Fatty Acid Profile and Some Useful Biological Aspects of Borage, Calophyllum, and Prickly Pear Seed Oils: Implications for Health and Dietary Use
Abstract
1. Introduction
2. Materials and Methods
2.1. Oils
2.2. Fatty Acid Analysis
2.3. Antioxidant Activity Assessment
2.3.1. DPPH Free Radical Scavenging Assay
2.3.2. 2,2′- Azino-bis (3-ethylbenzothiazoline-6-sulfonic Acid) (ABTS) Test
2.4. Anti-Arthritic Activity
2.5. Cholinesterase Inhibition Assays
2.6. Tyrosinase Inhibition Assay
2.7. Antibacterial Properties of the Oils
2.7.1. Test Microorganisms and Culture Conditions
2.7.2. Determination of Minimal Inhibitory Concentration (MIC)
2.7.3. Inhibition of Biofilm Formation
2.7.4. Evaluation of Metabolic Activity Within Biofilms
2.8. Statistical Analysis
3. Results
3.1. Fatty Acids Composition
3.2. Antioxidant Activity of the Seed Oils
3.3. Anti-Arthritic Activity In Vitro
3.4. Inhibitory Activity of the Seed Oils Against Cholinesterases and Tyrosinase
3.5. Antimicrobial Activity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tasset-Cuevas, I.; Fernández-Bedmar, Z.; Lozano-Baena, M.D.; Campos-Sánchez, J.; de Haro-Bailón, A.; Muñoz-Serrano, A.; Alonso-Moraga, Á. Protective effect of borage seed oil and gamma linolenic acid on DNA: In vivo and in vitro studies. PLoS ONE 2013, 8, e56986. [Google Scholar] [CrossRef] [PubMed]
- Tahri-Joutey, M.; Saih, F.E.; El Kebbaj, R.; Gondcaille, C.; Vamecq, J.; Latruffe, N.; Andreoletti, P. Protective effect of Nopal cactus (Opuntia ficus-indica) seed oil against short-term lipopolysaccharides-induced inflammation and peroxisomal functions dysregulation in mouse brain and liver. Int. J. Mol. Sci. 2022, 23, 11849. [Google Scholar] [CrossRef] [PubMed]
- Jaros, J.; Wilson, C.; Shi, V.Y. Fabric selection in atopic dermatitis: An evidence-based review. Am. J. Clin. Dermatol. 2020, 21, 467–482. [Google Scholar] [CrossRef]
- Saki, E.; Murthy, V.; Wang, H.; Khandanlou, R.; Wapling, J.; Weir, R. Formulation and biomedical activity of oil-in-water nanoemulsion combining Tinospora smilacina water extract and Calophyllum inophyllum seeds oil. Clin. Cosmet. Investig. Dermatol. 2023, 16, 1159–1174. [Google Scholar] [CrossRef]
- Spino, C.; Dodier, M.; Sotheeswaran, S. Anti-HIV coumarins from calophyllum seed oil. Bioorg. Med. Chem. Lett. 1998, 8, 3475–3478. [Google Scholar] [CrossRef]
- Alqurashi, A.S.; Al Masoudi, L.M.; Hamdi, H.; Abu Zaid, A. Chemical Composition and Antioxidant, Antiviral, Antifungal, Antibacterial and Anticancer Potentials of Opuntia ficus-indica Seed Oil. Molecules 2022, 27, 5453. [Google Scholar] [CrossRef]
- Koubaa, M.; Barba, F.J.; Roohinejad, S.; Koubaa, W.; Khadhraoui, B.; Grimi, N.; Vorobiev, E. Seed oil of Opuntia ficus-indica: Extraction methods, chemical composition and biological activities. J. Sci. Food Agric. 2017, 97, 613–620. [Google Scholar] [CrossRef]
- Ennouri, M.; Evelyne, B.; Laurence, M.; Hamadi, A. Fatty acid composition and rheological behaviour of prickly pear seed oils. Food Chem. 2005, 93, 431–437. [Google Scholar] [CrossRef]
- Fratianni, F.; d’Acierno, A.; Ombra, M.N.; Amato, G.; De Feo, V.; Ayala-Zavala, J.F.; Coppola, R.; Nazzaro, F. Fatty acid composition, antioxidant, and in vitro anti-inflammatory activity of five cold-pressed Prunus seed oils, and their anti-biofilm effect against pathogenic bacteria. Front. Nutr. 2021, 8, 775751. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef] [PubMed]
- Fratianni, F.; Amato, G.; De Feo, V.; Coppola, R.; Nazzaro, F. Potential therapeutic benefits of unconventional oils: Assessment of the potential in vitro biological properties of some Rubiaceae, Cucurbitaceae, and Brassicaceae seed oils. Front. Nutr. 2023, 10, 1171766. [Google Scholar] [CrossRef] [PubMed]
- Sakat, S.S.; Juvekar, A.R.; Gambhire, M.N. In-vitro antioxidant and anti-inflammatory activity of methanol extract of Oxalis corniculata Linn. Int. J. Pharm. Pharm. Sci. 2010, 2, 146–155. [Google Scholar]
- Elisha, I.L.; Dzoyem, J.P.; McGaw, L.J.; Eloff, J.N. The anti-arthritic, anti-inflammatory, antioxidant activity and relationships with total phenolics and total flavonoids of nine South African plants used traditionally to treat arthritis. BMC Complement. Altern. Med. 2016, 16, 307. [Google Scholar] [CrossRef]
- Ellman, G.L.; Courtney, K.D.; Andres, V., Jr.; Featherston, R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961, 7, 88–95. [Google Scholar] [CrossRef]
- Khatib, S.; Nerya, O.; Musa, R.; Shmuel, M.; Tamir, S.; Vaya, J. Chalcones as potent tyrosinase inhibitors: The importance of a 2,4-substituted resorcinol moiety. Bioorg. Med. Chem. 2005, 13, 433–441. [Google Scholar] [CrossRef]
- Sarker, S.D.; Nahar, L.; Kumarasamy, Y. Microtitre plate-based antibacterial assay incorporating resazurin as an indicator of cell growth, and its application in the in vitro antibacterial screening of phytochemicals. Methods 2007, 42, 321–324. [Google Scholar] [CrossRef]
- Coppola, F.; Abdalrazeq, M.; Fratianni, F.; Ombra, M.N.; Testa, B.; Zengin, G.; Ayala Zavala, J.F.; Nazzaro, F. Rosaceae honey: Antimicrobial activity and prebiotic properties. Antibiotics 2025, 14, 298. [Google Scholar] [CrossRef]
- Nazzaro, F.; Ombra, M.N.; Coppola, F.; De Giulio, B.; d’Acierno, A.; Coppola, R.; Fratianni, F. Antibacterial Activity and Prebiotic Properties of Six Types of Lamiaceae Honey. Antibiotics 2024, 13, 868. [Google Scholar] [CrossRef]
- Nilofar; Zengin, G.; Uba, A.I.; Abul, N.; Gulcin, I.; Koyuncu, I.; Yuksekdag, O.; Kumar, M.P.; Tessappan, S.; Nazzaro, F.; et al. A multifunctional natural treasure based on a “one stone, many birds” strategy for designing health-promoting applications: Tordylium apulum. Food Biosci. 2024, 62, 105088. [Google Scholar] [CrossRef]
- Ettalibi, F.; El Antari, A.; Hamouda, A.; Gadhi, C.; Harrak, H. Comparative assessment of physical and chemical characteristics of prickly pear seed oil from Opuntia ficus-indica and Opuntia megacantha varieties. J. Food Qual. 2021, 2021, 3098608. [Google Scholar] [CrossRef]
- Al-Naqeb, G.; Fiori, L.; Ciolli, M.; Aprea, E. Prickly pear seed oil extraction, chemical characterization and potential health benefits. Molecules 2021, 26, 5018. [Google Scholar] [CrossRef] [PubMed]
- Blois, M.S. Antioxidant determinations by the use of a stable free radical. Nature 1958, 181, 1199–1200. [Google Scholar] [CrossRef]
- Molyneux, P. The use of the stable free radical DPPH for estimating antioxidant activity. Songklanakarin J. Sci. Technol. 2004, 26, 211–219. [Google Scholar]
- Nogala-Kalucka, M.; Rudzinska, M.; Zadernowski, R.; Siger, A.; Krzyzostaniak, I. Phytochemical content and antioxidant properties of seeds of unconventional oil plants. J. Am. Oil Chem. Soc. 2010, 87, 1481–1487. [Google Scholar] [CrossRef]
- Cui, R.; You, Y.; Chen, C.; Zhang, W.; Zhang, Y.; Li, Y.; Zhang, L.; Zhang, H.; Jin, Q.; Wu, G.; et al. Lipid composition micronutrient and cellular antioxidant properties of borage seed oil from eight provinces in China. J. Am. Oil Chem. Soc. 2024, 101, 783–796. [Google Scholar] [CrossRef]
- Ramírez-Moreno, E.; Cariño-Cortés, R.; Cruz-Cansino, S.; Delgado-Olivares, L.; Ariza-Ortega, J.A.; Montañez-Izquierdo, V.Y.; Hernández-Herrero, M.M.; Filardo-Kerstupp, T. Antioxidant and antimicrobial properties of cactus pear (Opuntia) seed oils. J. Food Qual. 2017, 2017, 3075907. [Google Scholar] [CrossRef]
- Brahmi, F.; Haddad, S.; Bouamara, K.; Yalaoui-Guellal, D.; Prost-Camus, E.; Barros, J.P.; Prost, M.; Atanasov, A.; Madani, K.; Boulekbache-Makhlouf, L.; et al. Comparison of chemical composition and biological activities of Algerian seed oils of Pistacia lentiscus L., Opuntia ficus-indica (L.) Mill. and Argania spinosa L. Skeels. Ind. Crops Prod. 2020, 151, 112456. [Google Scholar] [CrossRef]
- Berraaouan, A.; Ziyyat, A.; Mekhfi, H.; Legssyer, A.; Sindic, M.; Aziz, M.; Bnouham, M. Evaluation of antidiabetic properties of cactus pear seed oil in rats. Pharm. Biol. 2014, 52, 1286–1290. [Google Scholar] [CrossRef]
- An, P.D.; Khue, T.T.N.; Thi, N.T.M.; Phuong, P.T.N.; Ha, C.T.C. The impact of tamanu oil (Calophyllum inophyllum L.) on improving the wound healing process in diabetic mice model. Southeast. Asian J. Sci. 2024, 11, 11–22. [Google Scholar]
- Calixto, J.B.; Otuki, M.F.; Santos, A.R.S. Anti-inflammatory compounds of plant origin. Part I. Action on arachidonic acid pathway, nitric oxide and nuclear factor kappa B (NF-kappaB). Planta Med. 2003, 69, 973–983. [Google Scholar] [CrossRef]
- Murugananthan, G.; Sudheer, K.G.; Sathya, C.P.; Mohan, S. Anti-arthritic and anti-inflammatory constituents from medicinal plants. J. Appl. Pharm. Sci. 2013, 3, 161–164. [Google Scholar] [CrossRef]
- Choudhary, M.; Kumar, V.; Malhotra, H.; Singh, S. Medicinal plants with potential anti-arthritic activity. J. Intercult. Ethnopharmacol. 2015, 4, 147. [Google Scholar] [CrossRef] [PubMed]
- Elhady, S.S.; Abou El-Ezz, R.F.; Zengin, G.; Malatani, R.T.; Ashour, M.L.; Youssef, F.S. Phytochemical profiling of Clerodendrum speciosum leaves and evaluation of their antioxidant, antihyperglycemic and antiarthritic activities in vitro. Future J. Pharm. Sci. 2025, 11, 40. [Google Scholar] [CrossRef]
- Fratianni, F.; Ombra, M.N.; De Giulio, B.; D’Acierno, A.; Nazzaro, F. Lamiaceae honey: Polyphenol profile, vitamin C content, antioxidant and in vitro anti-inflammatory, cholinesterase and tyrosinase inhibitory activity. Food Chem. Adv. 2025, 7, 100996. [Google Scholar] [CrossRef]
- Asadi-Samani, M.; Bahmani, M.; Rafieian-Kopaei, M. The chemical composition, botanical characteristic and biological activities of Borago officinalis: A review. Asian Pac. J. Trop. Med. 2014, 7, 22–28. [Google Scholar] [CrossRef]
- Gakhar, A. Anti-inflammatory perspectives of diverse natural resources. J. Med. Pharm. Allied Sci. 2021, 10, 3270–3279. [Google Scholar] [CrossRef]
- Michalak, M.; Szopa, A. Phenolic profile and comparison of the antioxidant, anti-ageing, anti-inflammatory, and protective activities of Borago officinalis extracts on skin cells. Molecules 2022, 28, 868. [Google Scholar] [CrossRef]
- Regalado-Rentería, E.; Aguirre-Rivera, J.R.; González-Chávez, M.M.; Sánchez-Sánchez, R.; Martínez-Gutiérrez, F.; Juárez-Flores, B.I. Assessment of extraction methods and biological value of seed oil from eight variants of prickly pear fruit (Opuntia spp.). Waste Biomass Valor. 2020, 11, 1181–1189. [Google Scholar] [CrossRef]
- Koshak, A.E.; Abdallah, H.M.; Esmat, A.; Rateb, M.E. Anti-inflammatory activity and chemical characterisation of Opuntia ficus-indica seed oil cultivated in Saudi Arabia. Arab. J. Sci. Eng. 2020, 45, 4571–4578. [Google Scholar] [CrossRef]
- El Hachimi, F.; Hajjaj, G.; Bendriss, A.; Cherrah, Y.; Alaoui, K. Anti-inflammatory activity of seed oils of Opuntia ficus-indica L. and Punica granatum L. from Morocco. World J. Pharm. Res. 2015, 4, 284–294. [Google Scholar]
- Fratianni, F.; Amato, G.; d’Acierno, A.; Ombra, M.N.; De Feo, V.; Coppola, R.; Nazzaro, F. In vitro prospective healthy and nutritional benefits of different Citrus monofloral honeys. Sci. Rep. 2023, 13, 1088. [Google Scholar] [CrossRef] [PubMed]
- Collado-González, J.; Grosso, C.; Valentão, P.; Andrade, P.B.; Ferreres, F.; Durand, T.; Guy, A.; Galano, J.-M.; Torrecillas, A.; Gil-Izquierdo, Á. Inhibition of α-glucosidase and α-amylase by Spanish extra virgin olive oils: The involvement of bioactive compounds other than oleuropein and hydroxytyrosol. Food Chem. 2017, 235, 298–307. [Google Scholar] [CrossRef]
- Barbosa Filho, J.M.; Souto, A.L.; Tavares, J.F.; da Silva, M.S.; Cunha, E.V.L.; Athayde-Filho, P.F. Structural relationships and pharmacological activities of flavonoids. In Flavonoids—From Biosynthesis to Human Health; Justino, J., Ed.; InTech: London, UK, 2017; pp. 23–45. [Google Scholar] [CrossRef]
- Franco, M.N.; Galeano-Díaz, T.; López, O.; Fernández-Bolaños, J.G.; Sánchez, J.; De Miguel, C.; Martín-Vertedor, A.I. Phenolic compounds and antioxidant capacity of virgin olive oil. Food Chem. 2014, 164, 203–209. [Google Scholar] [CrossRef]
- Kiattisin, K.; Nantarat, T.; Leelapornpisid, P. Evaluation of antioxidant and anti-tyrosinase activities as well as stability of green and roasted coffee bean extracts from Coffea arabica and Coffea canephora grown in Thailand. J. Pharmacogn. Phytother. 2016, 8, 182–192. [Google Scholar] [CrossRef]
- Saih, F.E.; Andreoletti, P.; Mandard, S.; Latruffe, N.; El Kebbaj, M.S.; Lizard, G.; Nasser, B.; Cherkaoui-Malki, M. Protective effect of cactus cladode extracts on peroxisomal functions in microglial BV-2 cells activated by different lipopolysaccharides. Molecules 2017, 22, 102. [Google Scholar] [CrossRef]
- Gambino, G.; Allegra, M.; Sardo, P.; Attanzio, A.; Tesoriere, L.; Livrea, M.A.; Ferraro, G.; Carletti, F. Brain distribution and modulation of neuronal excitability by indicaxanthin from Opuntia ficus-indica administered at nutritionally-relevant amounts. Front. Aging Neurosci. 2018, 10, 133. [Google Scholar] [CrossRef]
- Moliner, C.; Cásedas, G.; Barros, L.; Finimundy, T.C.; López, V. Neuroprotective profile of edible flowers of borage (Borago officinalis L.) in two different models: Caenorhabditis elegans and Neuro-2a cells. Antioxidants 2022, 11, 1244. [Google Scholar] [CrossRef]
- Jain, M.; Chandrakant, U.; Orsat, V.; Raghavan, V. A review on assessment of biodiesel production methodologies from Calophyllum inophyllum seed oil. Ind. Crops Prod. 2018, 114, 28–44. [Google Scholar] [CrossRef]
- Coppola, F.; Nazzaro, F.; Fratianni, F.; Lombardi, S.J.; Grazia, L.; Coppola, R.; Tremonte, P. Pumpkin oil and its effect on the quality of Naples-style salami produced from buffalo meat. Foods 2025, 14, 1077. [Google Scholar] [CrossRef]
- Puch, F.; Samson-Villeger, S.; Guyonnet, D.; Blachon, L.; Rawlings, A.V.; Lassel, T. Consumption of functional fermented milk containing borage oil, green tea and vitamin E enhances skin barrier function. Exp. Dermatol. 2008, 17, 668–674. [Google Scholar] [CrossRef] [PubMed]
- Borges, A.; Abreu, A.C.; Dias, C.; Saavedra, M.J.; Simões, M. New perspectives on the use of phytochemicals as an emergent strategy to control bacterial infections including biofilms. Molecules 2016, 21, 877. [Google Scholar] [CrossRef] [PubMed]
- Radulovic, N.S.; Blagojevic, P.D.; Stojanovic-Radic, Z.Z.; Stojanovic, N.M. Antimicrobial plant metabolites: Structural diversity and mechanism of action. Curr. Med. Chem. 2013, 20, 932–952. [Google Scholar] [CrossRef]
- Masi, M.; Réfregiers, M.; Pos, K.M. Mechanisms of envelope permeability and antibiotic influx and efflux in Gram-negative bacteria. Nat. Microbiol. 2017, 2, 1–7. [Google Scholar] [CrossRef]
- Lee, T.H.; Charchar, P.; Separovic, F.; Reid, G.E.; Yarovsky, I.; Aguilar, M.I. The intricate link between membrane lipid structure and composition and membrane structural properties in bacterial membranes. Chem. Sci. 2024, 15, 3408–3427. [Google Scholar] [CrossRef]
- Lee, J.-H.; Kim, Y.-G.; Lee, J. Inhibition of Staphylococcus aureus Biofilm Formation and Virulence Factor Production by Petroselinic Acid and Other Unsaturated C18 Fatty Acids. Microbiol. Spectr. 2022, 10, e0133022. [Google Scholar] [CrossRef]
- Látrová, K.; Havlová, N.; Večeřová, R.; Pinkas, D.; Bogdanová, K.; Kolář, M.; Mikušová, G. Outer membrane and phospholipid composition of the target membrane affect the antimicrobial potential of first- and second-generation lipophosphonoxins. Sci. Rep. 2021, 11, 10446. [Google Scholar] [CrossRef]
- Pérez-Flores, J.G.; García-Curiel, L.; Pérez-Escalante, E.; Contreras-López, E.; Aguilar-Lira, G.Y.; Ángel-Jijón, C.; Portillo-Torres, L.A. Plant antimicrobial compounds and their mechanisms of action on spoilage and pathogenic bacteria: A bibliometric study and literature review. Appl. Sci. 2025, 15, 3516. [Google Scholar] [CrossRef]
- Nazzaro, F.; Fratianni, F.; De Martino, L.; Coppola, R.; De Feo, V. Effect of essential oils on pathogenic bacteria. Pharmaceuticals 2013, 6, 1451–1474. [Google Scholar] [CrossRef]
- Hemaiswarya, S.; Kruthiventi, A.K.; Doble, M. Synergism between natural products and antibiotics against infectious diseases. Phytomedicine 2008, 15, 639–652. [Google Scholar] [CrossRef]
- Cheesman, M.J.; Ilanko, A.; Blonk, B.; Cock, I.E. Developing new antimicrobial therapies: Are synergistic combinations of plant extracts/compounds with conventional antibiotics the solution? Pharmacogn. Rev. 2017, 11, 57. [Google Scholar] [CrossRef]
- Cassien, M.; Mercier, A.; Culcasi, M.; Ricquebourg, E.; Asteian, A.; Herbette, G.; Bianchini, J.; Raharivelomanana, P.; Pietri, S. Improving the antioxidant properties of Calophyllum inophyllum seed oil from French Polynesia: Development and biological applications of resinous ethanol-soluble extracts. Antioxidants 2021, 10, 199. [Google Scholar] [CrossRef]
- Yimdjo, M.C.; Azebaze, A.G.; Nkengfack, A.E.; Meyer, A.M.; Bodo, B.; Fomum, Z.T. Antimicrobial and cytotoxic agents from Calophyllum inophyllum. Phytochemistry 2004, 65, 2789–2795. [Google Scholar] [CrossRef] [PubMed]
- Manimekalai, K.; Srinivasan, P.; Dineshbabu, J.; Guna, G.; Teepica Priya Darsini, D. Anti-biofilm efficacy of Plectranthus amboinicus against Streptococcus pyogenes isolated from pharyngitis patients. Asian J. Pharm. Clin. Res. 2016, 9, 348–354. Available online: https://innovareacademics.in/journals/index.php/ajpcr/article/view/12337 (accessed on 2 March 2025).
- Nazzaro, F.; Fratianni, F.; d’Acierno, A.; Caputo, L.; De Feo, V.; Coppola, R. Antibiofilm properties exhibited by the prickly pear (Opuntia ficus-indica) seed oil. Proceedings 2021, 66, 29. [Google Scholar] [CrossRef]
- Blando, F.; Russo, R.; Negro, C.; De Bellis, L.; Frassinetti, S. Antimicrobial and antibiofilm activity against Staphylococcus aureus of Opuntia ficus-indica (L.) Mill. cladode polyphenolic extracts. Antioxidants 2019, 8, 117. [Google Scholar] [CrossRef]
- Önem, E.; Kendir, G.; Akkoç, S.; Erzurumlu, Y.; Muhammed, M.T.; Özaydın, A.G. Biochemical contents and antiquorum sensing, antiproliferative activities of Opuntia ficus-indica (L.) Mill. peel extract. S. Afr. J. Bot. 2022, 150, 296–304. [Google Scholar] [CrossRef]
- Hashem, E.Z.; Khodadadi, M.; Asadi, F.; Koohi, M.K.; Eslami, M.; Hasani-Dizaj, S.; Zadeh, R.T. The antioxidant activity of palmitoleic acid on the oxidative stress parameters of palmitic acid in adult rat cardiomyocytes. Ann. Mil. Health Sci. Res. 2016, 14, e11467. [Google Scholar] [CrossRef]
- Fukumitsu, S.; Villareal, M.O.; Fujitsuka, T.; Aida, K.; Isoda, H. Anti-inflammatory and anti-arthritic effects of pentacyclic triterpenoids maslinic acid through NF-κB inactivation. Mol. Nutr. Food Res. 2016, 60, 399–409. [Google Scholar] [CrossRef]
- Nasuti, C.; Fedeli, D.; Bordoni, L.; Piangerelli, M.; Servili, M.; Selvaggini, R.; Gabbianelli, R. Anti-inflammatory, anti-arthritic and anti-nociceptive activities of Nigella sativa oil in a rat model of arthritis. Antioxidants 2019, 8, 342. [Google Scholar] [CrossRef]
- Desbois, A.P.; Smith, V.J. Antibacterial free fatty acids: Activities, mechanisms of action and biotechnological potential. Appl. Microbiol. Biotechnol. 2010, 85, 1629–1642. [Google Scholar] [CrossRef] [PubMed]
- Loesche, A.; Wiemann, J.; Al Halabi, Z.; Karasch, J.; Sippl, W.; Csuk, R. Unexpected AChE inhibitory activity of (2E) α,β-unsaturated fatty acids. Bioorg. Med. Chem. Lett. 2018, 28, 3315–3319. [Google Scholar] [CrossRef] [PubMed]
- Kumar, J.B.S.; Sharma, B. A review on neuropharmacological role of erucic acid: An omega-9 fatty acid from edible oils. Nutr. Neurosci. 2022, 25, 1041–1055. [Google Scholar] [CrossRef]
- Ando, H.; Ryu, A.; Hashimoto, A.; Oka, M.; Ichihashi, M. Linoleic acid and α-linolenic acid lightens ultraviolet-induced hyperpigmentation of the skin. Arch. Dermatol. Res. 1998, 290, 375–381. [Google Scholar] [CrossRef]
Items | Opuntia Ficus-indica | Borago officinalis | Calophyllum inophyllum |
---|---|---|---|
C16:0 | 13.83 ± 1.17 | 10.70 ± 0.21 | 15.75 ± 1.04 |
C17:0 | 0.05 ± 0.00 | 0.06 ± 0.00 | 0.13 ± 0.04 |
C18:0 | 3.79 ± 0.42 | 5.97 ± 0.18 | 14.08 ± 0.17 |
C20:0 | 0.34 ± 0.02 | 0.37 ± 0.01 | 0.74 ± 0.08 |
C22:0 | 0.22 ± 0.06 | 0.23 ± 0.01 | 0.24 ± 0.03 |
C24:0 | 0.14 ± 0.02 | 0.10 ± 0.00 | 0.09 ± 0.03 |
SFA | 18.36 ± 1.69 | 17.43 ± 0.42 | 31.03 ± 0.96 |
C16:1 | 0.68 ± 0.06 | 0.13 ± 0.00 | 0.29 ± 0.02 |
C18:1n9 | 15.71 ± 0.09 | 21.32 ± 0.26 | 38.13 ± 0.71 |
C20:1 | 0.21 ± 0.01 | 3.98 ± 0.10 | 0.23 ± 0.09 |
C22:1 | - | 2.27 ± 0.07 | - |
C24:1 | - | 1.48 ± 0.06 | - |
MUFA | 16.59 ± 0.02 | 29.18 ± 0.49 | 38.65 ± 0.78 |
C18:2n6 | 64.43 ± 1.68 | 35.91 ± 0.26 | 29.77 ± 1.75 |
C18:3n6 | - | 17.16 ± 0.64 | - |
C18:3n3 | 0.45 ± 0.01 | 0.20 ± 0.01 | 0.25 ± 0.01 |
C20:2n6 | - | 0.14 ± 0.00 | - |
C20:3n3 | 0.18 ± 0.00 | - | 0.29 ± 0.21 |
PUFA | 65.06 ± 1.68 | 53.40 ± 0.91 | 30.32 ± 1.54 |
PUFA n3 | 0.63 ± 0.01 | 0.20 ± 0.01 | 0.54 ± 0.21 |
PUFA n6 | 64.43 ± 1.68 | 53.21 ± 0.90 | 29.77 ± 1.75 |
Borage | Calophyllum | Prickly Pear | |
---|---|---|---|
DPPH (IC50, μg) | 12.3 ± 1.46 c | 8.07 ± 0.19 c | 9.47 ± 0.67 c |
DPPH (%) | 71.02 (±2.01) c | 79.8 (±1.96) c | 76.6 (±2.14) c |
TEAC (mM TE g−1) | 8.65 ± 0.29 c | 4.96 ± 0.39 c | 6.13 ± 0.11 c |
Anti-arthritic activity (IC50, μg) | 6.05 ± 0.25 c | nd | 6.98 ± 0.7 c |
AChE-inhibitory activity (%) | 62.8 ± 1.8 b | 95 ± 2.3 c | 62.4 ± 0.13 b |
AChE-inhibitory activity (IC50, μg) | 23.54 ± 1.8 b | 19.85 ± 2.82 b | 20.13 ± 0.13 b |
BchE-inhibitory activity (%) | 71.6 ± 2.48 b | nd | 5.4 ± 0.67 a |
BchE-inhibitory activity (IC50, μg) | 13.2 ± 1.17 c | nd | 73.2 ± 0.67 a |
Tyrosinase-inhibitory activity (DOPA, IC50, μg) | 13.5 ± 0.67 c | 15.75 ± 1.67 c | 6.41 ± 0.23 c |
Borage Seed Oil 10 μL/mL | Borage Seed Oil 20 μL/mL | Calophyllum Seed Oil 10 μL/mL | Calophyllum Seed Oil 20 μL/mL | Prickly Pear 10 μL/mL | Prickly Pear 20 μL/mL | |
---|---|---|---|---|---|---|
A. baumanii | 18.83 (±1.13) b | 24.93 (±2.12) b | 0.00 (±0.00) nd | 50.34 (±4.02) b | 19.05 (±1.13) b | 31.02 (±2.67) b |
E. coli | 0.00 (±0.00) nd | 17.02 (±0.98) b | 0.00 (±0.00) nd | 34.28 (±2.77) b | 76.21 (±2.98) c | 80.15 (±2.12) c |
L. monocytogenes | 20.47 (±1.98) b | 31.87 (±3.02) b | 15.30 (±0.85) b | 15.56 (±0.92) b | 0.00 (±0.00) nd | 0.00 (±0.00) nd |
P. aeruginosa | 0.00 (±0.00) | 0.00 (±0.00) | 8.91 (±0.33) a | 39.05 (±2.15) b | 0.00 (±0.00) nd | 0.00 (±0.00) nd |
S. aureus | 38.48 (±2.32) b | 63.95 (±2.14) c | 33.47 (±2.67) b | 56.09 (±4.44) c | 28.02 (±1.67) b | 28.42 (±1.65) b |
Borage Seed Oil 10 μL/mL | Borage Seed Oil 20 μL/mL | Calophyllum Seed Oil 10 μL/mL | Calophyllum Seed Oil 20 μL/mL | Prickly Pear 10 μL/mL | Prickly Pear 20 μL/mL | |
---|---|---|---|---|---|---|
A. baumanii | 0.00 (±0.00) nd | 13.30 (±0.57) a | 34.41 (±4.01) b | 63.07 (±3.45) c | 51.28 (±4.12) c | 62.71 (±2.87) c |
E. coli | 26.23 (±2.04) b | 43.56 (±2.12) b | 0.00 (±0.00) nd | 0.00 (±0.00) nd | 0.00 (±0.00) nd | 0.00 (±0.00) nd |
L. monocytogenes | 21.35 (±1.15) b | 54.41 (±3.33) c | 25.67 (±3–14) b | 31.86 (±2.09) b | 0.00 (±0.00) nd | 0.00 (±0.00) nd |
P. aeruginosa | 0.00 (±0.00) nd | 50.83 (±4–04) b | 0.48 (±0.00) nd | 7.04 (±0.14) a | 0.00 (±0.00) nd | 49.52 (±3.12) b |
S. aureus | 0.00 (±0.00) nd | 19.56 (±0.67) b | 11.28 (±1.09) a | 33.49 (±3–03) b | 0.00 (±0.00) nd | 0.00 (±0.00) nd |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fratianni, F.; Coppola, F.; Tavaniello, S.; Ombra, M.N.; De Giulio, B.; D’Agostino, N.; Zengin, G.; Coppola, R.; Nazzaro, F. Fatty Acid Profile and Some Useful Biological Aspects of Borage, Calophyllum, and Prickly Pear Seed Oils: Implications for Health and Dietary Use. Antioxidants 2025, 14, 661. https://doi.org/10.3390/antiox14060661
Fratianni F, Coppola F, Tavaniello S, Ombra MN, De Giulio B, D’Agostino N, Zengin G, Coppola R, Nazzaro F. Fatty Acid Profile and Some Useful Biological Aspects of Borage, Calophyllum, and Prickly Pear Seed Oils: Implications for Health and Dietary Use. Antioxidants. 2025; 14(6):661. https://doi.org/10.3390/antiox14060661
Chicago/Turabian StyleFratianni, Florinda, Francesca Coppola, Siria Tavaniello, Maria Neve Ombra, Beatrice De Giulio, Nunzio D’Agostino, Gokhan Zengin, Raffaele Coppola, and Filomena Nazzaro. 2025. "Fatty Acid Profile and Some Useful Biological Aspects of Borage, Calophyllum, and Prickly Pear Seed Oils: Implications for Health and Dietary Use" Antioxidants 14, no. 6: 661. https://doi.org/10.3390/antiox14060661
APA StyleFratianni, F., Coppola, F., Tavaniello, S., Ombra, M. N., De Giulio, B., D’Agostino, N., Zengin, G., Coppola, R., & Nazzaro, F. (2025). Fatty Acid Profile and Some Useful Biological Aspects of Borage, Calophyllum, and Prickly Pear Seed Oils: Implications for Health and Dietary Use. Antioxidants, 14(6), 661. https://doi.org/10.3390/antiox14060661