Bioactive Lignan Glycosides in Stems of Marsh Rosemary (Rhododendron tomentosum): Non-Targeted Screening and Identification Using Two-Stage Analytical Strategy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Plant Material and Preparation of Extract
2.3. NMR Spectroscopy
2.4. Liquid Chromatography–High-Resolution Mass Spectrometry (LC-HRMS)
2.5. Preparative Chromatography and Fraction Purity Assessment
2.6. In Vitro Analysis of Antioxidant Activity
3. Results and Discussion
3.1. Targeted Screening of Lignans by 2D NMR (Stage 1)
3.2. Screening of Lignans by HPLC-ESI-HRMS (Stage 2)
3.3. Isolation and Characterization of Individual Lignans
3.4. Antioxidant Activity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
2D NMR | Two-dimensional nuclear magnetic resonance |
DPPH | 2,2-diphenyl-1-picrylhydrazyl radical |
FRAP | Ferric reducing antioxidant power |
GC | Gas chromatography |
HMBC | Heteronuclear multiple bond correlation |
HPLC | High-performance liquid chromatography |
HSQC | Heteronuclear single quantum coherence |
MS | Mass spectrometry |
RM | Raw materials |
TOCSY | Total correlation spectroscopy |
References
- Dampc, A.; Luczkiewicz, M. Rhododendron tomentosum (Ledum palustre). A review of traditional use based on current research. Fitoterapia 2013, 85, 130–143. [Google Scholar] [CrossRef] [PubMed]
- Dampc, A.; Luczkiewicz, M. Labrador tea—The aromatic beverage and spice: A review of origin, processing and safety. J. Sci. Food Agric. 2015, 95, 1577–1583. [Google Scholar] [CrossRef]
- Mamedov, N.; Gardner, Z.; Craker, L.E. Medicinal plants used in Russia and Central Asia for the treatment of selected skin conditions. J. Herbs Spices Med. Plants 2004, 11, 191–222. [Google Scholar] [CrossRef]
- Shikov, A.N.; Tsitsilin, A.N.; Pozharitskaya, O.N.; Makarov, V.G.; Heinrich, M. Traditional and Current Food Use of Wild Plants Listed in the Russian Pharmacopoeia. Front. Pharmacol. 2017, 8, 841. [Google Scholar] [CrossRef]
- Singh, B.; Gupta, J.; Mohan, R.; Gupta, R.; Pal, K. Hypouricemic significance of Ledum palustre (Marsh tea). J. Pharm. Technol. 2021, 14, 2907–2912. [Google Scholar] [CrossRef]
- Jaenson, T.G.; Pålsson, K.; Borg-Karlson, A.K. Evaluation of extracts and oils of tick-repellent plants from Sweden. Med. Vet. Entomol. 2005, 19, 345–352. [Google Scholar] [CrossRef]
- Jaenson, T.G.; Pålsson, K.; Borg-Karlson, A.K. Evaluation of extracts and oils of mosquito (Diptera: Culicidae) repellent plants from Sweden and Guinea-Bissau. J. Med. Entomol. 2006, 43, 113–119. [Google Scholar] [CrossRef]
- Baananou, S.; Bagdonaite, E.; Marongiu, B.; Piras, A.; Porcedda, S.; Falconieri, D.; Boughattas, N.A. Supercritical CO2 extract and essential oil of aerial part of Ledum palustre L.-Chemical composition and anti-inflammatory activity. Nat. Prod. Res. 2015, 29, 999–1005. [Google Scholar] [CrossRef]
- Baldwin, T.A.; Oberbauer, S.F. Essential oil content of Rhododendron tomentosum responds strongly to manipulation of ecosystem resources in Arctic Alaska. Arct. Sci. 2022, 8, 916–934. [Google Scholar] [CrossRef]
- Benelli, G.; Pavela, R.; Cianfaglione, K.; Sender, J.; Danuta, U.; Maślanko, W.; Canale, A.; Barboni, L.; Petrelli, R.; Zeppa, L.; et al. Ascaridole-rich essential oil from marsh rosemary (Ledum palustre) growing in Poland exerts insecticidal activity on mosquitoes, moths and flies without serious effects on non-target organisms and human cells. Food Chem. Toxicol. 2020, 138, 111184. [Google Scholar] [CrossRef]
- Jesionek, A.; Poblocka-Olech, L.; Zabiegala, B.; Bucinski, A.; Krauze-Baranowska, M.; Luczkiewicz, M. Validated HPTLC method for determination of ledol and alloaromadendrene in the essential oil fractions of Rhododendron tomentosum plants and in vitro cultures and bioautography for their activity screening. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2018, 1086, 63–72. [Google Scholar] [CrossRef] [PubMed]
- Jesionek, A.; Kokotkiewicz, A.; Mikosik-Roczynska, A.; Ciesielska-Figlon, K.; Luczkiewicz, P.; Bucinski, A.; Daca, A.; Witkowski, J.M.; Bryl, E.; Zabiegala, B.; et al. Chemical variability of Rhododendron tomentosum (Ledum palustre) essential oils and their pro-apoptotic effect on lymphocytes and rheumatoid arthritis synoviocytes. Fitoterapia 2019, 139, 104402. [Google Scholar] [CrossRef] [PubMed]
- Jesionek, A.; Zabiegała, B.; Buciński, A.; Łuczkiewicz, M. From Harvesting to Distillation—Effect of Analytical Procedures on The Yield and Chemical Composition of Rhododendron tomentosum (Ledum palustre) Essential Oil. Acta Pol. Pharm.—Drug Res. 2019, 76, 83–92. [Google Scholar] [CrossRef]
- Judžentienė, A. Marsh rosemary (Rhododendron tomentosum Harmaja (ex Ledum palustre Linn) growing in Lithuania) essential oils and their properties. Chemija 2020, 31, 269–277. [Google Scholar] [CrossRef]
- Korpinen, R.I.; Välimaa, A.-L.; Liimatainen, J.; Kunnas, S. Essential oils and supercritical CO2 extracts of arctic angelica (Angelica archangelica L.), marsh labrador tea (Rhododendron tomentosum) and common tansy (Tanacetum vulgare)—Chemical compositions and antimicrobial activities. Molecules 2021, 26, 7121. [Google Scholar] [CrossRef]
- Zhao, Q.; Ding, Q.; Yuan, G.; Xu, F.; Li, B.; Wang, J.; Ouyang, J. Comparison of the Essential Oil Composition of Wild Rhododendron tomentosum Stems, Leaves, and Flowers in Bloom and Non-bloom Periods from Northeast China. J. Essent. Oil-Bear. Plants 2016, 19, 1216–1223. [Google Scholar] [CrossRef]
- Mikhailova, N.S.; Rybalko, K.S. Chemical constitution of Ledum palustre. Chem. Nat. Compd. 1980, 16, 131–135. [Google Scholar] [CrossRef]
- Zhang, K.; Zhao, M.; Wang, M.-J.; Wang, D.; Wang, J.-L.; Zhang, S.-J. Triterpenoids isolated from leaves of Ledum palustre. Chin. Tradit. Herb. Drugs 2018, 49, 1250–1254. [Google Scholar] [CrossRef]
- Razgonova, M.P.; Zakharenko, A.M.; Golokhvast, K.S. Investigation of supercritical CO2-extracts of wild Ledum palustre l. (Rhododendron tomentosum harmaja) and identification of its metabolites by tandem mass spectrometry. Khimiya Rastitel’nogo Syr’ya 2022, 1, 179–191. [Google Scholar] [CrossRef]
- Zhao, M.; Wang, J.-F.; Zhang, K.; Chen, L.-J.; Pei, S.-C.; Li, J.; Zhang, S.-J. Phenolic constituents of Ledum palustre and their antioxidant activity. Chin. Tradit. Herb. Drugs 2017, 48, 4394–4398. [Google Scholar] [CrossRef]
- Liu, X.-J.; Su, H.-G.; Peng, X.-R.; Bi, H.-C.; Qiu, M.-H. An updated review of the genus Rhododendron since 2010: Traditional uses, phytochemistry, and pharmacology. Phytochemistry 2024, 217, 113899. [Google Scholar] [CrossRef] [PubMed]
- MacRae, W.D.; Towers, G.H.N. Biological activities of lignans. Phytochemistry 1984, 23, 1207–1220. [Google Scholar] [CrossRef]
- Bonzanini, F.; Bruni, R.; Palla, G.; Serlataite, N.; Caligiani, A. Identification and distribution of lignans in Punica granatum L. fruit endocarp, pulp, seeds, wood knots and commercial juices by GC–MS. Food Chem. 2009, 117, 745–749. [Google Scholar] [CrossRef]
- Sarajlija, H.; Čukelj Mustač, N.; Novotni, D.; Mršić, G.; Brncic, M.; Curic, D. Preparation of Flaxseed for Lignan Determination by Gas Chromatography–Mass Spectrometry Method. Czech J. Food Sci. 2012, 30, 45. [Google Scholar] [CrossRef]
- Milder, I.E.J.; Arts, I.C.W.; Venema, D.P.; Lasaroms, J.J.P.; Wähälä, K.; Hollman, P.C.H. Optimization of a liquid chrom-atoraphy-tandem mass spectrometry method for quantification of the plant lignans secoisolariciresinol, matairesinol, lariciresinol, and pinoresinol in foods. J. Agric. Food Chem. 2004, 52, 4643–4651. [Google Scholar] [CrossRef]
- Smeds, A.I.; Eklund, P.C.; Sjöholm, R.E.; Willför, S.M.; Nishibe, S.; Deyama, T.; Holmbom, B.R. Quantification of a broad spectrum of lignans in cereals, oilseeds, and nuts. J. Agric. Food Chem. 2007, 55, 1337–1346. [Google Scholar] [CrossRef]
- Popova, I.E.; Hall, C.; Kubatova, A. Determination of lignans in flaxseed using liquid chromatography with time-of-flight mass spectrometry. J. Chromatogr. A 2009, 1216, 217–229. [Google Scholar] [CrossRef]
- Falev, D.I.; Faleva, A.V.; Krylov, I.A.; Sukhanov, A.E. Comparative study of four Yucca species by 2D-NMR and LC–MS. Nat. Prod. Res. 2024, 38, 544–548. [Google Scholar] [CrossRef]
- Faleva, A.V.; Ul’yanovskii, N.V.; Falev, D.I.; Onuchina, A.A.; Budaev, N.A.; Kosyakov, D.S. New Oligomeric Dihydrochalcones in the Moss Polytrichum commune: Identification, Isolation, and Antioxidant Activity. Metabolites 2022, 12, 974. [Google Scholar] [CrossRef]
- Faleva, A.V.; Ul’yanovskii, N.V.; Onuchina, A.A.; Falev, D.I.; Kosyakov, D.S. Comprehensive Characterization of Secondary Metabolites in Fruits and Leaves of Cloudberry (Rubus chamaemorus L.). Metabolites 2023, 13, 598. [Google Scholar] [CrossRef]
- Ul’yanovskii, N.V.; Onuchina, A.A.; Faleva, A.V.; Gorbova, N.S.; Kosyakov, D.S. Comprehensive Characterization of Chemical Composition and Antioxidant Activity of Lignan-Rich Coniferous Knotwood Extractives. Antioxidants 2022, 11, 2338. [Google Scholar] [CrossRef] [PubMed]
- Ul’yanovskii, N.V.; Onuchina, A.A.; Ovchinnikov, D.V.; Faleva, A.V.; Gorbova, N.S.; Kosyakov, D.S. Analytical and Preparative Separation of Softwood Lignans by Supercritical Fluid Chromatography. Separations 2023, 10, 449. [Google Scholar] [CrossRef]
- Jerković, I.; Cikoš, A.-M.; Babić, S.; Čižmek, L.; Bojanić, K.; Aladić, K.; Ul’yanovskii, N.V.; Kosyakov, D.S.; Lebedev, A.T.; Čož-Rakovac, R. Bioprospecting of Less-Polar Constituents from Endemic Brown Macroalga Fucus virsoides J. Agardh from the Adriatic Sea and Targeted Antioxidant Effects In Vitro and In Vivo (Zebrafish Model). Mar. Drugs 2021, 19, 235. [Google Scholar] [CrossRef] [PubMed]
- Benzie, I.F.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Botta, B.; Monache, G.; Misiti, D.; Vitali, A.; Zappia, G. Aryltetralin Lignans: Chemistry, Pharmacology and Biotransformations. Curr. Med. Chem. 2001, 8, 1363–1381. [Google Scholar] [CrossRef]
- Pan, J.-Y.; Chen, S.-L.; Yang, M.-H.; Wu, J.; Sinkkonen, J.; Zou, K. An update on lignans: Natural products and synthesis. Nat. Prod. Rep. 2009, 26, 1251. [Google Scholar] [CrossRef]
- Szakiel, A.; Voutquenne-Nazabadioko, L.; Henry, M. Isolation and biological activities of lyoniside from rhizomes and stems of Vaccinium myrtillus. Phytochem. Lett. 2011, 4, 138–143. [Google Scholar] [CrossRef]
- Lee, J.H.; Jeon, W.J.; Yoo, E.S.; Kim, C.M.; Kwon, Y.S. The chemical constituents and their antioxidant activity of the stem of Rhododendron mucronulatum. Nat. Prod. Sci. 2005, 11, 97–102. [Google Scholar] [CrossRef]
- Prior, R.L.; Wu, X.L.; Schaich, K. Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. Rev. Pneumol. Clin. 2005, 53, 4290–4302. [Google Scholar] [CrossRef]
- Hu, C.; Yuan, Y.V.; Kitts, D.D. Antioxidant activities of the flaxseed lignan secoisolariciresinol diglucoside, its aglycone secoisolariciresinol and the mammalian lignans enterodiol and enterolactone in vitro. Food Chem. Toxicol. 2007, 45, 2219–2227. [Google Scholar] [CrossRef] [PubMed]
- Polat Kose, L.; Gulcin, İ. Evaluation of the Antioxidant and Antiradical Properties of Some Phyto and Mammalian Lignans. Molecules 2021, 26, 7099. [Google Scholar] [CrossRef] [PubMed]
No | Target Fragment | tR *, min | m/z [M-H]− | Δm/z, ppm | Elemental Composition | Putative Assignment |
---|---|---|---|---|---|---|
Secoisolariciresinol and similar type structures | ||||||
1 | [C20H25O6]− | 9.07 | 523.2198 | 2.26 | C26H36O11 | Secoisolariciresinol glucoside |
2 | 10.96 | 539.2144 [M-H+FA] | 1.89 | C25H34O10 | Secoisolariciresinol xyloside | |
3 | [C22H29O8]− | 9.41 | 583.2412 | 2.84 | C28H40O13 | 5,5′-Dimethoxy-secoisolariciresinol glucoside |
4 | 10.68 | 599.2353 [M-H+FA] | 1.47 | C27H38O12 | Ssioriside | |
5 | 11.13 | 613.2510 [M-H+FA] | 1.40 | C28H40O12 | 5,5′-Dimethoxy-secoisolariciresinol rhamnoside (Chaenomiside F) | |
6 | [C21H27O7]− | 10.78 | 569.2252 [M-H+FA] | 2.10 | C26H36O11 | Methoxysecoisolariciresinol xyloside |
5,5′-dimethoxy-isolariciresinol-type structures | ||||||
7 | [C22H27O8]− | 9.49 | 597.2199 [M-H+FA] | 1.42 | C27H36O12 | Lyoniside |
Other | ||||||
8 | - | 11.73 | 597.2199 [M-H+FA] | 2.03 | C27H36O12 | Not identified |
Sample | DPPH (0.3 mM) IC50, mg L−1 | FRAP (4 min), mM Eq. Fe2+/g Sample |
---|---|---|
Fraction E2 (MeOH:H2O, 1:1, v/v) | 37 ± 0 | 5.63 ± 0.23 |
Lyoniside (7) | 21 ± 8 | 5.90 ± 0.42 |
Ssioriside (4) | 15 ± 1 | 7.44 ± 0.34 |
5-Methoxysecoisolariciresinol 9-xyloside (6) | 32 ± 2 | 6.42 ± 0.26 |
Secoisolariciresinol 9-xyloside (2) Prupaside (8) | 27 ± 1 | 10.5 ± 0.4 |
Secoisolariciresinol * | 29 ± 8 | 10.7 ± 0.1 |
Ascorbic acid * | 10 ± 2 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Faleva, A.V.; Falev, D.I.; Onuchina, A.A.; Ulyanovskii, N.V.; Kosyakov, D.S. Bioactive Lignan Glycosides in Stems of Marsh Rosemary (Rhododendron tomentosum): Non-Targeted Screening and Identification Using Two-Stage Analytical Strategy. Antioxidants 2025, 14, 447. https://doi.org/10.3390/antiox14040447
Faleva AV, Falev DI, Onuchina AA, Ulyanovskii NV, Kosyakov DS. Bioactive Lignan Glycosides in Stems of Marsh Rosemary (Rhododendron tomentosum): Non-Targeted Screening and Identification Using Two-Stage Analytical Strategy. Antioxidants. 2025; 14(4):447. https://doi.org/10.3390/antiox14040447
Chicago/Turabian StyleFaleva, Anna V., Danil I. Falev, Aleksandra A. Onuchina, Nikolay V. Ulyanovskii, and Dmitry S. Kosyakov. 2025. "Bioactive Lignan Glycosides in Stems of Marsh Rosemary (Rhododendron tomentosum): Non-Targeted Screening and Identification Using Two-Stage Analytical Strategy" Antioxidants 14, no. 4: 447. https://doi.org/10.3390/antiox14040447
APA StyleFaleva, A. V., Falev, D. I., Onuchina, A. A., Ulyanovskii, N. V., & Kosyakov, D. S. (2025). Bioactive Lignan Glycosides in Stems of Marsh Rosemary (Rhododendron tomentosum): Non-Targeted Screening and Identification Using Two-Stage Analytical Strategy. Antioxidants, 14(4), 447. https://doi.org/10.3390/antiox14040447