Antioxidant Effect of a Fucus vesiculosus Extract on Intestinal Ischemia/Reperfusion Injury in Rats: A Biochemical and Histological Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Seaweed Pre-Treatment
2.2. Seaweed Extracts Preparation
2.3. Characterisation of Polyphenols and Determination of the Extract’s Antioxidant Activity
2.4. Animals
2.5. Experimental Groups
2.6. Surgical Procedure
2.7. Intestinal Samples Pre-Treatment
2.8. Biochemical Analysis
2.8.1. Malondialdehyde (MDA) Activity Assay
2.8.2. Measurement of Superoxide Dismutase (SOD) Activity
2.8.3. Measurement of Catalase (CAT) Activity
2.8.4. Measurement of Glutathione Peroxidase (GPx) Activity
2.8.5. Mieloperoxidase (MPO) Activity Assay
2.8.6. Determination of Interleukins Il-1β and Il-10
2.9. Histological Study
2.10. Statistical Analysis
3. Results
3.1. Polyphenolic Content and Antioxidant Activity of F. vesiculosus Extract
3.2. Effect of F. vesiculosus Treatment on Lipid Peroxidation: Determination of Malondialdehyde (MDA) Concentration in Intestinal Tissue
3.3. Effect of F. vesiculosus Treatment on Superoxide Dismutase (SOD) Activity
3.4. Effect of F. vesiculosus Treatment on Catalase (CAT) Activity
3.5. Effect of F. vesiculosus Treatment on Glutathione Peroxidase (GPx) Activity
3.6. Effect of F. vesiculosus Treatment on Mieloperoxidase (MPO) Concentration
3.7. Effect of F. vesiculosus Treatment on Inflammation Markers: Interleukins Il-1β and IL-10
3.8. Effects of F. vesiculosus Extract on Histological Alterations Induced by Intestinal I/R
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Aranda-Rivera, A.K.; Cruz-Gregorio, A.; Arancibia-Hernández, Y.L.; Hernández-Cruz, E.Y.; Pedraza-Chaverri, J. RONS and oxidative stress: An overview of basic concepts. Oxygen 2022, 2, 437–478. [Google Scholar] [CrossRef]
- Kotha, R.R.; Tareq, F.S.; Yildiz, E.; Luthria, D.L. Oxidative stress and antioxidants—A critical review on in vitro antioxidant assays. Antioxidants 2022, 11, 2388. [Google Scholar] [CrossRef] [PubMed]
- Namirah, I.; Wimbanu, K.S.; Rompies, A.M.E.; Prayogo, Y.S.; Arozal, W.; Fadilah; Hanafi, M.; Hardiany, N.S. The effect of ethanol-based coriander (Coriandrum sativum L.) seed extract on oxidative stress, antioxidant level and cellular senescence in the heart of obese rat. J. Pharm. Pharmacogn. Res. 2024, 12, 1111–1120. [Google Scholar] [CrossRef]
- Di Meo, S.; Napolitano, G.; Venditti, P. Physiological and pathological role of ROS: Benefits and limitations of antioxidant treatment. Int. J. Mol. Sci. 2019, 20, 4810. [Google Scholar] [CrossRef]
- Sies, H. Oxidative stress. Acad. Press 1985, 86, 715–748. [Google Scholar] [CrossRef]
- Isgör, M.; Küçükgül, A.; Alasahan, S. Antioxidant and anti-inflammatory activities of Gallic acid in Japanese quails induced by oxidative stress. Rev. Cient. Fac. Cienc. Vet. 2023, 33, 1–6. [Google Scholar] [CrossRef]
- Wu, L.; Xiong, X.; Wu, X.; Ye, Y.; Jian, Z.; Zhi, Z.; Gu, L. Targeting oxidative stress and inflammation to prevent ischemia-reperfusion injury. Front. Mol. Neurosci. 2020, 13, 28. [Google Scholar] [CrossRef]
- Andrés, C.M.C.; Pérez de la Lastra, J.M.; Juan, C.A.; Plou, F.J.; Pérez-Lebeña, E. Chemistry of hydrogen peroxide formation and elimination in mammalian cells, and its role in various pathologies. Stresses 2022, 2, 256–274. [Google Scholar] [CrossRef]
- Lin, L.; Wang, X.; Yu, Z. Ischemia-reperfusion injury in the brain: Mechanisms and potential therapeutic strategies. Biochem. Pharmacol. 2016, 5, 213. [Google Scholar] [CrossRef]
- Wu, M.Y.; Yiang, G.T.; Liao, W.T.; Tsai, A.P.; Cheng, Y.L.; Cheng, P.W.; Li, C.-Y.; Li, C.J. Current mechanistic concepts in ischemia and reperfusion injury. Cell Physiol. Biochem. 2018, 46, 1650–1667. [Google Scholar] [CrossRef]
- Nieuwenhuijs-Moeke, G.J.; Pischke, S.E.; Berger, S.P.; Sanders, J.S.F.; Pol, R.A.; Struys, M.M.R.F.; Ploeg, R.J.; Leuvenink, H.G.D. Ischemia and reperfusion injury in kidney transplantation: Relevant mechanisms in injury and repair. J. Clin. Med. 2020, 9, 253. [Google Scholar] [CrossRef] [PubMed]
- Afolabi, A.O.; Akhigbe, T.M.; Odetayo, A.F.; Anyogu, D.C.; Hamed, M.A.; Akhigbe, R.E. Restoration of hepatic and intestinal integrity by Phyllanthus amarus is dependent on Bax/Caspase 3 modulation in intestinal ischemia/reperfusion-induced injury. Molecules 2022, 27, 5073. [Google Scholar] [CrossRef] [PubMed]
- Wen, S.; Li, X.; Ling, Y.; Chen, S.; Deng, Q.; Yang, L.; Li, Y.; Shen, J.; Qiu, Y.; Zhan, Y.; et al. HMGB1-associated necroptosis and Kupffer cells M1 polarization underlies remote liver injury induced by intestinal ischemia/reperfusion in rats. FASEB J. 2020, 34, 4384–4402. [Google Scholar] [CrossRef] [PubMed]
- Bertoni, S.; Ballabeni, V.; Barocelli, E.; Tognolini, M. Mesenteric ischemia-reperfusion: An overview of preclinical drug strategies. Drug Discov. Today 2018, 23, 1416–1425. [Google Scholar] [CrossRef]
- Liu, C.; Ding, R.; Huang, W.; Miao, L.; Li, J.; Li, Y. Sevoflurane protects against intestinal ischemia-reperfusion injury by activating peroxisome proliferator-activated receptor gamma/nuclear factor-kappaB pathway in rats. Pharmacology 2020, 105, 231–242. [Google Scholar] [CrossRef]
- Li, G.; Wang, S.; Fan, Z. Oxidative stress in intestinal ischemia-reperfusion. Front. Med. 2022, 8, 750731. [Google Scholar] [CrossRef]
- Abo-Shady, A.M.; Gheda, S.F.; Ismail, G.A.; Cotas, J.; Pereira, L.; Abdel-Karim, O.H. Antioxidant and antidiabetic activity of algae. Life 2023, 13, 460. [Google Scholar] [CrossRef]
- Anwar, H.; Hussain, G.; Mustafa, I. Antioxidants from natural sources. In Antioxidants in Foods and its Applications; InTech: London, UK, 2018. [Google Scholar] [CrossRef]
- Veluchamy, C.; Palaniswamy, R. A review on marine algae and its applications. Asian J. Pharm. Biol. 2020, 13, 21–27. [Google Scholar] [CrossRef]
- Wang, T.; Jonsdottir, R.; Liu, H.; Gu, L.; Kristinsson, H.G.; Raghavan, S.; Ólafsdóttir, G. Antioxidant capacities of phlorotannins extracted from the brown algae Fucus vesiculosus. J. Agric. Food Chem. 2012, 60, 5874–5883. [Google Scholar] [CrossRef]
- Tziveleka, L.A.; Tammam, M.A.; Tzakou, O.; Roussis, V.; Ioannou, E. Metabolites with antioxidant activity from marine macroalgae. Antioxidants 2021, 10, 1431. [Google Scholar] [CrossRef]
- Heffernan, N.; Smyth, T.J.; Soler-Villa, A.; Fitzgerald, R.J.; Brunton, N.P. Phenolic content and antioxidant activity of fractions obtained from selected Irish macroalgae species (Laminaria digitata, Fucus serratus, Gracilaria gracilis and Codium fragile). J. Appl. Phycol. 2015, 27, 519–530. [Google Scholar] [CrossRef]
- Cikos, A.M.; Jokic, S.; Subaric, D.; Jerkovic, I. Overview on the application of modern methods for the extraction of bioactive compounds from marine macroalgae. Mar. Drugs 2018, 16, 348. [Google Scholar] [CrossRef]
- Matsukawa, R.; Dubinsky, Z.; Kishimoto, E.; Masaki, K.; Masuda, Y.; Takeuchi, T. A comparison of screening methods for antioxidant activity in seaweeds. J. Appl. Phycol. 1997, 9, 29–35. [Google Scholar] [CrossRef]
- Pereira, L.; Cotas, J. Therapeutic potential of polyphenols and other micronutrients of marine origin. Mar. Drugs 2023, 21, 323. [Google Scholar] [CrossRef]
- Jimenez-Lopez, C.; Pereira, A.G.; Lourenço-Lopes, C.; Garcia-Oliveira, P.; Cassani, L.; Fraga-Corral, M.; Prieto, M.; Simal-Gandara, J. Main bioactive phenolic compounds in marine algae and their mechanisms of action supporting potential health benefits. Food Chem. 2021, 341, 128262. [Google Scholar] [CrossRef]
- Ferreira, I.C.F.R.; Martins, N.; Barros, L. Phenolic compounds and its bioavailability: In vitro bioactive compounds or health promoters? Adv. Food Nutr. Res. 2017, 82, 1–44. [Google Scholar] [CrossRef] [PubMed]
- Kumar, N.; Goel, N. Phenolic acids: Natural versatile molecules with promising therapeutic applications. Biotechnol. Rep. 2019, 24, e00370. [Google Scholar] [CrossRef]
- Vuolo, M.M.; Lima, V.S.; Maróstica Junior, M.R. Phenolic Compounds: Structure, Classification, and Antioxidant Power. In Bioactive Compounds: Health Benefits and Potential Applications; Segura Campos, M.R., Ed.; Woodhead Publishing: Cambridge, UK, 2019; pp. 33–50. ISBN 978-0-12-814774-0. [Google Scholar] [CrossRef]
- Rudrapal, M.; Khairnar, S.J.; Khan, J.; Bin Dukhyil, A.; Ansari, M.A.; Alomary, M.N.; Alshabrmi, F.M.; Palai, S.; Deb, P.K.; Devi, R. Dietary polyphenols and their role in oxidative stress-induced human diseases: Insights into protective effects, antioxidant potentials and mechanism(s) of action. Front. Pharmacol. 2022, 13, 283. [Google Scholar] [CrossRef]
- Balboa, E.M.; Conde, E.; Moure, A.; Falqué, E.; Dominguez, H. In vitro antioxidant properties of crude extracts and compounds from brown algae: A review. Food Chem. 2013, 138, 1764–1785. [Google Scholar] [CrossRef]
- Catarino, M.D.; Silva, A.M.S.; Cardoso, S.M. Fucaceae: A source of bioactive phlorotannins. Int. J. Mol. Sci. 2017, 18, 1327. [Google Scholar] [CrossRef]
- Agregán, R.; Munekata, P.; Franco, D.; Carballo, J.; Barba, F.J.; Lorenzo, J.M. Antioxidant potential of extracts obtained from macro-algae (Ascophyllum nodosum, Fucus vesiculosus and Bifurcaria bifurcata) and micro-algae (Chlorella vulgaris and Spirulina platensis) assisted by ultrasound. Medicines 2018, 5, 33. [Google Scholar] [CrossRef]
- El-Sheekh, M.M.; el-Shenody, R.A.E.K.; Bases, E.A.; el Shafay, S.M. Comparative assessment of antioxidant activity and biochemical composition of four seaweeds, Rocky Bay of Abu Qir in Alexandria, Egypt. Food Sci. Technol. 2020, 41, 29–40. [Google Scholar] [CrossRef]
- Obluchinskaya, E.D.; Pozharitskaya, O.N.; Zakharov, D.V.; Flisyuk, E.V.; Terninko, I.I.; Generalova, Y.E.; Smekhova, I.E.; Shikov, A.N. The biochemical composition and antioxidant properties of Fucus vesiculosus from the Arctic region. Mar. Drugs 2022, 20, 193. [Google Scholar] [CrossRef] [PubMed]
- Hermund, D.B.; Plaza, M.; Turner, C.; Jonsdottir, R.; Kristinsson, H.G.; Jacobsen, C.; Nielsen, K.F. Structure dependent antioxidant capacity of phlorotannins from Icelandic Fucus vesiculosus by UHPLC-DAD-ECD-QTOFMS. Food Chem. 2018, 240, 904–909. [Google Scholar] [CrossRef]
- Mateos, R.; Pérez-Correa, J.R.; Domínguez, H. Bioactive properties of marine phenolics. Mar. Drugs 2020, 18, 501. [Google Scholar] [CrossRef]
- Zubia, M.; Fabre, M.S.; Kerjean, V.; Lann, K.L.; Stiger-Pouvreau, V.; Fauchon, M.; Deslandes, E. Antioxidant and antitumoural activities of some Phaeophyta from Brittany coasts. Food Chem. 2009, 116, 693–701. [Google Scholar] [CrossRef]
- O’Sullivan, A.M.; O’Callaghan, Y.C.; O’Grady, M.N.; Queguineur, B.; Hanniffy, D.; Troy, D.J.; Kerry, J.; O’brien, N. In vitro and cellular antioxidant activities of seaweed extracts prepared from five brown seaweeds harvested in spring from the west coast of Ireland. Food Chem. 2011, 126, 1064–1070. [Google Scholar] [CrossRef]
- Monteiro, M.; Santos, R.A.; Iglesias, P.; Couto, A.; Serra, C.R.; Gouvinhas, I.; Barros, A.; Oliva-Teles, A.; Enes, P.; Díaz-Rosales, P. Effect of extraction method and solvent system on the phenolic content and antioxidant activity of selected macro and microalgae extracts. J. Appl. Phycol. 2020, 32, 349–362. [Google Scholar] [CrossRef]
- Julkunen-Tiitto, R. Phenolic constituents on the leaves of northern willows: Methods for the analysis of certain phenolics. J. Agric. Food Chem. 1985, 33, 213–217. [Google Scholar] [CrossRef]
- Chu, Y.-H.; Chang, C.; Hsu, H. Flavonoid content of several vegetables and their antioxidant activity. J. Sci. Food Agric. 2000, 80, 561–566. [Google Scholar] [CrossRef]
- López, A.; Rico, M.; Rivero, A.; Suáez de Tangil, M. The effects of solvents on the phenolic contents and antioxidant activity of Stypocaulon scoparium algae extracts. Food Chem. 2011, 125, 1104–1109. [Google Scholar] [CrossRef]
- Sánchez-Bonet, D.; García-Oms, S.; Belda-Antolí, M.; Padrón-Sanz, C.; Lloris-Carsi, J.M.; Cejalvo-Lapeña, D. RP-HPLC-DAD determination of the differences in the polyphenol content of Fucus vesiculosus extracts with similar antioxidant activity. J. Chromatogr. B 2021, 1184, 122978. [Google Scholar] [CrossRef] [PubMed]
- Ozkan, O.V.; Yuzbasioglu, M.F.; Ciralik, H.; Kurutas, E.B.; Yonden, Z.; Aydin, M.; Bulbuloglu, E.; Semerci, E.; Goksu, M.; Atli, Y.; et al. Resveratrol, a natural antioxidant, attenuates intestinal ischemia/reperfusion injury in rats. Tohoku J. Exp. Med. 2009, 218, 251–258. [Google Scholar] [CrossRef]
- Chiu, C.; McArdle, A.H.; Brown, R.; Scott, H.J.; Gurd, F.N. Intestinal mucosal lesion in low-flow states: I. A morphological, hemodynamic, and metabolic reappraisal. Arch. Surg. 1970, 101, 478–483. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, W.; Wu, G. Intestinal ischemic reperfusion injury: Recommended rats model and comprehensive review for protective strategies. Biomed. Pharmacother. 2021, 138, 111482. [Google Scholar] [CrossRef] [PubMed]
- Jomova, K.; Raptova, R.; Alomar, S.Y.; Alwasel, S.H.; Nepovimova, E.; Kuca, K.; Valko, M. Reactive oxygen species, toxicity, oxidative stress, and antioxidants: Chronic diseases and aging. Arch. Toxicol. 2023, 97, 2499–2574. [Google Scholar] [CrossRef]
- Pisoschi, A.M.; Pop, A.; Lordache, F.; Stanca, L.; Predoi, G.; Serban, A.I. Oxidative stress mitigation by antioxidants—An overview on their chemistry and influences on health status. Eur. J. Med. Chem. 2021, 209, 112891. [Google Scholar] [CrossRef]
- Mas-Bargues, C.; Escrivá, C.; Dromat, M.; Borrás, C.; Viña, J. Lipid peroxidation as measured by chromatographic determination of malondialdehyde. Human plasma reference values in health and disease. Arch. Biochem. Biophys. 2021, 709, 108941. [Google Scholar] [CrossRef]
- Gömeç, M.; Kuläh, B.; Ercan, U.; Sahin, S. The healing effects of Gonoderma lucidum on intestinal ischemia-reperfusion damage in rats. J. Surg. Med. 2022, 6, 476–482. [Google Scholar] [CrossRef]
- Belda-Antolí, M.; Padrón-Sanz, C.; Cejalvo-Lapeña, D.; Prieto-Moure, B.; Lloris-Cejalvo, J.M.; Lloris-Carsí, J.M. Antioxidant potential of Himanthalia elongata for protection against ischemia-reperfusion injury in the small bowel. Surgery 2017, 162, 577–585. [Google Scholar] [CrossRef]
- Zhou, T.; Prather, E.R.; Garrison, D.E.; Zuo, L. Interplay between ROS and antioxidants during ischemia-reperfusion injuries in cardiac and skeletal muscle. Int. J. Mol. Sci. 2018, 19, 417. [Google Scholar] [CrossRef] [PubMed]
- Salin, M.L.; McCord, J.M. Superoxide dismutases in polymorphonuclear leukocytes. J. Clin. Investig. 1974, 54, 1005–1009. [Google Scholar] [CrossRef] [PubMed]
- Ighodaro, O.M.; Akinloye, O.A. First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alex. J. Med. 2018, 54, 287–293. [Google Scholar] [CrossRef]
- Mates, J.M.; Perez-Gomez, C.; Decastro, I.N. Antioxidant enzymes and human diseases. Clin. Biochem. 1999, 32, 595–603. [Google Scholar] [CrossRef]
- Kolodziejczyk, L.; Siemieniuk, E.; Skrzydlewska, E. Antioxidant potential of rat liver in experimental infection with Fasciola hepatica. Parasitol. Res. 2005, 96, 367–372. [Google Scholar] [CrossRef]
- Kolli, V.K.; Abraham, P.; Isaac, B. Alteration in antioxidant defense mechanisms in the small intestines of methotrexate treated rat may contribute to its gastrointestinal toxicity. Cancer Ther. 2007, 5, 501–510. [Google Scholar]
- Akinrinmade, F.J.; Akinrinde, A.S.; Soyemi, O.O.; Oyagbemi, A.A. Antioxidant potential of the methanol extract of Parquetina nigrescens mediates protection against intestinal ischemia-reperfusion injury in rats. J. Diet. Suppl. 2016, 13, 420–432. [Google Scholar] [CrossRef]
- Tas, U.; Ayan, M.; Sogut, E.; Kuloglu, T.; Uysal, M.; Tanriverdi, H.I.; Senel, U.; Ozyurt, B.; Sarsilmaz, M. Protective effects of thymoquine and melatonin on intestinal ischemia-reperfusion injury. Saudi J. Gastroenterol. 2015, 21, 284–289. [Google Scholar] [CrossRef]
- Yilmaz, A.S.; Badak, B.; Erkasap, N.; Ozkurt, M.; Colak, E. The effect of antioxidant Astaxanthin on intestinal ischemia-reperfusion damage in rats. J. Investig. Surg. 2023, 36, 2182930. [Google Scholar] [CrossRef]
- Nisari, M.; Yay, A.; Ertekin, T.; Nisari, M.; Al, Ö.; Ceylan, D.; Önder, G.; Kavutcu, M. Evaluation of protective effects of melatonin on free radical metabolism in rat kidney during ischemia-reperfusion. Ukr. J. Nephrol. Dial. 2019, 4, 20–29. [Google Scholar] [CrossRef]
- Zhang, X.; Zhou, X.; Zhang, Q.; Zhu, F. The preventive effects of dex medetomidine against intestinal ischemia-reperfusion injury in Wistar rats. Iran J. Basic Med. Sci. 2015, 18, 604–609. [Google Scholar] [PubMed]
- Céspedes, M.E.; Rodriguez, J.C.; Campanioni, M. Enzimas que participan como barreras fisiológicas para eliminar los radicales libres: Catalasa. Rev. Cubana Investig. Biomed. 1996, 15, 39–47. [Google Scholar]
- Keskin Çimen, F.; Çimen, O.; Altuner, D.; Çekiç, A.B.; Kurt, N.; Süleyman, H. Effect of rutin on experimentally induced small intestinal ischemia-reperfusion injury in rats: A biochemical and histopathological evaluation. J. Surg. Med. 2021, 5, 26–30. [Google Scholar] [CrossRef]
- Lin, H.; Zhang, X.; Wang, D.; Liu, J.; Yuan, L.; Liu, J.; Wang, C.; Sun, J.; Chen, J.; Li, H.; et al. Anwulignan improves intestinal ischemia-reperfusion injury. J. Pharmacol. Exp. Ther. 2021, 378, 222–234. [Google Scholar] [CrossRef]
- Durgun, C.; Deveci, E. Gallic acid treatment protects intestinal tissue against ischaemia-reperfusion. Folia Morphol. 2023, 82, 633–640. [Google Scholar] [CrossRef]
- Durgun, C.; Aşır, F. Daidzein alleviated the pathologies in intestinal tissue against ischemia-reperfusion. Eur. Rev. Med. Pharmacol. Sci. 2023, 27, 1487–1493. [Google Scholar] [CrossRef]
- García, O.H.; Pereira, N.; Flores, R.M. Enzimas generadoras de especies reactivas del oxígeno: Mieloperoxidasa. Rev. Cubana Inv. Bioméd. 1998, 17, 190–197. [Google Scholar]
- Chen, S.; Chen, H.; Du, Q.; Shen, J. Targeting myeloperoxidase (MPO)-mediated oxidative stress and inflammation for reducing brain ischemia injury: Potential application of natural compounds. Front. Physiol. 2020, 11, 433. [Google Scholar] [CrossRef]
- Liu, Q.; Liu, Y.; Shi, J.; Gao, M.; Liu, Y.; Cong, Y.; Li, Y.; Wang, Y.; Yu, M.; Lu, Y.; et al. Entire peroxidation reaction system of myeloperoxidase correlates with progressive low-density lipoprotein modifications via reactive aldehydes in atherosclerotic patients with hypertension. Cell Physiol. Biochem. 2018, 50, 1245–1254. [Google Scholar] [CrossRef]
- Deng, Y.; Feng, S.; Xia, Q.; Gong, S.; Feng, G. A novel reaction-based fluorescence probe for rapid imaging of HClO in live cells, animals, and injured liver tissues. Talanta 2020, 215, 120901. [Google Scholar] [CrossRef]
- Tanyeli, A.; Güzel, D.; Ekinci Akdemir, F.N.; Eraslan, E.; Güler, M.C. The role of chlorogenic acid in alleviating intestinal ischemia/reperfusion-induced lung injury. New Trend Med. Sci. 2020, 1, 59–64. [Google Scholar]
- Souza, D.G.; Lomez, E.S.; Pinho, V.; Pesquero, J.B.; Bader, M.; Pesquero, J.L.; Teixeira, M.M. Role of bradykinin B2 and B1 receptors in the local, remote, and systemic inflammatory responses that follow intestinal ischemia and reperfusion injury. J. Immunol. 2004, 172, 2542–2548. [Google Scholar] [CrossRef] [PubMed]
- Pompermayer, K.; Amaral, F.A.; Fagundes, C.T.; Vieira, A.T.; Cunha, F.Q.; Teixeira, M.M. Effects of the treatment with glibenclamide, an ATP-sensitive potassium channel blocker, on intestinal ischemia and reperfusion injury. Eur. Pharmacol. 2007, 556, 215–222. [Google Scholar] [CrossRef] [PubMed]
- Gregová, K.; Číkoš, Š.; Bilecová-Rabajdová, M.; Urban, P.; Varga, J.; Feterik, Š.; Veselá, J. Intestinal ischemia-reperfusion injury mediates expression of inflammatory cytokines in rats. Gen. Physiol. Biophys. 2015, 34, 95–99. [Google Scholar] [CrossRef]
- Ucar, B.I.; Erikci, A.; Kosemehmetoglu, K.; Ozkul, C.; Iskit, A.B.; Ucar, G.; Zeren, S. Effects of endothelin receptor blockade and COX inhibition on intestinal I/R injury in a rat model: Experimental research. Int. J. Surg. 2020, 83, 89–97. [Google Scholar] [CrossRef]
Groups | N | Treatment/Excipient | Ischemia | Reperfusion | |
---|---|---|---|---|---|
Control | SHAM: | 6 | - | - | - |
I/R 3H | 6 | - | 60 min | 3 h | |
I/R 24H | 6 | - | 60 min | 24 h | |
Excipient | Excip. t.1 | 6 | 0.5 mL of 10% ethanol | 60 min | 3 h |
Excip t.2 | 6 | 0.5 mL of 10% ethanol | 60 min | 3 h | |
Excip t.3 | 6 | 0.5 mL of 10% ethanol | 60 min | 3 h | |
Algae Extract | Extract t.1 | 6 | 0.5 mL of extract (222 mg/kg) | 60 min | 3 h |
Extract t.2 | 6 | 0.5 mL of extract (222 mg/kg) | 60 min | 3 h | |
Extract t.3 | 6 | 0.5 mL of extract (222 mg/kg) | 60 min | 3 h | |
Extract t.1 | 6 | 0.5 mL of extract (222 mg/kg) | 60 min | 24 h | |
Extract t.2 | 6 | 0.5 mL of extract (222 mg/kg) | 60 min | 24 h | |
Extract t.3 | 6 | 0.5 mL of extract (222 mg/kg) | 60 min | 24 h |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sánchez-Bonet, D.; Padrón-Sanz, C.; Lloris-Cejalvo, J.M.; Lloris-Carsí, J.M.; Cejalvo-Lapeña, D. Antioxidant Effect of a Fucus vesiculosus Extract on Intestinal Ischemia/Reperfusion Injury in Rats: A Biochemical and Histological Study. Antioxidants 2025, 14, 624. https://doi.org/10.3390/antiox14060624
Sánchez-Bonet D, Padrón-Sanz C, Lloris-Cejalvo JM, Lloris-Carsí JM, Cejalvo-Lapeña D. Antioxidant Effect of a Fucus vesiculosus Extract on Intestinal Ischemia/Reperfusion Injury in Rats: A Biochemical and Histological Study. Antioxidants. 2025; 14(6):624. https://doi.org/10.3390/antiox14060624
Chicago/Turabian StyleSánchez-Bonet, Desirée, Carolina Padrón-Sanz, José Miguel Lloris-Cejalvo, José Miguel Lloris-Carsí, and Dolores Cejalvo-Lapeña. 2025. "Antioxidant Effect of a Fucus vesiculosus Extract on Intestinal Ischemia/Reperfusion Injury in Rats: A Biochemical and Histological Study" Antioxidants 14, no. 6: 624. https://doi.org/10.3390/antiox14060624
APA StyleSánchez-Bonet, D., Padrón-Sanz, C., Lloris-Cejalvo, J. M., Lloris-Carsí, J. M., & Cejalvo-Lapeña, D. (2025). Antioxidant Effect of a Fucus vesiculosus Extract on Intestinal Ischemia/Reperfusion Injury in Rats: A Biochemical and Histological Study. Antioxidants, 14(6), 624. https://doi.org/10.3390/antiox14060624