Comparative Efficacy of Antrodia cinnamomea on Liver Function Biomarkers in Mice and Rats: A Network Meta-Analysis
Abstract
1. Introduction
2. Methods
2.1. Database Searches and Study Identification
2.2. Inclusion and Exclusion Criteria
2.3. Modeling for Network Meta-Analysis
2.4. Methodological Quality Appraisal
2.5. Primary Outcome: Improvement in Liver Function
2.6. Secondary Outcome: Oxidative Stress and Inflammatory Markers
2.7. Data Extraction, Management, and Conversion
2.8. Statistical Analysis
2.9. Sensitivity Analysis
2.10. Publication Bias
3. Results
3.1. Identification of Research and Construction of Network Models
3.2. Methodological Quality of the Included Studies
3.3. Primary Outcome: High-Dose Triterpenoids Most Effective in Reducing ALT and Medium-Dose Triterpenoids Most Effective for AST
3.4. Secondary Outcome: Antrodia cinnamomea Interventions Reduce Oxidative Stress and Inflammatory Cytokines
3.5. Inconsistency Test
3.6. Sensitivity Analyses
3.7. Publication Bias
4. Discussion
4.1. Main Findings and Implications
4.2. Significance in the Context of Existing Research
4.3. Possible Mechanistic Explanations
4.4. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Younossi, Z.; Anstee, Q.M.; Marietti, M.; Hardy, T.; Henry, L.; Eslam, M.; George, J.; Bugianesi, E. Global Burden of Nafld and Nash: Trends, Predictions, Risk Factors and Prevention. Nat. Rev. Gastroenterol. Hepatol. 2018, 15, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Younossi, Z.M.; Golabi, P.; Paik, J.M.; Henry, A.; Van Dongen, C.; Henry, L. The Global Epidemiology of Nonalcoholic Fatty Liver Disease (Nafld) and Nonalcoholic Steatohepatitis (Nash): A Systematic Review. Hepatology 2023, 77, 1335–1347. [Google Scholar] [CrossRef] [PubMed]
- Balkrishna, A.; Sharma, N.; Srivastava, D.; Kukreti, A.; Srivastava, S.; Arya, V. Exploring the Safety, Efficacy, and Bioactivity of Herbal Medicines: Bridging Traditional Wisdom and Modern Science in Healthcare. Future Integr. Med. 2024, 3, 35–49. [Google Scholar] [CrossRef]
- Madrigal-Santillán, E.; Madrigal-Bujaidar, E.; Álvarez-González, I.; Sumaya-Martínez, M.T.; Gutiérrez-Salinas, J.; Bautista, M.; Morales-González, Á.; García-Luna y González-Rubio, M.; Aguilar-Faisal, J.L.; Morales-González, J.A. Review of Natural Products with Hepatoprotective Effects. World J. Gastroenterol. WJG 2014, 20, 14787. [Google Scholar] [CrossRef]
- Thilagavathi, R.; Begum, S.S.; Varatharaj, S.D.; Balasubramaniam, A.K.; George, J.S.; Selvam, C. Recent Insights into the Hepatoprotective Potential of Medicinal Plants and Plant-Derived Compounds. Phytother. Res. 2023, 37, 2102–2118. [Google Scholar] [CrossRef] [PubMed]
- Yue, P.Y.-K.; Wong, Y.-Y.; Wong, K.Y.-K.; Tsoi, Y.-K.; Leung, K.S.-Y. Current Evidence for the Hepatoprotective Activities of the Medicinal Mushroom Antrodia Cinnamomea. Chin. Med. 2013, 8, 21. [Google Scholar] [CrossRef]
- Ao, Z.-H.; Xu, Z.-H.; Lu, Z.-M.; Xu, H.-Y.; Zhang, X.-M.; Dou, W.-F. Niuchangchih (Antrodia Camphorata) and Its Potential in Treating Liver Diseases. J. Ethnopharmacol. 2009, 121, 194–212. [Google Scholar] [CrossRef]
- Li, H.-X.; Wang, J.-J.; Lu, C.-L.; Gao, Y.-J.; Gao, L.; Yang, Z.-Q. Review of Bioactivity, Isolation, and Identification of Active Compounds from Antrodia Cinnamomea. Bioengineering 2022, 9, 494. [Google Scholar] [CrossRef]
- Kumar, K.J.S.; Wang, S.-Y. Antioxidant Properties of Antrodia Cinnamomea: An Extremely Rare and Coveted Medicinal Mushroom Endemic to Taiwan. In Medicinal Plants and Fungi: Recent Advances in Research and Development; Springer: Singapore, 2017; pp. 135–164. [Google Scholar]
- Lee, M.T.; Lin, W.C.; Wang, S.Y.; Lin, L.J.; Yu, B.; Lee, T.T. Evaluation of Potential Antioxidant and Anti-Inflammatory Effects of Antrodia Cinnamomea Powder and the Underlying Molecular Mechanisms Via Nrf2-and Nf-κb-Dominated Pathways in Broiler Chickens. Poult. Sci. 2018, 97, 2419–2434. [Google Scholar] [CrossRef]
- Lin, Z.-H.; Phan, S.-N.; Tran, D.-N.; Lu, M.-K.; Lin, T.-Y. Anti-Inflammatory and Anticancer Effects of Polysaccharides from Antrodia Cinnamomea: A Review. J. Chin. Med. Assoc. 2025, 88, 1–11. [Google Scholar] [CrossRef]
- Liu, X.; Yu, S.; Zhang, Y.; Zhang, W.; Zhong, H.; Lu, X.; Guan, R. A Review on the Protective Effect of Active Components in Antrodia Camphorata against Alcoholic Liver Injury. J. Ethnopharmacol. 2023, 300, 115740. [Google Scholar] [CrossRef] [PubMed]
- Walker, E.; Hernandez, A.V.; Kattan, M.W. Meta-Analysis: Its Strengths and Limitations. Clevel. Clin. J. Med. 2008, 75, 431. [Google Scholar] [CrossRef] [PubMed]
- Vesterinen, H.; Sena, E.; Egan, K.; Hirst, T.; Churolov, L.; Currie, G.; Antonic, A.; Howells, D.; Macleod, M. Meta-Analysis of Data from Animal Studies: A Practical Guide. J. Neurosci. Methods 2014, 221, 92–102. [Google Scholar] [CrossRef]
- Chaimani, A.; Caldwell, D.M.; Li, T.; Julian, P.T.H.; Salanti, G. Undertaking Network Meta-Analyses. Cochrane Handb. Syst. Rev. Interv. 2019, 285–320. [Google Scholar]
- Hadizadeh, F.; Faghihimani, E.; Adibi, P. Nonalcoholic Fatty Liver Disease: Diagnostic Biomarkers. World J. Gastrointest. Pathophysiol. 2017, 8, 11–26. [Google Scholar] [CrossRef] [PubMed]
- Burra, P.; Cammà, C.; Invernizzi, P.; Marra, F.; Pompili, M. Does the Hepatologist Still Need to Rely on Aminotransferases in Clinical Practice? A Reappraisal of the Role of a Classic Biomarker in the Diagnosis and Clinical Management of Chronic Liver Diseases. Ann. Hepatol. 2025, 30, 101900. [Google Scholar] [CrossRef]
- Potoupni, V.; Georgiadou, M.; Chatzigriva, E.; Polychronidou, G.; Markou, E.; Gakis, C.Z.; Filimidou, I.; Karagianni, M.; Anastasilakis, D.; Evripidou, K.; et al. Circulating Tumor Necrosis Factor-α Levels in Non-Alcoholic Fatty Liver Disease: A Systematic Review and a Meta-Analysis. J. Gastroenterol. Hepatol. 2021, 36, 3002–3014. [Google Scholar] [CrossRef]
- Hutton, B.; Salanti, G.; Caldwell, D.M.; Chaimani, A.; Schmid, C.H.; Cameron, C.; Ioannidis, J.P.; Straus, S.; Thorlund, K.; Jansen, J.P.; et al. The Prisma Extension Statement for Reporting of Systematic Reviews Incorporating Network Meta-Analyses of Health Care Interventions: Checklist and Explanations. Ann. Intern. Med. 2015, 162, 777–784. [Google Scholar] [CrossRef]
- Li, Z.W.; Kuang, Y.; Tang, S.N.; Li, K.; Huang, Y.; Qiao, X.; Yu, S.W.; Tzeng, Y.M.; Lo, J.Y.; Ye, M. Hepatoprotective Activities of Antrodia Camphorata and Its Triterpenoid Compounds against Ccl(4)-Induced Liver Injury in Mice. J. Ethnopharmacol. 2017, 206, 31–39. [Google Scholar] [CrossRef]
- Watt, J.; Tricco, A.C.; Straus, S.; Veroniki, A.A.; Naglie, G.; Drucker, A.M. Research Techniques Made Simple: Network Meta-Analysis. J. Investig. Dermatol. 2019, 139, 4–12.e1. [Google Scholar] [CrossRef]
- Hooijmans, C.R.; Rovers, M.M.; de Vries, R.B.; Leenaars, M.; Ritskes-Hoitinga, M.; Langendam, M.W. Syrcle’s Risk of Bias Tool for Animal Studies. BMC Med. Res. Methodol. 2014, 14, 43. [Google Scholar] [CrossRef]
- Kim, W.R.; Flamm, S.L.; Di Bisceglie, A.M.; Bodenheimer, H.C. Serum Activity of Alanine Aminotransferase (Alt) as an Indicator of Health and Disease. Hepatology 2008, 47, 1363–1370. [Google Scholar] [CrossRef]
- Giannini, E.G.; Testa, R.; Savarino, V. Liver Enzyme Alteration: A Guide for Clinicians. CMAJ 2005, 172, 367–379. [Google Scholar] [CrossRef]
- Del Rio, D.; Stewart, A.J.; Pellegrini, N. A Review of Recent Studies on Malondialdehyde as Toxic Molecule and Biological Marker of Oxidative Stress. Nutr. Metab. Cardiovasc. Dis. 2005, 15, 316–328. [Google Scholar] [CrossRef] [PubMed]
- Bradley, J.R. Tnf-Mediated Inflammatory Disease. J. Pathol. A J. Pathol. Soc. Great Br. Irel. 2008, 214, 149–160. [Google Scholar] [CrossRef]
- Schindelin, J.; Rueden, C.T.; Hiner, M.C.; Eliceiri, K.W. The Imagej Ecosystem: An Open Platform for Biomedical Image Analysis. Mol. Reprod. Dev. 2015, 82, 518–529. [Google Scholar] [CrossRef] [PubMed]
- Shivanandan, A.; Radenovic, A.; Sbalzarini, I.F. Mosaicia: An Imagej/Fiji Plugin for Spatial Pattern and Interaction Analysis. BMC Bioinform. 2013, 14, 349. [Google Scholar] [CrossRef] [PubMed]
- Wan, X.; Wang, W.; Liu, J.; Tong, T. Estimating the Sample Mean and Standard Deviation from the Sample Size, Median, Range and/or Interquartile Range. BMC Med. Res. Methodol. 2014, 14, 1–13. [Google Scholar] [CrossRef]
- Higgins, J.P.T.; Li, T.; Deeks, J.J. Choosing Effect Measures and Computing Estimates of Effect. Cochrane Handb. Syst. Rev. Interv. 2019, 143–176. [Google Scholar]
- Deeks, J.J.; Higgins, J.P.T.; Altman, D.G. Cochrane Statistical Methods Group. Analysing Data and Undertaking Meta-Analyses. Cochrane Handb. Syst. Rev. Interv. 2019, 241–284. [Google Scholar]
- Borenstein, M.; Hedges, L.V.; Higgins, J.P.T.; Rothstein, H.R. A Basic Introduction to Fixed-Effect and Random-Effects Models for Meta-Analysis. Res. Synth. Methods 2010, 1, 97–111. [Google Scholar] [PubMed]
- Owen, R.K.; Bradbury, N.; Xin, Y.; Cooper, N.; Sutton, A. Metainsight: An Interactive Web-Based Tool for Analyzing, Interrogating, and Visualizing Network Meta-Analyses Using R-Shiny and Netmeta. Res. Synth. Methods 2019, 10, 569–581. [Google Scholar] [CrossRef] [PubMed]
- Becker, L.A. Effect Size Calculators; University of Colorado: Boulder, CO, USA, 2000. [Google Scholar]
- Salanti, G.; Del Giovane, C.; Chaimani, A.; Caldwell, D.M.; Higgins, J.P.T. Evaluating the Quality of Evidence from a Network Meta-Analysis. PLoS ONE 2014, 9, e99682. [Google Scholar] [CrossRef] [PubMed]
- Higgins, J.P.T.; Thomas, J.; Chandler, J.; Cumpston, M.; Li, T.; Page, M.J.; Welch, V.A. (Eds.) Cochrane Handbook for Systematic Reviews of Interventions, version 6.3 (updated February 2022). Cochrane. 2022. Available online: www.training.cochrane.org/handbook (accessed on 23 April 2025).
- Cao, C.; Zhong, H.; Chen, Z.; Song, Z.; Hu, B.; Wang, X. Triterpene Acid from Antrodia Camphorata Alleviates Inflammation in Acute Liver Injury. Aging 2023, 15, 4524–4532. [Google Scholar] [CrossRef]
- Chyau, C.-C.; Wang, H.-F.; Zhang, W.-J.; Chen, C.-C.; Huang, S.-H.; Chang, C.-C.; Peng, R.Y. Antrodan Alleviates High-Fat and High-Fructose Diet-Induced Fatty Liver Disease in C57bl/6 Mice Model Via Ampk/Sirt1/Srebp-1c/Pparγ Pathway. Int. J. Mol. Sci. 2020, 21, 360. [Google Scholar]
- Han, H.-F.; Nakamura, N.; Zuo, F.; Hirakawa, A.; Yokozawa, T.; Hattori, M. Protective Effects of a Neutral Polysaccharide Isolated from the Mycelium of Antrodia Cinnamomea on Propionibacterium Acnes and Lipopolysaccharide Induced Hepatic Injury in Mice. Chem. Pharm. Bull. 2006, 54, 496–500. [Google Scholar] [CrossRef]
- Ker, Y.-B.; Peng, C.-C.; Chang, W.-L.; Chyau, C.-C.; Peng, R.Y. Hepatoprotective Bioactivity of the Glycoprotein, Antrodan, Isolated from Antrodia Cinnamomea Mycelia. PLoS ONE 2014, 9, e93191. [Google Scholar] [CrossRef]
- Liu, Y.; Li, L.; An, S.; Zhang, Y.; Feng, S.; Zhao, L.; Teng, L.; Wang, D. Antifatigue Effects of Antrodia Cinnamomea Cultured Mycelium Via Modulation of Oxidative Stress Signaling in a Mouse Model. Biomed. Res. Int. 2017, 2017, 9374026. [Google Scholar]
- Liu, Y.; Wang, Z.; Kong, F.; Teng, L.; Zheng, X.; Liu, X.; Wang, D. Triterpenoids Extracted from Antrodia Cinnamomea Mycelia Attenuate Acute Alcohol-Induced Liver Injury in C57bl/6 Mice Via Suppression Inflammatory Response. Front. Microbiol. 2020, 11, 1113. [Google Scholar]
- Peng, C.H.; Yang, M.Y.; Yang, Y.S.; Yu, C.C.; Wang, C.J. Antrodia Cinnamomea Prevents Obesity, Dyslipidemia, and the Derived Fatty Liver Via Regulating Ampk and Srebp Signaling. Am. J. Chin. Med. 2017, 45, 67–83. [Google Scholar] [CrossRef]
- Ruan, S.; Yang, Y.; Li, W. Antrodia Camphorata Polysaccharide Activates Autophagy and Regulates Nlrp3 Degradation to Improve Liver Injury-Related Inflammatory Response. Aging 2022, 14, 8970–8981. [Google Scholar] [PubMed]
- Shih, Y.-L.; Wu, M.-F.; Lee, C.-H.; Yeh, M.-Y.; Chou, J.; Liu, J.-Y.; Lu, H.-F.; Huang, Y.-P.; Liao, N.-C.; Chung, J.-G. Antrodia Cinnamomea Reduces Carbon Tetrachloride-Induced Hepatotoxicity in Male Wister Rats. Vivo 2017, 31, 877–884. [Google Scholar]
- Wang, L.; Li, W.-H.; Zhang, R.; Ge, Y.-P.; Yang, S.-D.; Liu, W.; Wu, Q.-P.; Cheng, X.-H. Study on Characteristics of Triterpenoids and Hepatoprotective Effects of Fruit Body of Stout Camphor Mushroom, Taiwanofungus Camphoratus (Agaricomycetes), Cultivated with Apple-Wood. Int. J. Med. Mushrooms 2022, 24, 53–65. [Google Scholar] [PubMed]
- Wen, C.-L.; Chang, C.-C.; Huang, S.-S.; Kuo, C.-L.; Hsu, S.-L.; Deng, J.-S.; Huang, G.-J. Anti-Inflammatory Effects of Methanol Extract of Antrodia Cinnamomea Mycelia Both in Vitro and in Vivo. J. Ethnopharmacol. 2011, 137, 575–584. [Google Scholar] [CrossRef]
- Xu, L.; Peng, A.-K.; Cao, Y.-N.; Qiao, X.; Yue, S.-S.; Ye, M.; Qi, R. Protective Effects of Antrodia Cinnamomea and Its Constituent Compound Dehydroeburicoic Acid 32 against Alcoholic Fatty Liver Disease. Curr. Mol. Pharmacol. 2021, 14, 871–882. [Google Scholar] [CrossRef]
- Kim, U.; Jang, S.-I.; Chen, P.-N.; Horii, S.; Wen, W.-C. Hepatoprotective Effect of Antrodia Camphorata Mycelium Powder on Alcohol-Induced Liver Damage. Nutrients 2024, 16, 3406. [Google Scholar] [CrossRef]
- Kumar, K.S.; Chu, F.-H.; Hsieh, H.-W.; Liao, J.-W.; Li, W.-H.; Lin, J.C.-C.; Shaw, J.-F.; Wang, S.-Y. Antroquinonol from Ethanolic Extract of Mycelium of Antrodia Cinnamomea Protects Hepatic Cells from Ethanol-Induced Oxidative Stress through Nrf-2 Activation. J. Ethnopharmacol. 2011, 136, 168–177. [Google Scholar] [CrossRef]
- Yang, Y.; Han, C.; Sheng, Y.; Wang, J.; Li, W.; Zhou, X.; Ruan, S. Antrodia Camphorata Polysaccharide Improves Inflammatory Response in Liver Injury Via the Ros/Tlr4/Nf-κb Signal. J. Cell Mol. Med. 2022, 26, 2706–2716. [Google Scholar] [CrossRef]
- Cheng, S.; Kuang, Y.; Li, G.; Wu, J.; Ko, C.N.; Wang, W.; Ma, D.L.; Ye, M.; Leung, C.H. Dehydroeburicoic Acid, a Dual Inhibitor against Oxidative Stress in Alcoholic Liver Disease. Pharmaceuticals 2022, 16, 14. [Google Scholar] [CrossRef]
Study | Animal Model (n) | Intervention Groups | Control Groups | Outcomes |
---|---|---|---|---|
Cao et al., 2023 [37] | Mouse (C57BL/6) (n = 10/group) | ALI, Antcin A-L, Antcin A-H | Negative/Model | ALT, AST, MDA, TNF-α |
Chyau et al., 2020 [38] | Mouse (n = 10/group) | HFD, Ant 40 mg/kg, HFD + Orlistat, HFD + Ant 20 mg/kg, HFD + Ant 40 mg/kg | Negative/Model/Positive | ALT, AST, MDA |
Han et al., 2006 [39] | Mouse (n = 10/group) | P. acnes + LPS, ACN2a 0.2, 0.4, 0.8 g/kg, FK506 1 mg/kg | Negative/Model/Positive | ALT, AST |
Ker et al., 2014 [40] | Rat (n = 6/group) | LPS, Antrodan control, Antrodan L + LPS, Antrodan H + LPS | Negative/Model/Positive | ALT, AST |
Kim et al., 2024 [49] | Rat (n = 10/group) | Alcohol Control, A. camphorata 50, 100, 200 mg/kg, Silymarin 200 mg/kg) | Negative/Model/Positive | ALT, AST, MDA |
Kumer et al., 2011 [50] | Mouse (n = 6/group) | Ethanol, EMAC 250 mg/kg, EMAC 500 mg/kg, EMAC 1000 mg/kg, Silymarin | Negative/Model/Positive | ALT, AST, MDA, TNF-α |
Liu et al., 2017 [41] | Mouse (n = 24/group) | AC 0.1 g/kg, AC 0.3 g/kg, AC 0.9 g/kg | Negative/Model | ALT, AST, MDA |
Liu et al., 2020 [42] | Mouse (n = 8/group) | Alcohol, Silibinin, ACT 5 mg/kg, ACT 15 mg/kg, ACT 45 mg/kg | Negative/Model/Positive | ALT, AST, TNF-α |
Peng et al., 2017 [43] | Mouse (n = 10/group) | HFD, HFD + 0.5% ACE, HFD + 1% ACE, HFD + 2% ACE | Negative/Model | ALT, AST |
Raun et al., 2022 [44] | Mouse (n = 10/group) | D-GalN/LPS, ACP 5 mg/kg, ACP 15 mg/kg | Negative/Model | ALT, AST, TNF-α |
Shih et al., 2017 [45] | Rat (n = 10/group) | CCl4, Silymarin, AC 350 mg/kg, AC 1400 mg/kg, AC 3150 mg/kg | Negative/Model/Positive | ALT, AST, MDA |
Wang et al., 2022 [46] | Mouse (n = 8/group) | Model, Low-dose, Medium-dose, High-dose | Negative/Model | ALT, AST, MDA |
Wen et al., 2011 [47] | Mouse (n = 6/group) | Carrageenan, MEMAC 100, 200, 400 mg/kg, Indomethacin | Negative/Model/Positive | MDA, TNF-α |
Xu et al., 2021 [48] | Mouse (n = 10/group) | Liver Injury Model, Bioactive Compound 100 mg/kg, 250 mg/kg, 500 mg/kg, Silymarin 50 mg/kg | Negative/Model | ALT, AST |
Yang et al., 2022 [51] | Mouse (n = 10/group) | D-GalN/LPS, ACP 5 mg/kg, ACP 15 mg/kg | Negative/Model | ALT, AST, MDA, TNF-α |
a. | ||||||||||||
Negative Control | Triterpenoids High Dose | Polysaccharides High Dose | Triterpenoids Medium Dose | Polysaccharides Medium Dose | Polysaccharides Low Dose | Antroquinonol High Dose | Positive Control | Antroquinonol Low Dose | Antroquinonol Medium Dose | Triterpenoids Low Dose | Model Control | |
Negative Control | Negative Control | −11.34 [−23.60; 0.92] | −27.77 [−43.75; −11.79] | −10.00 [−25.27; 5.28] | −7.07 [−33.24; 19.10] | −40.97 [−56.69; −25.24] | 10.57 [−7.91; 29.04] | 2.78 [−12.17; 17.73] | 7.03 [−11.49; 25.55] | 6.17 [−12.32; 24.66] | −34.96 [−49.01; −20.91] | −54.85 [−64.93; −44.77] |
Triterpenoids High Dose | −8.81 [−20.25; 2.64] | Triterpenoids High Dose | − | −5.62 [−20.96; 9.73] | − | − | − | 0.43 [−25.21; 26.06] | − | − | −21.03 [−35.14; −6.92] | −49.23 [−62.34; −36.13] |
Polysaccharides High Dose | −20.06 [−31.79; −8.33] | −11.26 [−26.59; 4.08] | Polysaccharides High Dose | − | 0.04 [−18.44; 18.51] | −9.21 [−21.55; 3.14] | − | −13.40 [−39.90; 13.11] | − | − | − | −52.16 [−68.46; −35.86] |
Triterpenoids Medium Dose | −21.30 [−34.77; −7.83] | −12.49 [−26.83; 1.84] | −1.24 [−18.06; 15.58] | Triterpenoids Medium Dose | − | − | − | 0.40 [−25.23; 26.03] | − | − | −10.08 [−25.31; 5.15] | −16.67 [−32.17; −1.16] |
Polysaccharides Medium Dose | −24.84 [−41.68; −8.01] | −16.04 [−35.53; 3.45] | −4.78 [−21.29; 11.73] | −3.54 [−24.23; 17.14] | Polysaccharides Medium Dose | −3.10 [−21.48; 15.29] | − | 299.20 [−35.28; 633.67] | − | − | − | −7.25 [−33.51; 19.02] |
Polysaccharides Low Dose | −25.62 [−37.20; −14.04] | −16.81 [−32.01; −1.61] | −5.56 [−17.25; 6.14] | −4.32 [−21.02; 12.38] | −0.78 [−17.22; 15.67] | Polysaccharides Low Dose | − | −1.40 [−27.66; 24.86] | − | − | − | −36.07 [−51.98; −20.16] |
Antroquinonol High Dose | −27.05 [−43.10; −11.00] | −18.24 [−36.77; 0.29] | −6.98 [−25.68; 11.71] | −5.75 [−25.48; 13.98] | −2.20 [−24.48; 20.08] | −1.43 [−20.02; 17.16] | Antroquinonol High Dose | 0.66 [−17.57; 18.88] | −3.55 [−21.81; 14.71] | −4.49 [−22.71; 13.74] | − | 9.01 [−9.15; 27.18] |
Positive Control | −28.21 [−40.16; −16.26] | −19.40 [−34.00; −4.81] | −8.15 [−22.79; 6.49] | −6.91 [−22.87; 9.05] | −3.37 [−22.54; 15.81] | −2.59 [−17.10; 11.92] | −1.16 [−17.74; 15.41] | Positive Control | −4.21 [−22.48; 14.07] | −5.14 [−23.38; 13.10] | −0.81 [−26.47; 24.85] | −2.33 [−15.34; 10.68] |
Antroquinonol Low Dose | −30.59 [−46.70; −14.48] | −21.78 [−40.36; −3.21] | −10.53 [−29.27; 8.21] | −9.29 [−29.07; 10.48] | −5.75 [−28.07; 16.57] | −4.97 [−23.61; 13.66] | −3.55 [−21.80; 14.71] | −2.38 [−19.01; 14.25] | Antroquinonol Low Dose | −0.92 [−19.19; 17.36] | − | 12.52 [−5.70; 30.74] |
Antroquinonol Medium Dose | −31.53 [−47.60; −15.46] | −22.72 [−41.26; −4.18] | −11.47 [−30.17; 7.24] | −10.23 [−29.97; 9.51] | −6.69 [−28.98; 15.60] | −5.91 [−24.51; 12.69] | −4.48 [−22.71; 13.74] | −3.32 [−19.91; 13.27] | −0.94 [−19.21; 17.34] | Antroquinonol Medium Dose | − | 13.50 [−4.68; 31.68] |
Triterpenoids Low Dose | −35.31 [−48.03; −22.58] | −26.50 [−40.08; −12.91] | −15.24 [−31.50; 1.02] | −14.00 [−28.82; 0.81] | −10.46 [−30.69; 9.77] | −9.69 [−25.82; 6.45] | −8.26 [−27.52; 11.01] | −7.10 [−22.53; 8.34] | −4.71 [−24.03; 14.60] | −3.77 [−23.06; 15.51] | Triterpenoids Low Dose | −13.57 [−28.15; 1.01] |
Model Control | −51.18 [−60.22; −42.13] | −42.37 [−54.19; −30.54] | −31.11 [−43.38; −18.84] | −29.87 [−43.51; −16.24] | −26.33 [−43.42; −9.24] | −25.56 [−37.65; −13.47] | −24.13 [−40.08; −8.17] | −22.97 [−34.75; −11.18] | −20.58 [−36.59; −4.57] | −19.64 [−35.62; −3.67] | −15.87 [−28.83; −2.91] | Model Control |
b. | ||||||||||||
Negative Control | Triterpenoids Medium Dose | Polysaccharides High Dose | Triterpenoids High Dose | Polysaccharides Low Dose | Positive Control | Antroquinonol Low Dose | Antroquinonol High Dose | Polysaccharides Medium Dose | Antroquinonol Medium Dose | Triterpenoids Low Dose | Model Control | |
Negative Control | Negative Control | 1.91 [−24.02; 27.84] | −18.61 [−43.86; 6.64] | −14.82 [−35.18; 5.54] | −23.33 [−48.98; 2.32] | 2.76 [−19.28; 24.80] | 21.40 [−10.04; 52.85] | 21.38 [−10.06; 52.82] | −26.92 [−70.12; 16.28] | 19.29 [−12.13; 50.70] | −31.84 [−55.33; −8.35] | −47.17 [−63.32; −31.02] |
Triterpenoids Medium Dose | 1.54 [−21.21; 24.28] | Triterpenoids Medium Dose | − | −21.32 [−47.42; 4.77] | − | −0.10 [−44.17; 43.97] | − | − | − | − | −23.82 [−50.95; 3.32] | −40.81 [−67.83; −13.80] |
Polysaccharides High Dose | −7.72 [−26.56; 11.12] | −9.26 [−36.93; 18.41] | Polysaccharides High Dose | − | −11.65 [−31.60; 8.29] | −25.66 [−69.14; 17.82] | − | − | −3.36 [−34.17; 27.46] | − | − | −58.73 [−82.13; −35.34] |
Triterpenoids High Dose | −11.68 [−30.62; 7.27] | −13.22 [−37.44; 11.01] | −3.96 [−28.63; 20.72] | Triterpenoids High Dose | − | 2.86 [−41.35; 47.07] | − | − | − | − | −9.44 [−33.41; 14.54] | −43.37 [−64.53; −22.21] |
Polysaccharides Low Dose | −16.06 [−35.27; 3.14] | −17.60 [−45.64; 10.43] | −8.35 [−27.25; 10.56] | −4.39 [−29.45; 20.67] | Polysaccharides Low Dose | 415.97 [−53.09; 885.04] | − | − | 3.76 [−27.12; 34.64] | − | − | −42.65 [−66.10; −19.20] |
Positive Control | −19.10 [−38.91; 0.70] | −20.64 [−47.92; 6.64] | −11.38 [−35.46; 12.70] | −7.43 [−32.05; 17.20] | −3.04 [−28.27; 22.20] | Positive Control | −4.47 [−35.59; 26.66] | −4.51 [−35.63; 26.61] | −312.33 [−707.93; 83.27] | −6.69 [−37.78; 24.40] | 3.56 [−40.51; 47.63] | −3.03 [−28.34; 22.29] |
Antroquinonol Low Dose | −19.78 [−46.97; 7.41] | −21.32 [−55.02; 12.39] | −12.06 [−43.12; 19.01] | −8.10 [−39.48; 23.27] | −3.71 [−35.25; 27.83] | −0.68 [−29.04; 27.69] | Antroquinonol Low Dose | −0.04 [−31.26; 31.18] | − | −2.20 [−33.39; 28.99] | − | 6.39 [−24.71; 37.50] |
Antroquinonol High Dose | −19.82 [−47.01; 7.38] | −21.36 [−55.06; 12.35] | −12.10 [−43.16; 18.97] | −8.14 [−39.52; 23.24] | −3.75 [−35.29; 27.79] | −0.71 [−29.08; 27.65] | −0.04 [−31.26; 31.18] | Antroquinonol High Dose | − | −2.16 [−33.35; 29.03] | − | 6.44 [−24.66; 37.54] |
Polysaccharides Medium Dose | −21.11 [−49.06; 6.85] | −22.64 [−57.27; 11.98] | −13.39 [−40.67; 13.89] | −9.43 [−41.69; 22.83] | −5.04 [−32.42; 22.34] | −2.00 [−34.35; 30.34] | −1.33 [−38.83; 36.18] | −1.29 [−38.79; 36.22] | Polysaccharides Medium Dose | − | − | −15.37 [−58.90; 28.16] |
Antroquinonol Medium Dose | −21.97 [−49.13; 5.18] | −23.51 [−57.19; 10.17] | −14.25 [−45.29; 16.78] | −10.30 [−41.64; 21.05] | −5.91 [−37.42; 25.60] | −2.87 [−31.20; 25.46] | −2.20 [−33.38; 28.99] | −2.16 [−33.35; 29.03] | −0.87 [−38.35; 36.61] | Antroquinonol Medium Dose | − | 8.63 [−22.44; 39.70] |
Triterpenoids Low Dose | −26.75 [−48.09; −5.41] | −28.29 [−53.91; −2.67] | −19.03 [−45.57; 7.51] | −15.07 [−38.10; 7.95] | −10.68 [−37.60; 16.23] | −7.65 [−33.91; 18.62] | −6.97 [−39.79; 25.84] | −6.93 [−39.75; 25.88] | −5.64 [−39.36; 28.08] | −4.78 [−37.56; 28.01] | Triterpenoids Low Dose | −19.54 [−43.85; 4.77] |
Model Control | −48.64 [−63.10; −34.18] | −50.18 [−73.31; −27.05] | −40.92 [−59.60; −22.24] | −36.96 [−56.35; −17.58] | −32.58 [−51.72; −13.43] | −29.54 [−49.97; −9.11] | −28.86 [−56.15; −1.57] | −28.82 [−56.12; −1.53] | −27.53 [−55.46; 0.39] | −26.67 [−53.92; 0.59] | −21.89 [−43.64; −0.14] | Model Control |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuo, C.-L.; Ting, B.; Tseng, R.J.-H.; Liu, S.-P.; Liou, J.-Y. Comparative Efficacy of Antrodia cinnamomea on Liver Function Biomarkers in Mice and Rats: A Network Meta-Analysis. Antioxidants 2025, 14, 660. https://doi.org/10.3390/antiox14060660
Kuo C-L, Ting B, Tseng RJ-H, Liu S-P, Liou J-Y. Comparative Efficacy of Antrodia cinnamomea on Liver Function Biomarkers in Mice and Rats: A Network Meta-Analysis. Antioxidants. 2025; 14(6):660. https://doi.org/10.3390/antiox14060660
Chicago/Turabian StyleKuo, Chien-Liang, Berne Ting, Ray Jui-Hung Tseng, Shih-Ping Liu, and Jun-Yang Liou. 2025. "Comparative Efficacy of Antrodia cinnamomea on Liver Function Biomarkers in Mice and Rats: A Network Meta-Analysis" Antioxidants 14, no. 6: 660. https://doi.org/10.3390/antiox14060660
APA StyleKuo, C.-L., Ting, B., Tseng, R. J.-H., Liu, S.-P., & Liou, J.-Y. (2025). Comparative Efficacy of Antrodia cinnamomea on Liver Function Biomarkers in Mice and Rats: A Network Meta-Analysis. Antioxidants, 14(6), 660. https://doi.org/10.3390/antiox14060660