Effect of Heat-Assisted and Ultrasound-Assisted Extraction Methods on the Phenolic Profile and Biological Activity of Thymus vulgaris L. Extracts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Extraction Techniques
2.2.1. Heat-Assisted Extraction (HAE)
2.2.2. Ultrasound-Assisted-Extraction (UAE)
2.3. Experimental Design
2.4. Response Surface Methodology for Optimization Purposes
2.5. Analysis of the Relevant Responses
2.5.1. Extraction Yield (Residue)
2.5.2. Determination of the Individual Profile of Phenolic Compounds
2.6. Bioactivity Evaluation
2.6.1. Antioxidant Potential of the Extracts
2.6.2. Antiproliferative Activity in Tumor and Non-Tumor Cell Lines
2.6.3. Anti-Inflammatory Activity
2.6.4. Antimicrobial and Antifungal Activity
2.7. Statistical Analysis
3. Results and Discussion
3.1. Optimization Analysis
Phenolic Compounds Identification
3.2. Bioactivity Properties
3.2.1. Antioxidant Activity
3.2.2. Anti-Inflammatory and Antiproliferative Activity
3.2.3. Antimicrobial Activity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CAA | Cellular Antioxidant Activity |
DPPH | 2,2-diphenyl-1-picrylhydrazyl |
HAE | Heat-assisted extraction |
MBC | Minimum bactericidal concentration |
MFC | Minimum fungicidal concentration |
MIC | Minimum inhibitory concentration |
OxHLIA | Oxidative Hemolysis Inhibition Assay |
RSM | Response surface methodology |
SD | Standard deviation |
TBARS | Thiobarbituric Acid Reactive Substances |
TPC | Total phenolic content |
UAE | Ultrasound-assisted extraction |
References
- Giannenas, I.; Sidiropoulou, E.; Bonos, E.; Christaki, E.; Florou-Paneri, P. Feed Additives; Florou-Paneri, P., Christaki, E., Giannenas, I., Eds.; Academic Press: Cambridge, UK, 2020; Chapter 1; pp. 1–18. ISBN 978-0-12-814700-9. [Google Scholar]
- Taghouti, M.; Martins-Gomes, C.; Félix, L.M.; Schäfer, J.; Santos, J.A.; Bunzel, M.; Nunes, F.M.; Silva, A.M. Polyphenol Composition and Biological Activity of Thymus citriodorus and Thymus vulgaris: Comparison with Endemic Iberian Thymus Species. Food Chem. 2020, 331, 127362. [Google Scholar] [CrossRef] [PubMed]
- Nieto, G.; Martínez-Zamora, L.; Peñalver, R.; Marín-Iniesta, F.; Taboada-Rodríguez, A.; López-Gómez, A.; Martínez-Hernández, G.B. Applications of Plant Bioactive Compounds as Replacers of Synthetic Additives in the Food Industry. Foods 2024, 13, 47. [Google Scholar] [CrossRef] [PubMed]
- Asioli, D.; Aschemann-Witzel, J.; Caputo, V.; Vecchio, R.; Annunziata, A.; Næs, T.; Varela, P. Making Sense of the “Clean Label” Trends: A Review of Consumer Food Choice Behavior and Discussion of Industry Implications. Food Res. Int. 2017, 99, 58–71. [Google Scholar] [CrossRef]
- Stefanaki, A.; van Andel, T. Mediterranean Aromatic Herbs and Their Culinary Use. In Aromatic Herbs in Food; Elsevier: Amsterdam, The Netherlands, 2021; pp. 93–121. [Google Scholar]
- Mokhtari, R.; Kazemi Fard, M.; Rezaei, M.; Moftakharzadeh, S.A.; Mohseni, A. Antioxidant, Antimicrobial Activities, and Characterization of Phenolic Compounds of Thyme (Thymus vulgaris L.), Sage (Salvia officinalis L.), and Thyme–Sage Mixture Extracts. J. Food Qual. 2023, 2023, 2602454. [Google Scholar] [CrossRef]
- Habashy, N.H.; Abu Serie, M.M.; Attia, W.E.; Abdelgaleil, S.A.M. Chemical Characterization, Antioxidant and Anti-Inflammatory Properties of Greek Thymus vulgaris Extracts and Their Possible Synergism with Egyptian Chlorella Vulgaris. J. Funct. Foods 2018, 40, 317–328. [Google Scholar] [CrossRef]
- Kubatka, P.; Uramova, S.; Kello, M.; Kajo, K.; Samec, M.; Jasek, K.; Vybohova, D.; Liskova, A.; Mojzis, J.; Adamkov, M.; et al. Anticancer Activities of Thymus vulgaris L. in Experimental Breast Carcinoma in Vivo and in Vitro. Int. J. Mol. Sci. 2019, 20, 1749. [Google Scholar] [CrossRef]
- Yassin, M.T.; Mostafa, A.A.-F.; Al-Askar, A.A.; Sayed, S.R.M. In Vitro Antimicrobial Activity of Thymus vulgaris Extracts against Some Nosocomial and Food Poisoning Bacterial Strains. Process Biochem. 2022, 115, 152–159. [Google Scholar] [CrossRef]
- Chel-Guerrero, L.D.; Castañeda-Corral, G.; López-Castillo, M.; Scampicchio, M.; Morozova, K.; Oney-Montalvo, J.E.; Ferrentino, G.; Acevedo-Fernández, J.J.; Rodríguez-Buenfil, I.M. In Vivo Anti-Inflammatory Effect, Antioxidant Activity, and Polyphenolic Content of Extracts from Capsicum Chinense By-Products. Molecules 2022, 27, 1323. [Google Scholar] [CrossRef]
- Mahrye; Anwar, F.; Mehmood, T.; Qadir, R.; Riaz, M. Phenolics Profiling and Biological Activities of Different Solvent Extracts from Aerial Parts of Wild Thyme (Thymus vulgaris L.). J. Food Meas. Charact. 2022, 16, 610–618. [Google Scholar] [CrossRef]
- Cvitković, D.; Lisica, P.; Zorić, Z.; Repajić, M.; Pedisić, S.; Dragović-Uzelac, V.; Balbino, S. Composition and Antioxidant Properties of Pigments of Mediterranean Herbs and Spices as Affected by Different Extraction Methods. Foods 2021, 10, 2477. [Google Scholar] [CrossRef]
- Moshari-Nasirkandi, A.; Alirezalu, A.; Alipour, H.; Amato, J. Screening of 20 Species from Lamiaceae Family Based on Phytochemical Analysis, Antioxidant Activity and HPLC Profiling. Sci. Rep. 2023, 13, 16987. [Google Scholar] [CrossRef] [PubMed]
- Noor, S.; Mohammad, T.; Rub, M.A.; Raza, A.; Azum, N.; Yadav, D.K.; Hassan, M.I.; Asiri, A.M. Biomedical Features and Therapeutic Potential of Rosmarinic Acid. Arch. Pharm. Res. 2022, 45, 205–228. [Google Scholar] [CrossRef] [PubMed]
- Alagawany, M.; El-Hack, M.E.A.; Farag, M.R.; Gopi, M.; Karthik, K.; Malik, Y.S.; Dhama, K. Rosmarinic Acid: Modes of Action, Medicinal Values and Health Benefits. Anim. Health Res. Rev. 2017, 18, 167–176. [Google Scholar] [CrossRef] [PubMed]
- Oroian, M.; Ursachi, F.; Dranca, F. Influence of Ultrasonic Amplitude, Temperature, Time and Solvent Concentration on Bioactive Compounds Extraction from Propolis. Ultrason. Sonochemistry 2020, 64, 105021. [Google Scholar] [CrossRef]
- Chelladurai, S.J.S.; Murugan, K.; Ray, A.P.; Upadhyaya, M.; Narasimharaj, V.; Gnanasekaran, S. Optimization of Process Parameters Using Response Surface Methodology: A Review. Mater. Today Proc. 2021, 37, 1301–1304. [Google Scholar] [CrossRef]
- Orłowska, M.; Stanimirova, I.; Staszek, D.; Sajewicz, M.; Kowalska, T.; Waksmundzka-Hajnos, M. Optimization of Extraction Based on the Thin-Layer Chromatographic Fingerprints of Common Thyme. J. AOAC Int. 2014, 97, 1274–1281. [Google Scholar] [CrossRef]
- Hossain, M.B.; Brunton, N.P.; Martin-Diana, A.B.; Barry-Ryan, C. Application of Response Surface Methodology to Optimize Pressurized Liquid Extraction of Antioxidant Compounds from Sage (Salvia officinalis L.), Basil (Ocimum basilicum L.) and Thyme (Thymus vulgaris L.). Food Funct. 2010, 1, 269–277. [Google Scholar] [CrossRef]
- Munekata, P.E.S.; Alcántara, C.; Žugčić, T.; Abdelkebir, R.; Collado, M.C.; García-Pérez, J.V.; Jambrak, A.R.; Gavahian, M.; Barba, F.J.; Lorenzo, J.M. Impact of Ultrasound-Assisted Extraction and Solvent Composition on Bioactive Compounds and in Vitro Biological Activities of Thyme and Rosemary. Food Res. Int. 2020, 134, 109242. [Google Scholar] [CrossRef]
- Vergara-Salinas, J.R.; Pérez-Jiménez, J.; Torres, J.L.; Agosin, E.; Pérez-Correa, J.R. Effects of Temperature and Time on Polyphenolic Content and Antioxidant Activity in the Pressurized Hot Water Extraction of Deodorized Thyme (Thymus vulgaris). J. Agric. Food Chem. 2012, 60, 10920–10929. [Google Scholar] [CrossRef]
- Jovanović, A.A.; Đorđević, V.B.; Zdunić, G.M.; Pljevljakušić, D.S.; Šavikin, K.P.; Gođevac, D.M.; Bugarski, B.M. Optimization of the Extraction Process of Polyphenols from Thymus serpyllum L. Herb Using Maceration, Heat- and Ultrasound-Assisted Techniques. Sep. Purif. Technol. 2017, 179, 369–380. [Google Scholar] [CrossRef]
- Mrkonjić, Ž.; Rakić, D.; Olgun, E.O.; Canli, O.; Kaplan, M.; Teslić, N.; Zeković, Z.; Pavlić, B. Optimization of Antioxidants Recovery from Wild Thyme (Thymus serpyllum L.) by Ultrasound-Assisted Extraction: Multi-Response Approach. J. Appl. Res. Med. Aromat. Plants 2021, 24, 100333. [Google Scholar] [CrossRef]
- El-Newary, S.A.; Shaffie, N.M.; Omer, E.A. The Protection of Thymus vulgaris Leaves Alcoholic Extract against Hepatotoxicity of Alcohol in Rats. Asian Pac. J. Trop. Med. 2017, 10, 361–371. [Google Scholar] [CrossRef] [PubMed]
- Palmieri, S.; Pellegrini, M.; Ricci, A.; Compagnone, D.; Lo Sterzo, C. Chemical Composition and Antioxidant Activity of Thyme, Hemp and Coriander Extracts: A Comparison Study of Maceration, Soxhlet, UAE and RSLDE Techniques. Foods 2020, 9, 1221. [Google Scholar] [CrossRef]
- Bessada, S.M.F.; Barreira, J.C.M.; Barros, L.; Ferreira, I.C.F.R.; Oliveira, M.B.P.P. Phenolic Profile and Antioxidant Activity of Coleostephus myconis (L.) Rchb.f.: An Underexploited and Highly Disseminated Species. Ind. Crops Prod. 2016, 89, 45–51. [Google Scholar] [CrossRef]
- Spréa, R.M.; Finimundy, T.C.; Calhelha, R.C.; Pires, T.C.S.P.; Prieto, M.A.; Amaral, J.S.; Barros, L. Comprehensive Analysis of Soybean (Glycine max L.) by-Products: Nutritional Value, Phenolic Composition, and Bioactive Properties. Food Biosci. 2024, 62, 105382. [Google Scholar] [CrossRef]
- Lockowandt, L.; Pinela, J.; Roriz, C.L.; Pereira, C.; Abreu, R.M.V.; Calhelha, R.C.; Alves, M.J.; Barros, L.; Bredol, M.; Ferreira, I.C.F.R. Chemical Features and Bioactivities of Cornflower (Centaurea cyanus L.) Capitula: The Blue Flowers and the Unexplored Non-Edible Part. Ind. Crops Prod. 2019, 128, 496–503. [Google Scholar] [CrossRef]
- Abreu, R.M.V.; Ferreira, I.C.F.R.; Calhelha, R.C.; Lima, R.T.; Vasconcelos, M.H.; Adega, F.; Chaves, R.; Queiroz, M.-J.R.P. Anti-Hepatocellular Carcinoma Activity Using Human HepG2 Cells and Hepatotoxicity of 6-Substituted Methyl 3-Aminothieno [3,2-b] Pyridine-2-Carboxylate Derivatives: In Vitro Evaluation, Cell Cycle Analysis and QSAR Studies. Eur. J. Med. Chem. 2011, 46, 5800–5806. [Google Scholar] [CrossRef]
- Ivanov, M.; Božunović, J.; Gašić, U.; Drakulić, D.; Stevanović, M.; Rajčević, N.; Stojković, D. Bioactivities of Salvia nemorosa L. Inflorescences Are Influenced by the Extraction Solvents. Ind. Crops Prod. 2022, 175, 114260. [Google Scholar] [CrossRef]
- Mascoloti Spréa, R.; Caleja, C.; Pinela, J.; Finimundy, T.C.; Calhelha, R.C.; Kostić, M.; Sokovic, M.; Prieto, M.A.; Pereira, E.; Amaral, J.S.; et al. Comparative Study on the Phenolic Composition and in Vitro Bioactivity of Medicinal and Aromatic Plants from the Lamiaceae Family. Food Res. Int. 2022, 161, 111875. [Google Scholar] [CrossRef]
- Martins, N.; Barros, L.; Santos-Buelga, C.; Silva, S.; Henriques, M.; Ferreira, I.C.F.R. Decoction, Infusion and Hydroalcoholic Extract of Cultivated Thyme: Antioxidant and Antibacterial Activities, and Phenolic Characterisation. Food Chem. 2015, 167, 131–137. [Google Scholar] [CrossRef]
- Guo, T.; Liu, P.; Wang, Z.; Zheng, Y.; Huang, W.; Kong, D.; Ding, L.; Lv, Q.; Wang, Z.; Jiang, H.; et al. Luteolin Binds Streptolysin O Toxin and Inhibits Its Hemolytic Effects and Cytotoxicity. Front. Pharmacol. 2022, 13, 942180. [Google Scholar] [CrossRef] [PubMed]
- Atabo, S.; Umar, I.A.; James, D.B.; Mamman, A.I. Sickled Erythrocytes Reversal and Membrane Stabilizing Compounds in Telfairia occidentalis. Scientifica 2016, 2016, 1568061. [Google Scholar] [CrossRef] [PubMed]
- Pauline, N.; Cabral, B.N.P.; Anatole, P.C.; Jocelyne, A.M.V.; Bruno, M.; Jeanne, N.Y. The in Vitro Antisickling and Antioxidant Effects of Aqueous Extracts Zanthoxyllum Heitzii on Sickle Cell Disorder. BMC Complement. Altern. Med. 2013, 13, 162. [Google Scholar] [CrossRef] [PubMed]
- Heim, K.E.; Tagliaferro, A.R.; Bobilya, D.J. Flavonoid Antioxidants: Chemistry, Metabolism and Structure-Activity Relationships. J. Nutr. Biochem. 2002, 13, 572–584. [Google Scholar] [CrossRef]
- Rice-Evans, C.; Miller, N.; Paganga, G. Antioxidant Properties of Phenolic Compounds. Trends Plant Sci. 1997, 2, 152–159. [Google Scholar] [CrossRef]
- Cho, Y.-C.; Park, J.; Cho, S. Anti-Inflammatory and Anti-Oxidative Effects of Luteolin-7-O-Glucuronide in LPS-Stimulated Murine Macrophages through TAK1 Inhibition and Nrf2 Activation. Int. J. Mol. Sci. 2020, 21, 2007. [Google Scholar] [CrossRef]
- Oliveira, J.R.d.; de Jesus Viegas, D.; Martins, A.P.R.; Carvalho, C.A.T.; Soares, C.P.; Camargo, S.E.A.; Jorge, A.O.C.; de Oliveira, L.D. Thymus vulgaris L. Extract Has Antimicrobial and Anti-Inflammatory Effects in the Absence of Cytotoxicity and Genotoxicity. Arch. Oral Biol. 2017, 82, 271–279. [Google Scholar] [CrossRef]
- Pereira, E.; Pimenta, A.I.; Barros, L.; Calhelha, R.C.; Antonio, A.L.; Cabo Verde, S.; Ferreira, I.C.F.R. Effects of Gamma Radiation on the Bioactivity of Medicinal and Aromatic Plants: Mentha × piperita L., Thymus vulgaris L. and Aloysia citrodora Paláu as Case Studies. Food Funct. 2018, 9, 5150–5161. [Google Scholar] [CrossRef]
- Li, J.; Song, L.; Li, H.; Gao, Y.; Chen, T.; Zhang, Z.; Hon, H.; Ye, Z.; Zhang, G. Aerosol Inhalation of Luteolin-7-O-Glucuronide Exerts Anti-Inflammatory Effects by Inhibiting NLRP3 Inflammasome Activation. Pharmaceuticals 2024, 17, 1731. [Google Scholar] [CrossRef]
- Wan, F.; Zhong, R.; Wang, M.; Zhou, Y.; Chen, Y.; Yi, B.; Hou, F.; Liu, L.; Zhao, Y.; Chen, L.; et al. Caffeic Acid Supplement Alleviates Colonic Inflammation and Oxidative Stress Potentially Through Improved Gut Microbiota Community in Mice. Front. Microbiol. 2021, 12, 784211. [Google Scholar] [CrossRef]
- Zhang, J.; Cui, X.; Zhang, M.; Bai, B.; Yang, Y.; Fan, S. The Antibacterial Mechanism of Perilla Rosmarinic Acid. Biotechnol. Appl. Biochem. 2022, 69, 1757–1764. [Google Scholar] [CrossRef] [PubMed]
- Kernou, O.-N.; Azzouz, Z.; Madani, K.; Rijo, P. Application of Rosmarinic Acid with Its Derivatives in the Treatment of Microbial Pathogens. Molecules 2023, 28, 4243. [Google Scholar] [CrossRef] [PubMed]
- Qian, W.; Zhang, J.; Wang, W.; Wang, T.; Liu, M.; Yang, M.; Sun, Z.; Li, X.; Li, Y. Antimicrobial and Antibiofilm Activities of Paeoniflorin against Carbapenem-resistant Klebsiella pneumoniae. J. Appl. Microbiol. 2020, 128, 401–413. [Google Scholar] [CrossRef] [PubMed]
HAE | UAE | |||||
---|---|---|---|---|---|---|
t (min) | T (°C) | S (%) | t (min) | P (W) | S (%) | |
−1 | 5 | 25 | 0 | 5 | 50 | 0 |
0 | 92.5 | 62.5 | 50 | 32.5 | 275 | 50 |
1 | 180 | 100 | 100 | 60 | 500 | 100 |
Run | Experimental Design | Responses | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Coded Values | Natural Values | Extract | Phenolic Compounds by HPLC-DAD-ESI-MS/MS | TPC | ||||||||||||
X1 | X2 | X3 | t | T/P | S | E | P1 | P2 | P3 | P4 | P5 | P6 | P7 | P8 | ||
(min) | (°C/W) | (%) | (g) | (mg/g E) | (mg/g E) | (mg/g E) | (mg/g E) | (mg/g E) | (mg/g E) | (mg/g E) | (mg/g E) | (mg/g E) | ||||
Heat-assisted-extraction | ||||||||||||||||
1 | 0 | 1 | 1 | 92.5 | 100 | 100 | 0.013 | 9.6 ± 0.1 | 0.9 ± 0.1 | nd | nd | nd | 0.2 ± 0.1 | 8.4 ± 0.5 | 1.3 ± 0.1 | 20.4 ± 0.7 |
2 | 0 | 1 | −1 | 92.5 | 100 | 0 | 0.022 | 49.4 ± 1.9 | 6.7 ± 0.3 | 4.2 ± 0.1 | 0.11 ± 0.01 | 15.8 ± 0.9 | 7.2 ± 0.3 | 68.7 ± 4.1 | 0.2 ± 0.1 | 152.3 ± 7.6 |
3 | 0 | −1 | 1 | 92.5 | 25 | 100 | 0.005 | 13.3 ± 0.1 | 1.3 ± 0 | 2.4 ± 0.1 | 0.11 ± 0.01 | 4.0 ± 1.0 | 1.7 ± 0.1 | 16.0 ± 0.1 | 0.6 ± 0.1 | 39.4 ± 0.1 |
4 | 0 | −1 | −1 | 92.5 | 25 | 0 | 0.01 | 42.6 ± 0.9 | 2.8 ± 0.1 | 1.7 ± 0.1 | nd | 4.4 ± 0.1 | 0.4 ± 0.1 | 2.7 ± 0.1 | 0.3 ± 0.1 | 54.8 ± 1.1 |
5 | 1 | 0 | 1 | 180 | 62.5 | 100 | 0.011 | 5.3 ± 0.4 | nd | nd | nd | nd | 0.2 ± 0.1 | 6.1 ± 0.1 | 0.7 ± 0.1 | 12.2 ± 0.5 |
6 | 1 | 0 | −1 | 180 | 62.5 | 0 | 0.015 | 32.7 ± 1.5 | 8.0 ± 0.1 | 5.1 ± 0.2 | 0.11 ± 0.01 | 9.5 ± 0.5 | 0.7 ± 0.1 | 23.0 ± 1.0 | 0.6 ± 0.1 | 79.2 ± 3.4 |
7 | −1 | 0 | 1 | 5 | 62.5 | 100 | 0.006 | 2.8 ± 0.1 | nd | nd | nd | nd | nd | 2.1 ± 0.1 | 0.3 ± 0.1 | 5.2 ± 0.1 |
8 | −1 | 0 | −1 | 5 | 62.5 | 0 | 0.005 | 45.5 ± 0.5 | 1.8 ± 0.1 | 1.6 ± 0 | nd | 2.1 ± 0.1 | 0.3 ± 0.1 | 2.5 ± 0.2 | 0.2 ± 0.1 | 53.9 ± 0.9 |
9 | 1 | 1 | 0 | 180 | 100 | 50 | 0.023 | 24.0 ± 1.0 | 6.4 ± 0.3 | 9.5 ± 0.5 | 1.1 ± 0.1 | 6.5 ± 0.4 | 6.9 ± 0.3 | 71.7 ± 3.7 | 1.3 ± 0.1 | 127.7 ± 6.3 |
10 | 1 | −1 | 0 | 180 | 25 | 50 | 0.002 | 5.3 ± 0.1 | nd | nd | nd | nd | 0.2 ± 0.1 | 6.1 ± 0.7 | 0.7 ± 0.1 | 12.2 ± 1 |
11 | −1 | 1 | 0 | 5 | 100 | 50 | 0.034 | 10.7 ± 0.4 | 1.1 ± 0.1 | 2.3 ± 0.2 | 0.2 ± 0.1 | 3.7 ± 0.2 | 1.6 ± 0.1 | 21.4 ± 0.8 | 1.3 ± 0.1 | 42.3 ± 1.7 |
12 | −1 | −1 | 0 | 5 | 25 | 50 | 0.002 | 2.1 ± 0.1 | 0.6 ± 0.1 | nd | nd | nd | 0.11 ± 0.01 | 3.4 ± 0.1 | nd | 6.1 ± 0.2 |
13 | 0 | 0 | 0 | 92.5 | 62.5 | 50 | 0.008 | 16.7 ± 0.6 | 3.6 ± 0.2 | 5.5 ± 0.3 | 0.4 ± 0.1 | 6.0 ± 1.0 | 3.8 ± 0.1 | 56.0 ± 1.0 | 1.4 ± 0.1 | 93.4 ± 2.6 |
14 | 0 | 0 | 0 | 92.5 | 62.5 | 50 | 0.003 | 18.0 ± 1.0 | 2.4 ± 0.1 | 6.3 ± 0.2 | 0.4 ± 0.1 | 4.4 ± 0.2 | 4.2 ± 0.2 | 47.0 ± 3.0 | 1.1 ± 0.1 | 83.7 ± 3.8 |
15 | 0 | 0 | 0 | 92.5 | 62.5 | 50 | 0.013 | 22.0 ± 1.0 | 2.3 ± 0.1 | 6.4 ± 0.2 | 0.4 ± 0.1 | 5.9 ± 0.1 | 4.4 ± 0.1 | 54.8 ± 2.6 | 1.0 ± 0.1 | 97.4 ± 4.4 |
16 | 0 | 0 | 0 | 92.5 | 62.5 | 50 | 0.017 | 33.0 ± 1.0 | 2.6 ± 0.2 | 2.9 ± 0.1 | 0.6 ± 0.1 | 6.5 ± 0.3 | 5.9 ± 0.3 | 72.6 ± 3.7 | 1.5 ± 0.1 | 124.9 ± 5.6 |
17 | 0 | 0 | 0 | 92.5 | 62.5 | 50 | 0.013 | 17.8 ± 0.4 | 2.5 ± 0.1 | 4.5 ± 0.1 | 0.3 ± 0.1 | 9.6 ± 0.3 | 3.7 ± 0.1 | 44.2 ± 1.7 | 1.1 ± 0.1 | 83.5 ± 2.7 |
Ultrasound-assisted-extraction | ||||||||||||||||
1 | 0 | 1 | 1 | 32.5 | 500 | 100 | 0.013 | 8.6 ± 0.3 | 1.1 ± 0.1 | nd | nd | 1.2 ± 0.1 | 0.2 ± 0.1 | 4.8 ± 0.1 | 0.9 ± 0.1 | 16.8 ± 0.5 |
2 | 0 | 1 | −1 | 32.5 | 500 | 0 | 0.022 | 16.4 ± 0.7 | 3.6 ± 0.1 | 2.4 ± 0.1 | 0.15 ± 0.01 | 5.1 ± 0.1 | 0.15 ± 0.01 | 4.4 ± 0.1 | 0.6 ± 0.1 | 32.6 ± 0.9 |
3 | 0 | −1 | 1 | 32.5 | 50 | 100 | 0.005 | 1.1 ± 0.1 | 0.5 ± 0.1 | nd | nd | nd | nd | 0.8 ± 0.1 | nd | 2.4 ± 0.1 |
4 | 0 | −1 | −1 | 32.5 | 50 | 0 | 0.01 | 4.7 ± 0.1 | 0.7 ± 0.1 | nd | nd | nd | nd | 1.4 ± 0.1 | nd | 6.8 ± 0.1 |
5 | 1 | 0 | 1 | 60 | 275 | 100 | 0.011 | 2.6 ± 0.1 | 0.6 ± 0.1 | nd | nd | nd | nd | 1.6 ± 0.1 | 0.2 ± 0.1 | 5.1 ± 0.1 |
6 | 1 | 0 | −1 | 60 | 275 | 0 | 0.015 | 8.3 ± 0.1 | 1.7 ± 0.1 | nd | nd | 1.3 ± 0.1 | 0.1 ± 0.1 | 1.6 ± 0.1 | 0.15 ± 0.01 | 14.1 ± 0.2 |
7 | −1 | 0 | 1 | 5 | 275 | 100 | 0.006 | 1.5 ± 0.1 | 0.5 ± 0.1 | nd | nd | nd | nd | 0.7 ± 0.1 | nd | 2.7 ± 0.1 |
8 | −1 | 0 | −1 | 5 | 275 | 0 | 0.005 | 1.6 ± 0.1 | 0.6 ± 0.1 | nd | nd | nd | nd | 0.7 ± 0.1 | nd | 2.9 ± 0.1 |
9 | 1 | 1 | 0 | 60 | 500 | 50 | 0.023 | 17.1 ± 0.6 | 3.9 ± 0.1 | 4.8 ± 0.1 | 0.8 ± 0.1 | 12.6 ± 0.4 | 8.8 ± 0.5 | 73.5 ± 1.6 | 1.4 ± 0.1 | 123 ± 3.3 |
10 | 1 | −1 | 0 | 60 | 50 | 50 | 0.002 | 3.8 ± 0.1 | 0.7 ± 0.1 | nd | nd | nd | 0.2 ± 0.1 | 5.2 ± 0.1 | nd | 9.9 ± 0.1 |
11 | −1 | 1 | 0 | 5 | 500 | 50 | 0.034 | 11.7 ± 0.1 | 1.2 ± 0.1 | 0.5 ± 0.1 | 0.15 ± 0.01 | 2.1 ± 0.1 | 1.1 ± 0.1 | 15.8 ± 0.2 | 0.3 ± 0.1 | 33.0 ± 0.4 |
12 | −1 | −1 | 0 | 5 | 50 | 50 | 0.002 | 1.0 ± 0.1 | nd | nd | nd | nd | nd | 1.2 ± 0.1 | nd | 2.2 ± 0.1 |
13 | 0 | 0 | 0 | 32.5 | 275 | 50 | 0.008 | 4.3 ± 0.1 | 0.8 ± 0.1 | nd | nd | 5 ± 0.3 | 0.5 ± 0.1 | 7.6 ± 0.2 | 0.15 ± 0.01 | 18.4 ± 0.6 |
14 | 0 | 0 | 0 | 32.5 | 275 | 50 | 0.003 | 5.9 ± 0.2 | 1.1 ± 0.1 | nd | nd | 1.3 ± 0.1 | 0.6 ± 0.1 | 8.9 ± 0.2 | 0.15 ± 0.01 | 18.0 ± 0.4 |
15 | 0 | 0 | 0 | 32.5 | 275 | 50 | 0.013 | 8.2 ± 0.1 | 0.9 ± 0.1 | nd | nd | 1.8 ± 0.1 | 1.1 ± 0.1 | 9.9 ± 0.4 | 0.15 ± 0.01 | 21.9 ± 0.6 |
16 | 0 | 0 | 0 | 32.5 | 275 | 50 | 0.017 | 3.6 ± 0.2 | 0.7 ± 0.1 | nd | nd | 1.6 ± 0.1 | 0.6 ± 0.1 | 7.6 ± 0.4 | 0.2 ± 0.1 | 14.2 ± 0.7 |
17 | 0 | 0 | 0 | 32.5 | 275 | 50 | 0.013 | 9.7 ± 0.3 | 1.1 ± 0.1 | nd | 0.15 ± 0.01 | nd | 0.8 ± 0.1 | 12.1 ± 0.4 | 0.2 ± 0.1 | 23.9 ± 0.7 |
Optimal values | ||||||||||||||||
HAE | 0 | 1 | 1 | 121 | 91 | 27 | - | 32.2 ± 0.6 | 2.6 ± 0.1 | 2.9 ± 0.1 | 0.6 ± 0 | 6.5 ± 0.3 | 5.9 ± 0.2 | 72 ± 2.9 | 1.5 ± 0.1 | 124.2 ± 3.3 |
UAE | 1 | 1 | 0 | 60 | 500 | 50 | - | 17.1 ± 0.4 | 3.9 ± 0.1 | 4.8 ± 0.1 | 0.8 ± 0 | 12.7 ± 0.3 | 8.8 ± 0.3 | 73.6 ± 1.1 | 1.3 ± 0.1 | 123 ± 1.1 |
TBARS 1 | Reducing Power 2 | DPPH 2 | OxHLIA 1 | CAA 3 | ||
---|---|---|---|---|---|---|
Δt = 60 min | Δt = 120 min | |||||
UAE | 8.9 ± 0.1 a | 40.4 ± 0.1 a | 283 ± 20 a | 1.4 ± 0.1 a | 6.6 ± 0.3 a | 31 ± 1% |
HAE | 12.8 ± 0.5 a | 16.5 ± 0.1 b | 108 ± 4 b | 5.6 ± 0.3 b | 23 ± 2 b | 37 ± 3% |
E-223 | 228.7 ± 0.1 b | 53.5 ± 2.5 a | 43 ± 1 c | 41 ± 1 c | 84 ± 2 c | - |
E-302 | 284.0 ± 0.1 b | 8.8 ± 0.4 c | 21 ± 3 d | - | - | - |
Trolox | 23.0 ± 0.1 c | 13.6 ± 0.1 b | 22.7 ± 1.2 d | 21.8 ± 0.2 d | 43.5 ± 0.3 d | - |
Quercetin | - | - | - | - | - | 95 ± 5% |
Cell Line | Cytotoxicity/Anti-Inflammatory Activity (GI50 Values; µg/mL) | Selectivity Index (Mean ± SD) | ||||
---|---|---|---|---|---|---|
HAE | UAE | Ellipticine | Dexamethasone | sHAE | UAE | |
AGS | 139 ± 5 a | 133 ± 10 a | 1.23 ± 0.03 | - | 0.80 ± 0.06 | 0.61 ± 0.05 |
CaCo2 | 247 ± 23 b | 263 ± 15 b | 1.21 ± 0.03 | - | 1.46 ± 0.07 | 1.19 ± 0.06 |
MCF-7 | 254 ± 7 c | 232 ± 5 c | 1.02 ± 0.02 | - | 1.51 ± 0.06 | 1.10 ± 0.04 |
VERO | 172 ± 3 f | 219 ± 16 f | 1.29 ± 0.02 | - | - | - |
RAW 264.7 | 89.4 ± 0.2 g | 67.7 ± 0.3 g | - | 5.97 ± 0.84 | - | - |
Microbial Strain | HAE | UAE | E211 | E224 | ||||
---|---|---|---|---|---|---|---|---|
Antibacterial activity | ||||||||
MIC | MBC | MIC | MBC | MIC | MBC | MIC | MBC | |
Staphylococcus aureus | 1 | 2 | 0.5 | 1 | 4 | 4 | 1 | 1 |
Bacillus cereus | 0.5 | 1 | 0.25 | 0.5 | 0.5 | 0.5 | 2 | 4 |
Listeria monocytogenes | 1 | 2 | 0.25 | 0.5 | 1 | 2 | 0.5 | 1 |
Escherichia coli | 0.25 | 0.5 | 0.25 | 0.5 | 1 | 2 | 0.5 | 1 |
Salmonella typhimurium | 1 | 2 | 0.5 | 1 | 1 | 2 | 1 | 1 |
Enterobacter cloacae | 0.5 | 1 | 0.25 | 0.5 | 2 | 4 | 0.5 | 0.5 |
Antifungal activity | ||||||||
MIC | MFC | MIC | MFC | MIC | MFC | MIC | MFC | |
Aspergillus fumigatus | 2 | 4 | 0.5 | 1 | 1 | 2 | 1 | 1 |
Aspergillus niger | 1 | 2 | 0.5 | 1 | 1 | 2 | 1 | 1 |
Aspergillus versicolor | 2 | 4 | 1 | 2 | 2 | 2 | 1 | 1 |
Penicillium funiculosum | 2 | 4 | 1 | 2 | 1 | 2 | 0.5 | 0.5 |
Penicillium verrucosum var. cyclopium | 1 | 2 | 0.5 | 1 | 2 | 4 | 1 | 1 |
Trichoderma viride | 2 | 4 | 2 | 4 | 1 | 2 | 0.5 | 0.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Spréa, R.M.; Caleja, C.; Pereira, E.; Carocho, M.; Pinela, J.; Finimundy, T.C.; Calhelha, R.C.; Kostić, M.; Soković, M.; Prieto, M.A.; et al. Effect of Heat-Assisted and Ultrasound-Assisted Extraction Methods on the Phenolic Profile and Biological Activity of Thymus vulgaris L. Extracts. Antioxidants 2025, 14, 567. https://doi.org/10.3390/antiox14050567
Spréa RM, Caleja C, Pereira E, Carocho M, Pinela J, Finimundy TC, Calhelha RC, Kostić M, Soković M, Prieto MA, et al. Effect of Heat-Assisted and Ultrasound-Assisted Extraction Methods on the Phenolic Profile and Biological Activity of Thymus vulgaris L. Extracts. Antioxidants. 2025; 14(5):567. https://doi.org/10.3390/antiox14050567
Chicago/Turabian StyleSpréa, Rafael Mascoloti, Cristina Caleja, Eliana Pereira, Márcio Carocho, José Pinela, Tiane C. Finimundy, Ricardo C. Calhelha, Marina Kostić, Marina Soković, Miguel A. Prieto, and et al. 2025. "Effect of Heat-Assisted and Ultrasound-Assisted Extraction Methods on the Phenolic Profile and Biological Activity of Thymus vulgaris L. Extracts" Antioxidants 14, no. 5: 567. https://doi.org/10.3390/antiox14050567
APA StyleSpréa, R. M., Caleja, C., Pereira, E., Carocho, M., Pinela, J., Finimundy, T. C., Calhelha, R. C., Kostić, M., Soković, M., Prieto, M. A., Amaral, J. S., & Barros, L. (2025). Effect of Heat-Assisted and Ultrasound-Assisted Extraction Methods on the Phenolic Profile and Biological Activity of Thymus vulgaris L. Extracts. Antioxidants, 14(5), 567. https://doi.org/10.3390/antiox14050567