD (↑), GPx (↑), sorbitol (↓), retinal and lens structure (↑) | Li et al., 2013 [102] |
Wistar rats | a. STZ-induced diabetes | a. DC (↑), lens opacity (↑), oxidative stress (↑) | a. Early insulin treatment | a. DC (↓), antioxidant defense (↑) | Balakumar et al., 2013 [103] |
Wistar rats | a. Galactose diet | a. AGE (↑), lipid peroxides (↑), GSH (↓), SOD (↓), GPx (↓) | a. Nigerloxin (fungal metabolite) | a. AGE (↓), lipid peroxides (↓), antioxidant enzymes ↑ | Suresha and Srinivasan, 2013 [104] |
Wistar rats | a. STZ-induced diabetes | a. AGE (↑), sorbitol (↑), GSH (↓), Ca2+ (↑), Ca2+-ATPase (↓) | a. Vitamin K1 | a. AGE (↓), sorbitol (↓), GSH (↑), Ca2+-ATPase (↑), DC (↓) | Sai Varsha et al., 2014 [105] |
Wistar rats | a. STZ-induced diabetes | a. AGE (↑), lipid peroxidation (↑), protein carbonylation (↑), GSH (↓) | a. Silica-based CeCl3 nanoparticles | a. AGE (↓), lipid peroxidation (↓), GSH (↑), DC (↓) | Yang et al., 2017 [106] |
Sprague Dawley rats | a. STZ-induced diabetes | a. AGE (↑), SOD (↓), GPx (↓), inflammation markers (↑) | a. Zhujing pill extract | a. AGE (↓), inflammatory markers (↓), antioxidant enzyme levels (↑) | Lei et al., 2018 [107] |
Sprague Dawley rats | a. STZ-induced diabetes | a. AGE (↑), AR (↑), GPx (↓), GSH (↓), DC signs (↑) | a. Rosa damascena hydrosol (two concentrations) | a. AGE (↓), AR (↓), GPx (↑), GSH (↑), lens structure (↑) | Demirbolat et al., 2019 [108] |
Sprague Dawley rats | a. STZ-induced diabetes | a. AGE (↑), MDA (↑), GSH (↓), SOD (↓), CAT (↓) | a. Astaxanthin (low dose) b. Astaxanthin (high dose) | a. AGE (↓), MDA (↓), GSH (↑), SOD (↑), CAT (↑), DC (↓) b. Similar antioxidant effects, dose-responsive trend | Yang et al., 2020 [109] |
Wistar rats | a. STZ-induced diabetes | a. Oxidative stress (↑), GSH (↑), lipid/protein damage (↑) | a. Chrysin (50 mg kg−1) b. Chrysin (100 mg kg−1) | a. GSH (↑), oxidative damage (↓) b. Similar trend, no effect on AGEs or polyol pathway | Wojnar et al., 2020 [110] |
Wistar rats | a. STZ-induced diabetes | a. AGEs (↑), AR (↑), AOPP (↑), GSH (↓), SOD (↓), CAT (↓), GPx (↓) | a. Berberine (50 mg/kg) | a. AGEs (↓), AR (↓), AOPP (↓), antioxidant enzymes (↑), GSH (↑) | Zych et al., 2020 [111] |
Wistar rats | a. STZ-induced diabetes | a. ROS (↑), MAD (↑), GPx (↓), CAT (↓), SOD (↓), VEGF (↑), TNF-α (↑) | a. Morin (25 mg kg−1) b. Morin (50 mg kg−1) c. Metformin (350 mg kg−1) | a. Oxidative stress (↓), VEGF (↓), TNF-α (↓) b. Greater effect than a. c. Standard comparison | Jiang et al., 2020 [112] |
Homozygote C57BLKS/J Leprdb+/+ female mice (db/db; diabetic) | a. AGEs | a. ROS (↑), GSH (↓), cell damage (↑) | a. S-allyl mercapto-N-acetylcysteine (50 mg kg−1 day−1) | a. GSH (↑), ROS (↑), bone health (↑) | Abu-Kheit et al., 2022 [86] |
Wistar rats | a. High-fructose diet b. High fructose + STZ | a. GSH/GSSG ratio (↓), GST (↓), TNF-α (↑), IL-1β (↑), NF-κB (↑), caspase-3 (↑), VEGF (↑), CML (↑), sorbitol (↑) b. More pronounced changes than a | a. Cemtirestat (2.5, 7.5 mg kg−1) b. Epalrestat (25, 50 mg kg−1) c. Stobadine (25, 50 mg kg−1) | a–c. TNF-α (↓), IL-1β (↓), NF-κB (↓), caspase-3 (↓), sorbitol (↓) a, c. GSH/GSSG ratio (↑), GST (↑), CML (↓) a, b. Sorbitol (↓) b. VEGF (↓) | Reihanifar et al., 2023 [113] |
DR mice | a. STZ + high-fat diet | a. GFAP(↓), vimentin (↓), ROS (↑), MDA (↑), SOD (↓), CAT (↓), TNF-α (↑), IL-1β (↑), IL-6 (↑), VEGF (↑), NF-κB (↑), phosphorylation of p38-MAPK and JNK (↑) | a. Moscatilin (25 mg kg−1) | a. Retinal structure (↑), oxidative stress (↓), inflammatory markers (↓), NF-κB pathway (↓), p38-MAPK/JNK pathway (↓) | Zhu et al., 2025 [88] |
Study Model and Format | Glycation Inducers | Induced Changes | Interventions | Outcomes or Findings | References |
---|---|---|---|---|---|
Human donor lenses (n = 12); 8 aged, 4 young | a. Normal aging | a. CEL (↑) | Ahmed et al., 1997 [114] | ||
Eales’ disease patients (n = 22); case–control observational | a. Oxidative and glycoxidative stress | a. GSH (↓), SOD (↓), lipid peroxidation (↑), CML (↑) | a. Vitamins E and C b. Methotrexate (low dose) | a. Antioxidant markers (↑) b. Clinical symptoms (↓) | Ramakrishnan et al., 2007 [115] |
Human lenses from diabetic patients (n = 20) | a. Osmotic stress and chronic hyperglycemia | a. GSH (↓), AR (↑), SDH (↑), AGEs (↑) | Hashim and Zarina, 2012 [116] | ||
Human type 1 diabetic patients (n = 70); randomized, double-blind clinical trial | a. Chronic hyperglycemia | a. ROS (↑), GSH (↓), antioxidant gene variation (↑ susceptibility) | a. Imidazole-based peptide antioxidants | a. ROS (↓), GSH (↑), antioxidant enzyme (↑), neuropathy risk (↓) | Babizhayev et al., 2015 [117] |
Vitreous humor from diabetic donors (n = 40) | a. Diabetes (hyperglycemia) | a. AGEs (↑), protein carbonylation (↑), GSH (↑) | Gehl et al., 2016 [118] | ||
Cataractous lenses (n = 60) and clear lenses (n = 15) | a. Age-related glycation | a. GSH (↓ in nuclear > cortical), argpyrimidine (↑ in nuclear) | Mynampati et al., 2017 [119] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boo, Y.C. Restoring Glutathione Homeostasis in Glycation-Related Eye Diseases: Mechanistic Insights and Therapeutic Interventions Beyond VEGF Inhibition. Antioxidants 2025, 14, 731. https://doi.org/10.3390/antiox14060731
Boo YC. Restoring Glutathione Homeostasis in Glycation-Related Eye Diseases: Mechanistic Insights and Therapeutic Interventions Beyond VEGF Inhibition. Antioxidants. 2025; 14(6):731. https://doi.org/10.3390/antiox14060731
Chicago/Turabian StyleBoo, Yong Chool. 2025. "Restoring Glutathione Homeostasis in Glycation-Related Eye Diseases: Mechanistic Insights and Therapeutic Interventions Beyond VEGF Inhibition" Antioxidants 14, no. 6: 731. https://doi.org/10.3390/antiox14060731
APA StyleBoo, Y. C. (2025). Restoring Glutathione Homeostasis in Glycation-Related Eye Diseases: Mechanistic Insights and Therapeutic Interventions Beyond VEGF Inhibition. Antioxidants, 14(6), 731. https://doi.org/10.3390/antiox14060731