Regenerative Organic Agriculture and Human Health: The Interconnection Between Soil, Food Quality, and Nutrition
Abstract
:1. Introduction
2. Regenerative Agriculture
2.1. What Is Regenerative Agriculture
2.2. Key Principles and Practices
2.3. Regenerative Organic Agriculture
3. Links Between Soil Health and Food Quality
3.1. Links Between Soil Health and Plant Health
3.2. Soil Health and Food Quality
3.3. Effects on Food Quality
3.3.1. Influence on Macronutrient Content
3.3.2. Influence on Micronutrient Content
3.3.3. Influence on Bioactive Molecule Synthesis
4. Food-Crop Quality and Human Health
4.1. Impact on Human Health
4.2. Antioxidant-Related Benefits
5. Conclusions and Future Perspectives
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Use of Artificial Intelligence
Acknowledgments
Conflicts of Interest
Abbreviations
AMF | Arbuscular mycorrhizal fungi |
AMPK | AMP-activated protein kinase |
ARE | Antioxidant response element |
Ca | Calcium |
CAT | Catalase |
CEC | Cation exchange capacity |
COX-2 | Cyclo-oxygenase-2 |
EPS | Exopolysaccharide |
Fe | Iron |
GPx | Glutathione peroxidase |
GMO | Genetically modified organisms |
H2O2 | Hydrogen peroxide |
HO-1 | Heme oxygenase-1 |
I | Iodine |
K | Potassium |
Mg | Magnesium |
MND | Micronutrient deficiencies |
NF-kB | Nuclear factor-Kb |
NO | Nitric oxide |
Nrf2 | Nuclear factor erythroid 2-related factor |
P | Phosphorus |
PG | Prostaglandin |
PGPR | Plant growth-promoting rhizobacteria |
PPAR-γ | Peroxisome proliferator-activated receptor-gamma |
RA | Regenerative agriculture |
ROA | Regenerative organic agriculture |
ROS | Reactive oxygen species |
SOD | Superoxide dismutase |
Se | Selenium |
Zn | Zinc |
References
- World Health Organization. Diet, Nutrition and the Prevention of Chronic Diseases: Report of a Joint WHO/FAO Expert Consultation; World Health Organization: Geneva, Switzerland, 2003; ISBN 978-92-4-120916-8. [Google Scholar]
- Afshin, A.; Sur, P.J.; Fay, K.A.; Cornaby, L.; Ferrara, G.; Salama, J.S.; Mullany, E.C.; Abate, K.H.; Abbafati, C.; Abebe, Z.; et al. Health Effects of Dietary Risks in 195 Countries, 1990–2017: A Systematic Analysis for the Global Burden of Disease Study 2017. Lancet 2019, 393, 1958–1972. [Google Scholar] [CrossRef] [PubMed]
- Zhou, D.-D.; Luo, M.; Shang, A.; Mao, Q.-Q.; Li, B.-Y.; Gan, R.-Y.; Li, H.-B. Antioxidant Food Components for the Prevention and Treatment of Cardiovascular Diseases: Effects, Mechanisms, and Clinical Studies. Oxid. Med. Cell. Longev. 2021, 2021, 6627355. [Google Scholar] [CrossRef] [PubMed]
- Silver, W.L.; Perez, T.; Mayer, A.; Jones, A.R. The Role of Soil in the Contribution of Food and Feed. Philos. Trans. R. Soc. B Biol. Sci. 2021, 376, 20200181. [Google Scholar] [CrossRef]
- Rhodes, C.J. The Imperative for Regenerative Agriculture. Sci. Prog. 2017, 100, 80–129. [Google Scholar] [CrossRef]
- Patra, S.; Julich, S.; Feger, K.-H.; Jat, M.L.; Sharma, P.C.; Schwärzel, K. Effect of Conservation Agriculture on Stratification of Soil Organic Matter under Cereal-Based Cropping Systems. Arch. Agron. Soil Sci. 2019, 65, 2013–2028. [Google Scholar] [CrossRef]
- Lori, M.; Kundel, D.; Mäder, P.; Singh, A.; Patel, D.; Sisodia, B.S.; Riar, A.; Krause, H.-M. Organic Farming Systems Improve Soil Quality and Shape Microbial Communities across a Cotton-Based Crop Rotation in an Indian Vertisol. FEMS Microbiol. Ecol. 2024, 100, fiae127. [Google Scholar] [CrossRef]
- Montgomery, D.R.; Biklé, A. Soil Health and Nutrient Density: Beyond Organic vs. Conventional Farming. Front. Sustain. Food Syst. 2021, 5, 699147. [Google Scholar] [CrossRef]
- Tilman, D.; Balzer, C.; Hill, J.; Befort, B.L. Global Food Demand and the Sustainable Intensification of Agriculture. Proc. Natl. Acad. Sci. USA 2011, 108, 20260–20264. [Google Scholar] [CrossRef]
- Mditshwa, A.; Magwaza, L.S.; Tesfay, S.Z.; Mbili, N. Postharvest Quality and Composition of Organically and Conventionally Produced Fruits: A Review. Sci. Hortic. 2017, 216, 148–159. [Google Scholar] [CrossRef]
- Cárceles Rodríguez, B.; Durán-Zuazo, V.H.; Soriano Rodríguez, M.; García-Tejero, I.F.; Gálvez Ruiz, B.; Cuadros Tavira, S. Conservation Agriculture as a Sustainable System for Soil Health: A Review. Soil Syst. 2022, 6, 87. [Google Scholar] [CrossRef]
- Wijerathna-Yapa, A.; Pathirana, R. Sustainable Agro-Food Systems for Addressing Climate Change and Food Security. Agriculture 2022, 12, 1554. [Google Scholar] [CrossRef]
- Kenny, T.A.; Woodside, J.V.; Perry, I.J.; Harrington, J.M. Consumer Attitudes and Behaviors toward More Sustainable Diets: A Scoping Review. Nutr. Rev. 2023, 81, 1665–1679. [Google Scholar] [CrossRef] [PubMed]
- Horská, E.; Ürgeová, J.; Prokeinová, R. Consumers’ Food Choice and Quality Perception: Comparative Analysis of Selected Central European Countries. Agric. Econ. Zemědělská Ekon. 2011, 57, 493–499. [Google Scholar] [CrossRef]
- Wongprawmas, R.; Mora, C.; Pellegrini, N.; Guiné, R.P.F.; Carini, E.; Sogari, G.; Vittadini, E. Food Choice Determinants and Perceptions of a Healthy Diet among Italian Consumers. Foods 2021, 10, 318. [Google Scholar] [CrossRef]
- Rodale, R. Breaking New Ground: The Search for a Sustainable Agriculture. Futurist 1983, 17, 15–20. [Google Scholar]
- Francis, C.A.; Harwood, R.R.; Parr, J.F. The Potential for Regenerative Agriculture in the Developing World. Am. J. Altern. Agric. 1986, 1, 65–74. [Google Scholar] [CrossRef]
- Schreefel, L.; Schulte, R.P.O.; de Boer, I.J.M.; Schrijver, A.P.; van Zanten, H.H.E. Regenerative Agriculture—The Soil Is the Base. Glob. Food Secur. 2020, 26, 100404. [Google Scholar] [CrossRef]
- Newton, P.; Civita, N.; Frankel-Goldwater, L.; Bartel, K.; Johns, C. What Is Regenerative Agriculture? A Review of Scholar and Practitioner Definitions Based on Processes and Outcomes. Front. Sustain. Food Syst. 2020, 4, 577723. [Google Scholar] [CrossRef]
- Giller, K.E.; Hijbeek, R.; Andersson, J.A.; Sumberg, J. Regenerative Agriculture: An Agronomic Perspective. Outlook Agric. 2021, 50, 13–25. [Google Scholar] [CrossRef]
- Voisin, R.; Horwitz, P.; Godrich, S.; Sambell, R.; Cullerton, K.; Devine, A. What Goes in and What Comes out: A Scoping Review of Regenerative Agricultural Practices. Agroecol. Sustain. Food Syst. 2024, 48, 124–158. [Google Scholar] [CrossRef]
- Jayasinghe, S.L.; Thomas, D.T.; Anderson, J.P.; Chen, C.; Macdonald, B.C.T. Global Application of Regenerative Agriculture: A Review of Definitions and Assessment Approaches. Sustainability 2023, 15, 15941. [Google Scholar] [CrossRef]
- Khangura, R.; Ferris, D.; Wagg, C.; Bowyer, J. Regenerative Agriculture—A Literature Review on the Practices and Mechanisms Used to Improve Soil Health. Sustainability 2023, 15, 2338. [Google Scholar] [CrossRef]
- Elrick, W.; Luke, H.; Stimpson, K. Exploring Opportunities and Constraints of a Certification Scheme for Regenerative Agricultural Practice. Agroecol. Sustain. Food Syst. 2022, 46, 1527–1549. [Google Scholar] [CrossRef]
- Jordon, M.; Willis, K.; Bürkner, P.-C.; Haddaway, N.; Smith, P.; Petrokofsky, G. Temperate Regenerative Agriculture; a Win-Win for Soil Carbon and Crop Yield? Res. Sq. 2021. [Google Scholar] [CrossRef]
- Vugt, D.V.; Franke, A.C.; Giller, K.E. Participatory Research to Close the Soybean Yield Gap on Smallholder Farms in Malawi. Exp. Agric. 2017, 53, 396–415. [Google Scholar] [CrossRef]
- Sahu, G.; Das, S. Regenerative Agriculture: Future of Sustainable Food Production. Biot. Res. Today 2020, 2, 745–748. [Google Scholar]
- Ghosh, S.; Saha, A.; Kumar, S.; Pathania, S. Regenerative Agriculture for Climate Change Mitigation and Food Security. In Regenerative Agriculture for Sustainable Food Systems; Kumar, S., Meena, R.S., Sheoran, P., Jhariya, M.K., Eds.; Springer Nature: Singapore, 2024; pp. 83–133. ISBN 978-981-9766-91-8. [Google Scholar]
- Zomer, R.J.; Bossio, D.A.; Sommer, R.; Verchot, L.V. Global Sequestration Potential of Increased Organic Carbon in Cropland Soils. Sci. Rep. 2017, 7, 15554. [Google Scholar] [CrossRef]
- Maurya, S.K.; Kalhapure, A.; Verma, V.K.; Tiwari, A.; Chaubey, C.; Maurya, D.K.; Kumar, M. Irrigation Scheduling and Cultivar Management for Increasing Water Productivity under Dryland Condition: A Review. Int. J. Environ. Clim. Change 2024, 14, 461–470. [Google Scholar] [CrossRef]
- Soujanya, B.; Gurjar, D.S. Water-Efficient Crop Production: Agronomic Strategies for Drought-Prone Areas. Int. J. Res. Agron. 2024, 7, 187–196. [Google Scholar] [CrossRef]
- Dabalen, A.; Goyal, A.; Song, R. Regenerative Agriculture in Practice: A Review; World Bank: Washington, DC, USA, 2024. [Google Scholar]
- Bharathi, M.; Sivakumar, K.; Gopalakrishnan, M.; Vennila, M.A.; Anandham, R.; Sritharan, N. Soil Physical Health Sustenance: Strategies and Perspectives—A Review. Plant Sci. Today 2024, 11, 5342. [Google Scholar] [CrossRef]
- Gill, H.K.; Grabau, Z.J.; McSorley, R. Cover Crops for Managing Root-Knot Nematodes: IN892 Rev./ENY063, 1/2023. EDIS 2022, 2022. [Google Scholar] [CrossRef]
- Sharifi, M.; Salimi, K.; Rosa, D.; Hart, M. Screening Cover Crops for Utilization in Irrigated Vineyards: A Greenhouse Study on Species’ Nitrogen Uptake and Carbon Sequestration Potential. Plants 2024, 13, 1959. [Google Scholar] [CrossRef] [PubMed]
- Kaspar, T.C.; Singer, J.W. The Use of Cover Crops to Manage Soil. In Soil Management: Building a Stable Base for Agriculture; American Society of Agronomy and Soil Science Society of America: Madison, WI, USA, 2011; pp. 321–337. [Google Scholar] [CrossRef]
- Nasiro, K. Cropping Systems Diversification as an Approach to Enhancing Crop Productivity: A Review. Plant 2024, 12, 48–65. [Google Scholar] [CrossRef]
- Tseng, T.M.; Shrestha, S.; Sudip, K.; Tseng, T.M. Crop Diversification for Improved Weed Management: A Review. Agriculture 2021, 11, 461. [Google Scholar] [CrossRef]
- Beillouin, D.; Ben-Ari, T.; Malézieux, E.; Seufert, V.; Makowski, D. Positive but Variable Effects of Crop Diversification on Biodiversity and Ecosystem Services. Glob. Chang. Biol. 2021, 27, 4697–4710. [Google Scholar] [CrossRef]
- Tully, K.; Ryals, R. Nutrient Cycling in Agroecosystems: Balancing Food and Environmental Objectives. Agroecol. Sustain. Food Syst. 2017, 41, 761–798. [Google Scholar] [CrossRef]
- Qui, N.V.; Khoa, L.V.; Phuong, N.M.; Vien, D.M.; Dung, T.V.; Linh, T.B.; Khanh, T.H.; Thuong, B.T.; Tran, V.T.T.; Nghia, N.K.; et al. Effects of Rotating Rice with Upland Crops and Adding Organic Amendments, and of Related Soil Quality on Rice Yield in the Vietnamese Mekong Delta. Agronomy 2024, 14, 1185. [Google Scholar] [CrossRef]
- Nesper, M.; Kueffer, C.; Krishnan, S.; Kushalappa, C.G.; Ghazoul, J. Simplification of Shade Tree Diversity Reduces Nutrient Cycling Resilience in Coffee Agroforestry. J. Appl. Ecol. 2019, 56, 119–131. [Google Scholar] [CrossRef]
- Lai, H.; Gao, F.; Su, H.; Zheng, P.; Li, Y.; Yao, H. Nitrogen Distribution and Soil Microbial Community Characteristics in a Legume–Cereal Intercropping System: A Review. Agronomy 2022, 12, 1900. [Google Scholar] [CrossRef]
- Chotangui, A.H.; Mandou, M.S.; Beyegue-Djonko, H.; Tamfuh, P.A.; Atabontsa, D.; Waa, S.C.S.; Tchapga, F.J.N.; Kouam, E.B. Effects of Poultry Manure, Urban Waste Compost and NPK-20-10-10 on the Growth, Yield and Shelf-Life of Two Varieties of Cucumber (Cucumis sativus L.) in the Western Highlands of Cameroon. Asian J. Agric. Hortic. Res. 2022, 9, 148–160. [Google Scholar] [CrossRef]
- Hijbeek, R.; Pronk, A.A.; van Ittersum, M.K.; Verhagen, A.; Ruysschaert, G.; Bijttebier, J.; Zavattaro, L.; Bechini, L.; Schlatter, N.; ten Berge, H.F.M. Use of Organic Inputs by Arable Farmers in Six Agro-Ecological Zones across Europe: Drivers and Barriers. Agric. Ecosyst. Environ. 2019, 275, 42–53. [Google Scholar] [CrossRef]
- Elevitch, C.; Mazaroli, D.; Ragone, D. Agroforestry Standards for Regenerative Agriculture. Sustainability 2018, 10, 3337. [Google Scholar] [CrossRef]
- Waters, C.M.; Orgill, S.E.; Melville, G.J.; Toole, I.D.; Smith, W.J. Management of Grazing Intensity in the Semi-Arid Rangelands of Southern Australia: Effects on Soil and Biodiversity. Land Degrad. Dev. 2017, 28, 1363–1375. [Google Scholar] [CrossRef]
- Thapa, R.B.; Coupal, R.H.; Dangi, M.B.; Stahl, P.D. An Assessment of Plant Growth and Soil Properties Using Coal Char and Biochar as a Soil Amendment. Agronomy 2024, 14, 320. [Google Scholar] [CrossRef]
- Rehberger, E.; West, P.; Spillane, C.; McKeown, P. What Climate and Environmental Benefits of Regenerative Agriculture Practices? An Evidence Review. Environ. Res. Commun. 2023, 5, 052001. [Google Scholar] [CrossRef]
- Begam, A.; Paramanik, B.; Dutta, S.; Dutta, G.; Bhattacharjee, S. Combating the Effects of Climate Change through Regenerative Organic Agriculture. In Regenerative Agriculture; CRC Press: Boca Raton, FL, USA, 2024; ISBN 978-1-00-330958-1. [Google Scholar]
- Banerjee, S.; Verma, S.; Regmi, R.; Kaushal, S. A Vision toward Regenerative Organic Agriculture to Sustain Climate Change and Combat Global Warming. Curr. J. Appl. Sci. Technol. 2023, 42, 12–23. [Google Scholar] [CrossRef]
- Dierenfeld, E.S. 94 Sustainable Feeding Solutions Across the Animal Kingdom: Identifying and Implementing. J. Anim. Sci. 2023, 101, 116–117. [Google Scholar] [CrossRef]
- Singh, N.K.; Sachan, K.; Manoj, B.P.; Panotra, N.; Katiyar, D. Building Soil Health and Fertility through Organic Amendments and Practices: A Review. Asian J. Soil Sci. Plant Nutr. 2024, 10, 175–197. [Google Scholar] [CrossRef]
- Montgomery, D.R.; Biklé, A.; Archuleta, R.; Brown, P.; Jordan, J. Soil Health and Nutrient Density: Preliminary Comparison of Regenerative and Conventional Farming. PeerJ 2022, 10, e12848. [Google Scholar] [CrossRef]
- Varma, N.; Wadatkar, H.; Salve, R.; Kumar, T.V. Advancing Sustainable Agriculture: A Comprehensive Review of Organic Farming Practices and Environmental Impact. J. Exp. Agric. Int. 2024, 46, 695–703. [Google Scholar] [CrossRef]
- Scialabba, N.E.-H.; Müller-Lindenlauf, M. Organic Agriculture and Climate Change. Renew. Agric. Food Syst. 2010, 25, 158–169. [Google Scholar] [CrossRef]
- Akpoti, K.; Kabo-bah, A.T.; Zwart, S.J. Review—Agricultural Land Suitability Analysis: State-of-the-Art and Outlooks for Integration of Climate Change Analysis. Agric. Syst. 2019, 173, 172–208. [Google Scholar] [CrossRef]
- Sahota, A. The Global Market for Organic Food & Drink. In The World of Organic Agriculture; Routledge: London, UK, 2010; pp. 59–63. ISBN 978-1-84977-599-1. [Google Scholar]
- Willer, H.; Schlatter, B.; Trávníček, J. The World of Organic Agriculture. Statistics and Emerging Trends 2023; Willer, H., Schlatter, B., Trávníček, J., Eds.; Research Institute of Organic Agriculture FiBL: Frick, Switzerland; IFOAM—Organics International: Bonn, Germany, 2023; pp. 1–358. [Google Scholar]
- Fenster, T.L.D.; LaCanne, C.E.; Pecenka, J.R.; Schmid, R.B.; Bredeson, M.M.; Busenitz, K.M.; Michels, A.M.; Welch, K.D.; Lundgren, J.G. Defining and Validating Regenerative Farm Systems Using a Composite of Ranked Agricultural Practices. F1000Research 2021, 10, 115. [Google Scholar] [CrossRef]
- Heinen, R.; Hannula, S.E.; De Long, J.R.; Huberty, M.; Jongen, R.; Kielak, A.; Steinauer, K.; Zhu, F.; Bezemer, T.M. Plant Community Composition Steers Grassland Vegetation via Soil Legacy Effects. Ecol. Lett. 2020, 23, 973–982. [Google Scholar] [CrossRef] [PubMed]
- Bauer, J.T.; Blumenthal, N.; Miller, A.J.; Ferguson, J.K.; Reynolds, H.L. Effects of Between-Site Variation in Soil Microbial Communities and Plant-Soil Feedbacks on the Productivity and Composition of Plant Communities. J. Appl. Ecol. 2017, 54, 1028–1039. [Google Scholar] [CrossRef]
- Xue, R.; Yang, Q.; Miao, F.; Wang, X.; Shen, Y.; Xue, R.; Yang, Q.; Miao, F.; Wang, X.; Shen, Y. Slope Aspect Influences Plant Biomass, Soil Properties and Microbial Composition in Alpine Meadow on the Qinghai-Tibetan Plateau. J. Soil Sci. Plant Nutr. 2018, 18, 1–12. [Google Scholar] [CrossRef]
- Wei, Z.; Gu, Y.; Friman, V.-P.; Kowalchuk, G.A.; Xu, Y.; Shen, Q.; Jousset, A. Initial Soil Microbiome Composition and Functioning Predetermine Future Plant Health. Sci. Adv. 2019, 5, eaaw0759. [Google Scholar] [CrossRef]
- Heinen, R.; van der Sluijs, M.; Biere, A.; Harvey, J.A.; Bezemer, T.M. Plant Community Composition but Not Plant Traits Determine the Outcome of Soil Legacy Effects on Plants and Insects. J. Ecol. 2018, 106, 1217–1229. [Google Scholar] [CrossRef]
- Tamura, M.; Suseela, V.; Simpson, M.; Powell, B.; Tharayil, N. Plant Litter Chemistry Alters the Content and Composition of Organic Carbon Associated with Soil Mineral and Aggregate Fractions in Invaded Ecosystems. Glob. Change Biol. 2017, 23, 4002–4018. [Google Scholar] [CrossRef]
- Reeve, J.R.; Hoagland, L.A.; Villalba, J.J.; Carr, P.M.; Atucha, A.; Cambardella, C.; Davis, D.R.; Delate, K. Organic Farming, Soil Health, and Food Quality: Considering Possible Links. In Advances in Agronomy; Elsevier: Amsterdam, The Netherlands, 2016; Volume 137, pp. 319–367. ISBN 978-0-12-804692-0. [Google Scholar]
- Coban, O.; De Deyn, G.B.; van der Ploeg, M. Soil Microbiota as Game-Changers in Restoration of Degraded Lands. Science 2022, 375, abe0725. [Google Scholar] [CrossRef]
- Zani, C.F.; Manning, D.A.C.; Abbott, G.D.; Taylor, J.A.; Cooper, J.; Lopez-Capel, E. Diversified Crop Rotations and Organic Amendments as Strategies for Increasing Soil Carbon Storage and Stabilisation in UK Arable Systems. Front. Environ. Sci. 2023, 11, 1113026. [Google Scholar] [CrossRef]
- Lister, C. Nutrient Density and Food Quality in the Context of Regenerative Agriculture; AgResearch: Lincoln, New Zealand, 2024. [Google Scholar]
- Allam, M.; Radicetti, E.; Petroselli, V.; Mancinelli, R. Meta-Analysis Approach to Assess the Effects of Soil Tillage and Fertilization Source under Different Cropping Systems. Agriculture 2021, 11, 823. [Google Scholar] [CrossRef]
- Rusu, M.; Mihai, M.; Tritean, N.; Mihai, V.C.; Moldovan, L.; Ceclan, A.O.; Russu, F.; Toader, C. Protection and Modeling in the Use of S, Ca, and Mg Alternatives for Long-Term Sustainable Fertilization Systems. Agronomy 2024, 14, 515. [Google Scholar] [CrossRef]
- El-Waraky, E.A.; El-Beltagi, H.S.; El-Nady, M.F.; Al-daej, M.I.; Belal, E.B.; Shehata, W.F.; Hadid, M.L.; Metwaly, M.M.S. Responses of Gossypium Barbadense L. Cotton Plants to Biofertilizers under Different Levels of Nitrogen Fertilization. Pol. J. Environ. Stud. 2025, 34, 631–643. [Google Scholar] [CrossRef]
- Barański, M.; Srednicka-Tober, D.; Volakakis, N.; Seal, C.; Sanderson, R.; Stewart, G.B.; Benbrook, C.; Biavati, B.; Markellou, E.; Giotis, C.; et al. Higher Antioxidant and Lower Cadmium Concentrations and Lower Incidence of Pesticide Residues in Organically Grown Crops: A Systematic Literature Review and Meta-Analyses. Br. J. Nutr. 2014, 112, 794–811. [Google Scholar] [CrossRef]
- Stefan, G.; Dragoja, R.; Sandra, V. Phytochemical Characterization and Antioxidant Potential of Allium Ursinum L. Cultivated on Different Soil Types- a Preliminary Study. Emir. J. Food Agric. 2023, 35, 904–914. [Google Scholar] [CrossRef]
- Mehrotra, R.; Lothe, N.B.; Verma, R.K. Comparative Study on Changes in Biochemical Constituents, Yield and Quality of Lemongrass (Cymbopogon flexuosus) Grown under Different Soil Types. Arch. Agron. Soil Sci. 2023, 69, 3167–3183. [Google Scholar] [CrossRef]
- Abu Bakar, M.F.; Abdul Karim, F.; Suleiman, M.; Isha, A.; Rahmat, A. Phytochemical Constituents, Antioxidant and Antiproliferative Properties of a Liverwort, Lepidozia Borneensis Stephani from Mount Kinabalu, Sabah, Malaysia. Evid.-Based Complement. Altern. Med. ECAM 2015, 2015, 936215. [Google Scholar] [CrossRef]
- Das, D.; Arulkumar, A.; Paramasivam, S.; Lopez-Santamarina, A.; Del Carmen Mondragon, A.; Miranda Lopez, J.M. Phytochemical Constituents, Antimicrobial Properties and Bioactivity of Marine Red Seaweed (Kappaphycus alvarezii) and Seagrass (Cymodocea serrulata). Foods 2023, 12, 2811. [Google Scholar] [CrossRef]
- Tahat, M.M.; Alananbeh, K.M.; Othman, Y.A.; Leskovar, D.I. Soil Health and Sustainable Agriculture. Sustainability 2020, 12, 4859. [Google Scholar] [CrossRef]
- Sharma, P.; Singh, A.; Kahlon, C.S.; Brar, A.S.; Grover, K.K.; Dia, M.; Steiner, R.L. The Role of Cover Crops towards Sustainable Soil Health and Agriculture—A Review Paper. Am. J. Plant Sci. 2018, 9, 1935–1951. [Google Scholar] [CrossRef]
- Chen, D.; Saeed, M.; Ali, M.N.H.A.; Raheel, M.; Ashraf, W.; Hassan, Z.; Hassan, M.Z.; Farooq, U.; Hakim, M.F.; Rao, M.J.; et al. Plant Growth Promoting Rhizobacteria (PGPR) and Arbuscular Mycorrhizal Fungi Combined Application Reveals Enhanced Soil Fertility and Rice Production. Agronomy 2023, 13, 550. [Google Scholar] [CrossRef]
- Rawat, P.; Das, S.; Shankhdhar, D.; Shankhdhar, S.C. Phosphate-Solubilizing Microorganisms: Mechanism and Their Role in Phosphate Solubilization and Uptake. J. Soil Sci. Plant Nutr. 2021, 21, 49–68. [Google Scholar] [CrossRef]
- Alomari, S.; Hasan, R.; Nazar Al-najim, A.; Saadi, A. Nitrogen-Fixing Bacteria and Their Applications in the Environment: A Review. Int. J. Med. Body Health Res. 2024, 5, 178–187. [Google Scholar] [CrossRef]
- Chatterjee, A.; Singh, S.; Agrawal, C.; Yadav, S.; Rai, R.; Rai, L.C. Chapter 10—Role of Algae as a Biofertilizer. In Algal Green Chemistry; Rastogi, R.P., Madamwar, D., Pandey, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 189–200. ISBN 978-0-444-63784-0. [Google Scholar]
- Areej, A.; Usama, M.; Zulfiqar, U.; Sarwar, F.; Ashiq, A. Sustainable Agriculture Development: The Role of Biofertilizers in Soil Fertility and Crop Yield Improvement. Appl. Agric. Sci. 2024, 2, 1–5. [Google Scholar] [CrossRef]
- Reddy, G.S.V.; Bokka, S.K.R.; Chellem, S.R.; Kalpana, K.; Indrani, K.; Bindu, T.P.L.H.; Navya, D.S. Mutualistic Relationships between Plants and Mycorrhizal Fungi Impacts on Ecosystem Functioning: A Review. Uttar Pradesh J. Zool. 2024, 45, 242–261. [Google Scholar] [CrossRef]
- Reis, G.A.; Martínez-Burgos, W.J.; Pozzan, R.; Pastrana Puche, Y.; Ocán-Torres, D.; de Queiroz Fonseca Mota, P.; Rodrigues, C.; Lima Serra, J.; Scapini, T.; Karp, S.G.; et al. Comprehensive Review of Microbial Inoculants: Agricultural Applications, Technology Trends in Patents, and Regulatory Frameworks. Sustainability 2024, 16, 8720. [Google Scholar] [CrossRef]
- Yang, Y.; Han, X.; Liang, Y.; Ghosh, A.; Chen, J.; Tang, M. The Combined Effects of Arbuscular Mycorrhizal Fungi (AMF) and Lead (Pb) Stress on Pb Accumulation, Plant Growth Parameters, Photosynthesis, and Antioxidant Enzymes in Robinia pseudoacacia L. PLoS ONE 2015, 10, e0145726. [Google Scholar] [CrossRef]
- Ben Hassena, A.; Zouari, M.; Labrousse, P.; Decou, R.; Soua, N.; Khabou, W.; Zouari, N. Effect of Arbuscular Myccorhizal Fungi on Soil Properties, Mineral Nutrition and Antioxidant Enzymes of Olive Plants under Treated Wastewater Irrigation. S. Afr. J. Bot. 2022, 148, 710–719. [Google Scholar] [CrossRef]
- Alam, M.Z.; Choudhury, T.R.; Mridha, M.A.U. Arbuscular Mycorrhizal Fungi Enhance Biomass Growth, Mineral Content, and Antioxidant Activity in Tomato Plants under Drought Stress. J. Food Qual. 2023, 2023, 2581608. [Google Scholar] [CrossRef]
- Jabborova, D.; Kannepalli, A.; Davranov, K.; Narimanov, A.; Enakiev, Y.; Syed, A.; Elgorban, A.M.; Bahkali, A.H.; Wirth, S.; Sayyed, R.Z.; et al. Co-Inoculation of Rhizobacteria Promotes Growth, Yield, and Nutrient Contents in Soybean and Improves Soil Enzymes and Nutrients under Drought Conditions. Sci. Rep. 2021, 11, 22081. [Google Scholar] [CrossRef]
- Tsegaye, Z.; Alemu, T.; Desta, F.A.; Assefa, F. Plant Growth-Promoting Rhizobacterial Inoculation to Improve Growth, Yield, and Grain Nutrient Uptake of Teff Varieties. Front. Microbiol. 2022, 13, 896770. [Google Scholar] [CrossRef]
- Mamatha, B.; Mudigiri, C.; Ramesh, G.; Saidulu, P.; Meenakshi, N.; Prasanna, C.L. Enhancing Soil Health and Fertility Management for Sustainable Agriculture: A Review. Asian J. Soil Sci. Plant Nutr. 2024, 10, 182–190. [Google Scholar] [CrossRef]
- Pejanović, V.; Radaković, M.; Radović, G. Smart and Regenerative Agriculture in the Function of Agricultural Entrepreneurship. In Proceedings of the 13th International Scientific Conference “Employment, Education and Entrepreneurship”, Belgrad, Serbia, 25 October 2024; pp. 593–603. [Google Scholar]
- Prairie, A.M.; King, A.E.; Cotrufo, M.F. Restoring Particulate and Mineral-Associated Organic Carbon through Regenerative Agriculture. Proc. Natl. Acad. Sci. USA 2023, 120, e2217481120. [Google Scholar] [CrossRef]
- Watson, D. Transforming Food Systems: The Quest for Sustainability; Burleigh Dodds Science Publishing: London, UK, 2024; ISBN 978-1-00-356288-7. [Google Scholar]
- Singh, Y.K.; Rakesh, S.; Singh, B. veer Organic Farming for Residue-Free Production. J. Exp. Agric. Int. 2024, 46, 548–564. [Google Scholar] [CrossRef]
- Khoshgoftarmanesh, A.H.; Schulin, R.; Chaney, R.L.; Daneshbakhsh, B.; Afyuni, M. Micronutrient-Efficient Genotypes for Crop Yield and Nutritional Quality in Sustainable Agriculture. A Review. Agron. Sustain. Dev. 2010, 30, 83–107. [Google Scholar] [CrossRef]
- Hallmann, E. The Influence of Organic and Conventional Cultivation Systems on the Nutritional Value and Content of Bioactive Compounds in Selected Tomato Types. J. Sci. Food Agric. 2012, 92, 2840–2848. [Google Scholar] [CrossRef]
- Heimler, D.; Romani, A.; Ieri, F. Plant Polyphenol Content, Soil Fertilization and Agricultural Management: A Review. Eur. Food Res. Technol. 2017, 243, 1107–1115. [Google Scholar] [CrossRef]
- Swami, S.; Muzammil, R.; Saha, S.; Shabeer, A.; Oulkar, D.; Banerjee, K.; Singh, S.B. Evaluation of Ozonation Technique for Pesticide Residue Removal and Its Effect on Ascorbic Acid, Cyanidin-3-Glucoside, and Polyphenols in Apple (Malus domesticus) Fruits. Environ. Monit. Assess. 2016, 188, 301. [Google Scholar] [CrossRef]
- Munir, S.; Azeem, A.; Sikandar Zaman, M.; Haq, M.Z.U. From Field to Table: Ensuring Food Safety by Reducing Pesticide Residues in Food. Sci. Total Environ. 2024, 922, 171382. [Google Scholar] [CrossRef]
- Karim, A.; Kumar, M.; Singh, E.; Kumar, A.; Kumar, S.; Ray, A.; Dhal, N. Enrichment of Primary Macronutrients in Biochar for Sustainable Agriculture: A Review. Crit. Rev. Environ. Sci. Technol. 2021, 52, 1449–1490. [Google Scholar] [CrossRef]
- Ohyama, T. Nitrogen as a Major Essential Element of Plants. In Nitrogen Assimilation in Plants; Research Singpos: Kerala, India, 2010; pp. 1–17. ISBN 978-81-308-0406-4. [Google Scholar]
- Majhi, D.A. Impact of Organic Farming in Economic Development in Agriculture. Int. J. Sci. Res. Eng. Manag. 2024, 8, 1–8. [Google Scholar] [CrossRef]
- Capetz, M.; Sharma, S.; Padilha, R.; Olsen, P.; Wolk, J.; Kiciman, E.; Chandra, R. Enabling Adoption of Regenerative Agriculture through Soil Carbon Copilots. arXiv 2024, arXiv:2411.16872. [Google Scholar]
- da Silva, P.F.; dos Santos, M.S.N.; Araújo, B.d.A.; Kerber, B.D.; de Oliveira, H.A.P.; Guedes, J.V.C.; Mazutti, M.A.; Tres, M.V.; Zabot, G.L. Co-Cultivations of Beauveria Bassiana, Metarhizium Anisopliae, and Trichoderma Harzianum to Produce Bioactive Compounds for Application in Agriculture. Fermentation 2025, 11, 30. [Google Scholar] [CrossRef]
- Macías-Gallardo, F.; Quiñones-Muñoz, T.A.; Miranda-Avilés, R.; Ramírez-Santoyo, L.F.; Zanor, G.A.; Ozuna, C. Impact of Organic Agriculture on the Quality of Grapes (Syrah and Tempranillo) Harvested in Guanajuato, Mexico: Relationship Between Soil Elemental Profile and Grape Bioactive Properties. Agriculture 2025, 15, 169. [Google Scholar] [CrossRef]
- Xu, Y.; Zhu, M.; Feng, Y.; Xu, H. Panax Notoginseng-Microbiota Interactions: From Plant Cultivation to Medicinal Application. Phytomedicine 2023, 119, 154978. [Google Scholar] [CrossRef]
- Paul, S.; Parvez, S.S.; Goswami, A.; Banik, A. Exopolysaccharides from Agriculturally Important Microorganisms: Conferring Soil Nutrient Status and Plant Health. Int. J. Biol. Macromol. 2024, 262, 129954. [Google Scholar] [CrossRef] [PubMed]
- El Khoury, D.; Cuda, C.; Luhovyy, B.L.; Anderson, G.H. Beta Glucan: Health Benefits in Obesity and Metabolic Syndrome. J. Nutr. Metab. 2012, 2012, 851362. [Google Scholar] [CrossRef]
- Chudan, S.; Ishibashi, R.; Nishikawa, M.; Tabuchi, Y.; Nagai, Y.; Ikushiro, S.; Furusawa, Y. Effect of Wheat-Derived Arabinoxylan on the Gut Microbiota Composition and Colonic Regulatory T Cells. Molecules 2023, 28, 3079. [Google Scholar] [CrossRef]
- Worthington, V. Nutritional Quality of Organic versus Conventional Fruits, Vegetables, and Grains. J. Altern. Complement. Med. 2001, 7, 161–173. [Google Scholar] [CrossRef]
- FAO; IFAD; UNICEF; WFP; WHO. The State of Food Security and Nutrition in the World 2020: Transforming Food Systems for Affordable Healthy Diets; Food & Agriculture Organization: Rome, Italy, 2020; ISBN 978-92-5-132901-6. [Google Scholar]
- Manzeke-Kangara, M.G.; Joy, E.J.M.; Lark, R.M.; Redfern, S.; Eilander, A.; Broadley, M.R. Do Agronomic Approaches Aligned to Regenerative Agriculture Improve the Micronutrient Concentrations of Edible Portions of Crops? A Scoping Review of Evidence. Front. Nutr. 2023, 10, 1078667. [Google Scholar] [CrossRef] [PubMed]
- Tulchinsky, T.H. Micronutrient Deficiency Conditions: Global Health Issues. Public Health Rev. 2010, 32, 243–255. [Google Scholar] [CrossRef]
- Shukla, A.; Behera, S.K.; Pakhre, A.; Chaudhary, S. Micronutrients in Soils, Plants, Animals and Humans. Indian J. Fertil. 2018, 14, 30–54. [Google Scholar]
- Hacisalihoglu, G. Zinc (Zn): The Last Nutrient in the Alphabet and Shedding Light on Zn Efficiency for the Future of Crop Production under Suboptimal Zn. Plants 2020, 9, 1471. [Google Scholar] [CrossRef]
- Recena, R.; García-López, A.M.; Delgado, A. Zinc Uptake by Plants as Affected by Fertilization with Zn Sulfate, Phosphorus Availability, and Soil Properties. Agronomy 2021, 11, 390. [Google Scholar] [CrossRef]
- Mishra, A.K.; Tiwari, A.; Maurya, P.K.; Sharma, S. Enhancing Ecosystem Dynamics: Organic and Regenerative Practices in Rice–Wheat Systems and Their Impact on Soil Arthropod Biodiversity. Front. Environ. Sci. 2024, 12, 1407954. [Google Scholar] [CrossRef]
- Aprile, F.; Lorandi, R. Evaluation of Cation Exchange Capacity (CEC) in Tropical Soils Using Four Different Analytical Methods. J. Agric. Sci. 2012, 4, p278. [Google Scholar] [CrossRef]
- Chandel, N.; Kumar, A.; Kumar, R. Towards Sustainable Agriculture: Integrating Agronomic Practices, Environmental Physiology and Plant Nutrition. Int. J. Plant Soil Sci. 2024, 36, 492–503. [Google Scholar] [CrossRef]
- Sunusi, M.; Lurwanu, Y.; Zamfara, F. Zinc Biofortification of Rice (Oryza sativa. L.) Breeding and Agronomic Approaches: Status and Challenges for Its Adoption in Sub-Saharan African Countries. Fudma J. Sci. 2019, 3, 291–298. [Google Scholar]
- Melash, A.A.; Vad, A.; Bytyqi, B.; Ábrahám, É.B. Harnessing Diversity in Durum Wheat (Triticum turgidum L.) to Enhance Climate Resilience and Micronutrient Concentration through Genetic and Agronomic Biofortification. Acta Agrar. Debreceniensis 2022, 2, 9–20. [Google Scholar] [CrossRef]
- Oldfield, E.; Bradford, M.; Wood, S. Global Meta-Analysis of the Relationship between Soil Organic Matter and Crop Yields. Soil 2019, 5, 15–32. [Google Scholar] [CrossRef]
- Ropero, A.B.; Borrás, F.; Rodríguez, M.; Beltrá, M. Nutritional Description of Organic and Conventional Food Products in Spain: The BADALI Project. Nutrients 2023, 15, 1876. [Google Scholar] [CrossRef] [PubMed]
- Dall’Asta, M.; Angelino, D.; Pellegrini, N.; Martini, D. The Nutritional Quality of Organic and Conventional Food Products Sold in Italy: Results from the Food Labelling of Italian Products (FLIP) Study. Nutrients 2020, 12, 1273. [Google Scholar] [CrossRef]
- Frías-Moreno, M.N.; Parra-Quezada, R.A.; González-Aguilar, G.; Ruíz-Canizales, J.; Molina-Corral, F.J.; Sepulveda, D.R.; Salas-Salazar, N.; Olivas, G.I. Quality, Bioactive Compounds, Antioxidant Capacity, and Enzymes of Raspberries at Different Maturity Stages, Effects of Organic vs. Conventional Fertilization. Foods 2021, 10, 953. [Google Scholar] [CrossRef]
- Ciucu-Paraschiv, M.; Hoza, D. The Effect of Foliar Application with Organic and Inorganic Products on the Biochemical Quality Indicators of Highbush Blueberry (Vaccinum corymbosum L.). Sci. Pap. Ser. B Hortic. 2024, LXV, 48–57. [Google Scholar]
- van Breda, S.G.J.; de Kok, T.M.C.M. Smart Combinations of Bioactive Compounds in Fruits and Vegetables May Guide New Strategies for Personalized Prevention of Chronic Diseases. Mol. Nutr. Food Res. 2018, 62, 1700597. [Google Scholar] [CrossRef] [PubMed]
- Sharifi-Rad, J.; Rodrigues, C.F.; Sharopov, F.; Docea, A.O.; Can Karaca, A.; Sharifi-Rad, M.; Kahveci Karıncaoglu, D.; Gülseren, G.; Şenol, E.; Demircan, E.; et al. Diet, Lifestyle and Cardiovascular Diseases: Linking Pathophysiology to Cardioprotective Effects of Natural Bioactive Compounds. Int. J. Environ. Res. Public Health 2020, 17, 2326. [Google Scholar] [CrossRef]
- Zhang, H.; Tsao, R. Dietary Polyphenols, Oxidative Stress and Antioxidant and Anti-Inflammatory Effects. Curr. Opin. Food Sci. 2016, 8, 33–42. [Google Scholar] [CrossRef]
- Johansson, E.; Hussain, A.; Kuktaite, R.; Andersson, S.C.; Olsson, M.E. Contribution of Organically Grown Crops to Human Health. Int. J. Environ. Res. Public Health 2014, 11, 3870–3893. [Google Scholar] [CrossRef]
- Bourn, D.; Prescott, J. A Comparison of the Nutritional Value, Sensory Qualities, and Food Safety of Organically and Conventionally Produced Foods. Crit. Rev. Food Sci. Nutr. 2002, 42, 1–34. [Google Scholar] [CrossRef]
- Ceccanti, C.; Landi, M.; Antichi, D.; Guidi, L.; Manfrini, L.; Monti, M.; Tosti, G.; Frasconi, C. Bioactive Properties of Fruits and Leafy Vegetables Managed with Integrated, Organic, and Organic No-Tillage Practices in the Mediterranean Area: A Two-Year Rotation Experiment. Agronomy 2020, 10, 841. [Google Scholar] [CrossRef]
- Miyamoto, H.; Shigeta, K.; Suda, W.; Ichihashi, Y.; Nihei, N.; Matsuura, M.; Tsuboi, A.; Tominaga, N.; Aono, M.; Sato, M.; et al. Agricultural Quality Matrix-Based Multi-Omics Structural Analysis of Carrot under Soils Fertilized with Thermophile-Fermented Compost. arXiv 2022, arXiv:2202.03132. [Google Scholar]
- Pérez-Álvarez, E.P.; Martínez-Vidaurre, J.M.; Garde-Cerdán, T. Anthocyanin Composition of Grapes from Three Different Soil Types in Cv. Tempranillo A.O.C. Rioja Vineyards. J. Sci. Food Agric. 2019, 99, 4833–4841. [Google Scholar] [CrossRef]
- Głodowska, M.; Krawczyk, J. Difference in the Concentration of Macro Elements between Organically and Conventionally Grown Vegetables. Agric. Sci. 2019, 10, 267–277. [Google Scholar] [CrossRef]
- Biswas, S.; Singh, S.; Bera, A. Regenerative Nutrient Management Practices for Enhancing Plant Nutrition and Soil Health. In Regenerative Agriculture for Sustainable Food Systems; Kumar, S., Meena, R.S., Sheoran, P., Jhariya, M.K., Eds.; Springer Nature: Singapore, 2024; pp. 303–339. ISBN 978-981-9766-91-8. [Google Scholar]
- Ngegba, P.M.; Cui, G.; Khalid, M.Z.; Zhong, G. Use of Botanical Pesticides in Agriculture as an Alternative to Synthetic Pesticides. Agriculture 2022, 12, 600. [Google Scholar] [CrossRef]
- Bordoni, L.; Nasuti, C.; Di Stefano, A.; Marinelli, L.; Gabbianelli, R. Epigenetic Memory of Early-Life Parental Perturbation: Dopamine Decrease and DNA Methylation Changes in Offspring. Oxid. Med. Cell. Longev. 2019, 2019, 1472623. [Google Scholar] [CrossRef] [PubMed]
- Forbes, A.; Ellis, K. Parasite Control in Regenerative Livestock Farming. Livestock 2023, 28, 112–120. [Google Scholar] [CrossRef]
- Wróbel, B.; Zielewicz, W.; Staniak, M. Challenges of Pasture Feeding Systems—Opportunities and Constraints. Agriculture 2023, 13, 974. [Google Scholar] [CrossRef]
- Liu, Y.-X.; Yu, J.-H.; Sun, J.-H.; Ma, W.-Q.; Wang, J.-J.; Sun, G.-J. Effects of Omega-3 Fatty Acids Supplementation on Serum Lipid Profile and Blood Pressure in Patients with Metabolic Syndrome: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Foods 2023, 12, 725. [Google Scholar] [CrossRef]
- Cutler, R. Antioxidants and Aging. Am. J. Clin. Nutr. 1991, 53, 373S–379S. [Google Scholar] [CrossRef]
- Martemucci, G.; Portincasa, P.; Di Ciaula, A.; Mariano, M.; Centonze, V.; D’Alessandro, A.G. Oxidative Stress, Aging, Antioxidant Supplementation and Their Impact on Human Health: An Overview. Mech. Ageing Dev. 2022, 206, 111707. [Google Scholar] [CrossRef]
- Averill-Bates, D. Reactive Oxygen Species and Cell Signaling. Review. Biochim. Biophys. Acta Mol. Cell Res. 2024, 1871, 119573. [Google Scholar] [CrossRef]
- He, L.; He, T.; Farrar, S.; Ji, L.; Liu, T.; Ma, X. Antioxidants Maintain Cellular Redox Homeostasis by Elimination of Reactive Oxygen Species. Cell. Physiol. Biochem. 2017, 44, 532–553. [Google Scholar] [CrossRef] [PubMed]
- Rotruck, J.T.; Pope, A.L.; Ganther, H.E.; Swanson, A.B.; Hafeman, D.G.; Hoekstra, W.G. Selenium: Biochemical Role as a Component of Glutathione Peroxidase. Science 1973, 179, 588–590. [Google Scholar] [CrossRef]
- Spallholz, J.E. Selenium and Glutathione Peroxidase: Essential Nutrient and Antioxidant Component of the Immune System. Adv. Exp. Med. Biol. 1990, 262, 145–158. [Google Scholar] [CrossRef]
- Souto, A.L.; Sylvestre, M.; Tölke, E.D.; Tavares, J.F.; Barbosa-Filho, J.M.; Cebrián-Torrejón, G. Plant-Derived Pesticides as an Alternative to Pest Management and Sustainable Agricultural Production: Prospects, Applications and Challenges. Molecules 2021, 26, 4835. [Google Scholar] [CrossRef]
- Benbrook, C.; Kegley, S.; Baker, B. Organic Farming Lessens Reliance on Pesticides and Promotes Public Health by Lowering Dietary Risks. Agronomy 2021, 11, 1266. [Google Scholar] [CrossRef]
- Przybylska, S. Lycopene—A Bioactive Carotenoid Offering Multiple Health Benefits: A Review. Int. J. Food Sci. Technol. 2020, 55, 11–32. [Google Scholar] [CrossRef]
- Chen, D.; Huang, C.; Chen, Z. A Review for the Pharmacological Effect of Lycopene in Central Nervous System Disorders. Biomed. Pharmacother. 2019, 111, 791–801. [Google Scholar] [CrossRef] [PubMed]
- Rudrapal, M.; Khairnar, S.J.; Khan, J.; Dukhyil, A.B.; Ansari, M.A.; Alomary, M.N.; Alshabrmi, F.M.; Palai, S.; Deb, P.K.; Devi, R. Dietary Polyphenols and Their Role in Oxidative Stress-Induced Human Diseases: Insights Into Protective Effects, Antioxidant Potentials and Mechanism(s) of Action. Front. Pharmacol. 2022, 13, 806470. [Google Scholar] [CrossRef]
- Cui, Z.; Zhao, X.; Amevor, F.K.; Du, X.; Wang, Y.; Li, D.; Shu, G.; Tian, Y.; Zhao, X. Therapeutic Application of Quercetin in Aging-Related Diseases: SIRT1 as a Potential Mechanism. Front. Immunol. 2022, 13, 943321. [Google Scholar] [CrossRef]
- Reganold, J.P.; Wachter, J.M. Organic Agriculture in the Twenty-First Century. Nat. Plants 2016, 2, 15221. [Google Scholar] [CrossRef] [PubMed]
- Tamburini, G.; Bommarco, R.; Wanger, T.C.; Kremen, C.; van der Heijden, M.G.A.; Liebman, M.; Hallin, S. Agricultural Diversification Promotes Multiple Ecosystem Services without Compromising Yield. Sci. Adv. 2020, 6, eaba1715. [Google Scholar] [CrossRef] [PubMed]
- Bhardwaj, D.; Ansari, M.W.; Sahoo, R.K.; Tuteja, N. Biofertilizers Function as Key Player in Sustainable Agriculture by Improving Soil Fertility, Plant Tolerance and Crop Productivity. Microb. Cell Factories 2014, 13, 66. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.; Zhang, C.; Yu, Y.; Shen, J.; van der Werf, W.; Zhang, F. Intercropping Legumes and Cereals Increases Phosphorus Use Efficiency; a Meta-Analysis. Plant Soil 2021, 460, 89–104. [Google Scholar] [CrossRef]
- Bedoussac, L.; Journet, E.-P.; Hauggaard-Nielsen, H.; Naudin, C.; Corre-Hellou, G.; Jensen, E.S.; Prieur, L.; Justes, E. Ecological Principles Underlying the Increase of Productivity Achieved by Cereal-Grain Legume Intercrops in Organic Farming. A Review. Agron. Sustain. Dev. 2015, 35, 911–935. [Google Scholar] [CrossRef]
- Lohar, R.R. Sustainable Agricultural Practices for Improving Growth, Yield and Quality of Turmeric (Curcumalonga L.). Ann. Plant Soil Res. 2021, 23, 48–53. [Google Scholar] [CrossRef]
- Ramírez-Carrasco, P.; Alemán, A.; González, E.; Gómez-Guillén, M.C.; Robert, P.; Giménez, B. Bioaccessibility, Intestinal Absorption and Anti-Inflammatory Activity of Curcuminoids Incorporated in Avocado, Sunflower, and Linseed Beeswax Oleogels. Foods 2024, 13, 373. [Google Scholar] [CrossRef]
- Camacho-Barquero, L.; Villegas, I.; Sánchez-Calvo, J.M.; Talero, E.; Sánchez-Fidalgo, S.; Motilva, V.; Alarcón de la Lastra, C. Curcumin, a Curcuma Longa Constituent, Acts on MAPK P38 Pathway Modulating COX-2 and iNOS Expression in Chronic Experimental Colitis. Int. Immunopharmacol. 2007, 7, 333–342. [Google Scholar] [CrossRef]
- Gorabi, A.M.; Razi, B.; Aslani, S.; Abbasifard, M.; Imani, D.; Sathyapalan, T.; Sahebkar, A. Effect of Curcumin on Proinflammatory Cytokines: A Meta-Analysis of Randomized Controlled Trials. Cytokine 2021, 143, 155541. [Google Scholar] [CrossRef]
- Aggarwal, B.B.; Gupta, S.C.; Sung, B. Curcumin: An Orally Bioavailable Blocker of TNF and Other pro-Inflammatory Biomarkers. Br. J. Pharmacol. 2013, 169, 1672–1692. [Google Scholar] [CrossRef]
- Liu, Z.-J.; Li, Z.-H.; Liu, L.; Tang, W.-X.; Wang, Y.; Dong, M.-R.; Xiao, C. Curcumin Attenuates Beta-Amyloid-Induced Neuroinflammation via Activation of Peroxisome Proliferator-Activated Receptor-Gamma Function in a Rat Model of Alzheimer’s Disease. Front. Pharmacol. 2016, 7, 261. [Google Scholar] [CrossRef] [PubMed]
- Feng, W.; Wang, H.; Zhang, P.; Gao, C.; Tao, J.; Ge, Z.; Zhu, D.; Bi, Y. Modulation of Gut Microbiota Contributes to Curcumin-Mediated Attenuation of Hepatic Steatosis in Rats. Biochim. Biophys. Acta BBA Gen. Subj. 2017, 1861, 1801–1812. [Google Scholar] [CrossRef] [PubMed]
- Kadam, J.H.; Kamble, B.M. Effect of Organic Manures on Growth, Yield and Quality of Turmeric (Curcuma longa L). J. Appl. Nat. Sci. 2020, 12, 91–97. [Google Scholar] [CrossRef]
- Kumar, S.; Chanchan, M.; Vipin; Gulzar, M.; Singh, S.R.; Stina, K.; Singh, R.P.; Kumar, S. Influence of Graded Levels of Inorganic with Organics and Biofertilizers on Yield, Quality and Economics of Turmeric (Curcuma longa L.). Int. J. Adv. Biochem. Res. 2024, 8, 233–237. [Google Scholar] [CrossRef]
- Ming, T.; Tao, Q.; Tang, S.; Zhao, H.; Yang, H.; Liu, M.; Ren, S.; Xu, H. Curcumin: An Epigenetic Regulator and Its Application in Cancer. Biomed. Pharmacother. 2022, 156, 113956. [Google Scholar] [CrossRef]
- Chiuve, S.E.; Sampson, L.; Willett, W.C. The Association between a Nutritional Quality Index and Risk of Chronic Disease. Am. J. Prev. Med. 2011, 40, 505–513. [Google Scholar] [CrossRef]
Reference | Crop(s) | Treatment/Soil Management | Key Finding |
---|---|---|---|
[74] | Various crops | Organic vs. conventional | ↑ Antioxidants, ↓ cadmium, ↓ pesticide residues |
[134] | Cereals (e.g., wheat) | Zn-enriched fertilizers | ↑ Zinc and iron contents in grains |
[135] | Fruits and vegetables | Organic and no-tillage systems | ↑ Polyphenols and antioxidant activity |
[136] | Carrots | Thermophile-fermented compost | ↑ Bioactive compounds and yield |
[115] | Various crops | Regenerative practices | ↑ Micronutrients and vitamin C |
[100] | Fruits and vegetables | Low-nitrogen fertilization | ↑ Polyphenols (especially in vegetables) |
[108] | Grapes | Organic vs. conventional | ↑ Phenolic compounds and antioxidant capacity |
[137] | Tempranillo grapes | Different soil types (A.O.C. Rioja) | Different anthocyanin profiles based on soil composition |
[113] | Fruits, vegetables, grains | Organic vs. conventional | ↑ Vitamin C, Fe, Mg, P, ↓ nitrate content |
[127] | Prepacked foods | Organic vs. conventional | Variable results, ↓ energy and sugars in organic versions |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feliziani, G.; Bordoni, L.; Gabbianelli, R. Regenerative Organic Agriculture and Human Health: The Interconnection Between Soil, Food Quality, and Nutrition. Antioxidants 2025, 14, 530. https://doi.org/10.3390/antiox14050530
Feliziani G, Bordoni L, Gabbianelli R. Regenerative Organic Agriculture and Human Health: The Interconnection Between Soil, Food Quality, and Nutrition. Antioxidants. 2025; 14(5):530. https://doi.org/10.3390/antiox14050530
Chicago/Turabian StyleFeliziani, Giulia, Laura Bordoni, and Rosita Gabbianelli. 2025. "Regenerative Organic Agriculture and Human Health: The Interconnection Between Soil, Food Quality, and Nutrition" Antioxidants 14, no. 5: 530. https://doi.org/10.3390/antiox14050530
APA StyleFeliziani, G., Bordoni, L., & Gabbianelli, R. (2025). Regenerative Organic Agriculture and Human Health: The Interconnection Between Soil, Food Quality, and Nutrition. Antioxidants, 14(5), 530. https://doi.org/10.3390/antiox14050530