Characterization of Systemic Oxidative Stress in Asthmatic Adults Compared to Healthy Controls and Its Association with the Oxidative Potential of Particulate Matter Collected Using Personal Samplers
Abstract
:1. Introduction
2. Methods
2.1. Study Design
2.2. Recruitment Scheme and PM Personal Sampling
2.3. Oxidative Potential Analysis
2.4. Oxidative Stress Measurement
2.5. Statistical Analysis
3. Results
3.1. Description of the Sample
3.2. Description of Oxidative Stress Markers and PM-OP Level Results
3.3. Adjusted Associations Between PM-OP and Oxidative Stress Markers
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
8-OHdG | 8-hydroxydeoxyguanosine |
AA | ascorbic acid |
ACT | asthma control test |
aMDs | adjusted mean differences |
aORs | adjusted odds ratios |
BMI | body mass index |
CIs | confidence intervals |
COPD | chronic obstructive pulmonary disease |
Cu | copper |
DCFH | dichlorodihydrofluorescein |
DTT | dithiothreitol |
Fe | iron |
FeNO | fractional exhaled nitric oxide |
FlOPs | fluorescent oxidation products |
GSH | human reduced glutathione |
H2O2 | hydrogen peroxide |
HL | Hospital de Liencres |
HNE-OxLDL | 4-hydroxynonenal-modified LDL |
HUMV | Hospital Universitario Marqués de Valdecilla |
ICS | inhaled corticosteroids |
IQR | interquartile ranges |
LABAs | long-acting β adrenoceptor agonists |
LDL | low-density lipoprotein |
MDA | malondialdehyde |
NO | nitric oxide |
ONOO- | peroxynitrite anion |
OP | oxidative potential |
OS | oxidative stress |
OxLDL | oxidized low-density lipoprotein |
PCC | protein carbonyl content |
PM | particulate matter |
PM10-2.5 | coarse PM fraction |
PM2.5 | fine PM fraction |
PM-OP | oxidative potential of PM |
PON-1 | human serum paraoxonase-1 |
PTFE | polytetrafluoroethylene |
RNS | reactive nitrogen species |
ROO· | peroxyl radical |
ROS | reactive oxygen species |
SD | standard deviation |
TAI | test of adherence to inhalers |
References
- Guo, C.; Lv, S.; Liu, Y.; Li, Y. Biomarkers for the adverse effects on respiratory system health associated with atmospheric particulate matter exposure. J. Hazard. Mater. 2021, 421, 126760. [Google Scholar] [CrossRef] [PubMed]
- Kaufman, J.D.; Elkind, M.S.; Bhatnagar, A.; Koehler, K.; Balmes, J.R.; Sidney, S.; Peña, M.S.B.; Dockery, D.W.; Hou, L.; Brook, R.D.; et al. Guidance to Reduce the Cardiovascular Burden of Ambient Air Pollutants: A Policy Statement from the American Heart Association. Circulation 2020, 142, e432–e447, Erratum in Circulation 2020, 142, e449. [Google Scholar] [CrossRef] [PubMed]
- European Environment Agency (EEA). Air Quality in Europe-2018 Report; Publications Office of the European Union: Luxembourg City, Luxembourg, 2018; ISBN 978-92-9213-98. [Google Scholar]
- World Health Organization (WHO). Ambient Air Pollution: A Global Assessment of Exposure and Burden of Disease; World Health Organization (WHO): Geneva, Switzerland, 2016; ISBN 9789241511353. [Google Scholar]
- He, R.-W.; Shirmohammadi, F.; Gerlofs-Nijland, M.E.; Sioutas, C.; Cassee, F.R. Pro-inflammatory responses to PM0.25 from airport and urban traffic emissions. Sci. Total Environ. 2018, 640–641, 997–1003. [Google Scholar] [CrossRef]
- Comhair, S.A.; Erzurum, S.C. Redox Control of Asthma: Molecular Mechanisms and Therapeutic Opportunities. Antioxid. Redox Signal. 2010, 12, 93–124. [Google Scholar] [CrossRef]
- Sahiner, U.M.; Birben, E.; Erzurum, S.; Sackesen, C.; Kalayci, O. Oxidative Stress in Asthma. World Allergy Organ. J. 2011, 4, 151–158. [Google Scholar] [CrossRef]
- Bates, J.T.; Fang, T.; Verma, V.; Zeng, L.; Weber, R.J.; Tolbert, P.E.; Abrams, J.Y.; Sarnat, S.E.; Klein, M.; Mulholland, J.A.; et al. Review of Acellular Assays of Ambient Particulate Matter Oxidative Potential: Methods and Relationships with Composition, Sources, and Health Effects. Environ. Sci. Technol. 2019, 53, 4003–4019. [Google Scholar] [CrossRef]
- Borlaza-Lacoste, L.; Mardoñez, V.; Marsal, A.; Hough, I.; Dinh, V.N.T.; Dominutti, P.; Jaffrezo, J.-L.; Alastuey, A.; Besombes, J.-L.; Močnik, G.; et al. Oxidative potential of particulate matter and its association to respiratory health endpoints in high-altitude cities in Bolivia. Environ. Res. 2024, 255, 119179. [Google Scholar] [CrossRef]
- Bronte-Moreno, O.; González-Barcala, F.-J.; Muñoz-Gall, X.; Pueyo-Bastida, A.; Ramos-González, J.; Urrutia-Landa, I. Impact of Air Pollution on Asthma: A Scoping Review. Open Respir. Arch. 2023, 5, 100229. [Google Scholar] [CrossRef]
- Dworski, R. Oxidant stress in asthma. Thorax 2000, 55, S51–S53. [Google Scholar] [CrossRef]
- Grisham, M.B.; Jourd’heuil, D.; Wink, D.A. Review article: Chronic inflammation and reactive oxygen and nitrogen metabolism–implications in DNA damage and mutagenesis. Aliment. Pharmacol. Ther. 2000, 14, 3–9. [Google Scholar] [CrossRef]
- Owen, S.; Pearson, D.; Suarez-Mendez, V.; O’Driscoll, R.; Woodcock, A. Evidence of free-radical activity in asthma. N. Engl. J. Med. 1991, 325, 586–587. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Hua, S.; Song, L. PM2.5 Exposure and Asthma Development: The Key Role of Oxidative Stress. Oxid. Med. Cell Longev. 2022, 2022, 3618806. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Park, E.H.; Schauer, J.J.; Yi, S.M.; Heo, J. Reactive oxygen species (ROS) activity of ambient fine particles (PM2.5) measured in Seoul, Korea. Environ. Int. 2018, 117, 276–283. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Sampath, V.; Nadeau, K.C. Effect of air pollution on asthma. Ann. Allergy. Asthma. Immunol. 2024, 132, 426–432. [Google Scholar] [CrossRef]
- Verma, V.; Shafer, M.M.; Schauer, J.J.; Sioutas, C. Contribution of transition metals in the reactive oxygen species activity of PM emissions from retrofitted heavy-duty vehicles. Atmos. Environ. 2010, 44, 5165–5173. [Google Scholar] [CrossRef]
- Xiang, P.; He, R.W.; Han, Y.H.; Sun, H.J.; Cui, X.Y.; Ma, L.Q. Mechanisms of house dust-induced toxicity in primary human corneal epithelial cells: Oxidative stress, proinflammatory response and mitochondrial dysfunction. Environ. Int. 2016, 89–90, 30–37. [Google Scholar] [CrossRef]
- Weichenthal, S.; Crouse, D.L.; Pinault, L.; Godri-Pollitt, K.; Lavigne, E.; Evans, G.; van Donkelaar, A.; Martin, R.V.; Burnett, R.T. Oxidative burden of fine particulate air pollution and risk of cause-specific mortality in the Canadian Census Health and Environment Cohort (CanCHEC). Environ. Res. 2016, 146, 92–99. [Google Scholar] [CrossRef]
- Brehmer, C.; Norris, C.; Barkjohn, K.K.; Bergin, M.H.; Zhang, J.; Cui, X.; Teng, Y.; Zhang, Y.; Black, M.; Li, Z.; et al. The impact of household air cleaners on the oxidative potential of PM2.5 and the role of metals and sources associated with indoor and outdoor exposure. Environ. Res. 2020, 181, 108919. [Google Scholar] [CrossRef]
- Zhang, X.; Staimer, N.; Gillen, D.L.; Tjoa, T.; Schauer, J.J.; Shafer, M.; Hasheminassab, S.; Pakbin, P.; Vaziri, N.D.; Sioutas, C.; et al. Associations of oxidative stress and inflammatory biomarkers with chemically-characterized air pollutant exposures in an elderly cohort. Environ. Res. 2016, 150, 306–319. [Google Scholar] [CrossRef]
- Brehmer, C.; Norris, C.; Barkjohn, K.K.; Bergin, M.H.; Zhang, J.; Cui, X.; Zhang, Y.; Black, M.; Li, Z.; Shafer, M.; et al. The impact of household air cleaners on the chemical composition and children’s exposure to PM2.5 metal sources in suburban Shanghai. Environ. Pollut. 2019, 253, 190–198. [Google Scholar] [CrossRef]
- Marsal, A.; Sauvain, J.-J.; Thomas, A.; Lyon-Caen, S.; Borlaza, L.J.S.; Philippat, C.; Jaffrezo, J.-L.; Boudier, A.; Darfeuil, S.; Elazzouzi, R.; et al. Effects of personal exposure to the oxidative potential of PM2.5 on oxidative stress biomarkers in pregnant women. Sci. Total Environ. 2023, 911, 168475. [Google Scholar] [CrossRef] [PubMed]
- Quinn, C.; Miller-Lionberg, D.D.; Klunder, K.J.; Kwon, J.; Noth, E.M.; Mehaffy, J.; Leith, D.; Magzamen, S.; Hammond, S.K.; Henry, C.S.; et al. Personal Exposure to PM2.5 Black Carbon and Aerosol Oxidative Potential using an Automated Microenvironmental Aerosol Sampler (AMAS). Environ. Sci. Technol. 2018, 52, 11267–11275. [Google Scholar] [CrossRef] [PubMed]
- Secrest, M.H.; Schauer, J.J.; Carter, E.M.; Lai, A.M.; Wang, Y.; Shan, M.; Yang, X.; Zhang, Y.; Baumgartner, J. The oxidative potential of PM2.5 exposures from indoor and outdoor sources in rural China. Sci. Total Environ. 2016, 571, 1477–1489. [Google Scholar] [CrossRef] [PubMed]
- Fan, J.; Li, S.; Fan, C.; Bai, Z.; Yang, K. The impact of PM2.5 on asthma emergency department visits: A systematic review and meta-analysis. Environ. Sci. Pollut. Res. 2016, 23, 843–850. [Google Scholar] [CrossRef]
- Jacquemin, B.; Siroux, V.; Sanchez, M.; Carsin, A.-E.; Schikowski, T.; Adam, M.; Bellisario, V.; Buschka, A.; Bono, R.; Brunekreef, B.; et al. Ambient air pollution and adult asthma incidence in six European cohorts. ESCAPE. Environ. Health Perspect. 2015, 123, 613–621. [Google Scholar] [CrossRef]
- Karakatsani, A.; Analitis, A.; Perifanou, D.; Ayres, J.G.; Harrison, R.M.; Kotronarou, A.; Kavouras, I.; Pekkanen, J.; Hämeri, K.; Kos, G.P.; et al. Particulate matter air pollution and respiratory symptoms in individuals having either asthma or chronic obstructive pulmonary disease: A European multicentre panel study. Environ Health. 2012, 11, 75. [Google Scholar] [CrossRef]
- Luzan5 (Ed.) GEMA 5.4. Guía Española Para el Manejo del Asma, Versión 5.4. 2024. ISBN 978-84-19832-56-6. Available online: www.gemasma.com (accessed on 10 February 2025).
- GINA 2024. Global Initiative for Asthma. Global Strategy for Asthma Management and Prevention, 2024. Updated December 2024. Available online: www.ginasthma.org (accessed on 10 February 2025).
- Santibáñez, M.; Ruiz-Cubillán, J.J.; Expósito, A.; Agüero, J.; García-Rivero, J.L.; Abascal, B.; Amado, C.A.; Ruiz-Azcona, L.; Lopez-Hoyos, M.; Irure, J.; et al. Association Between Oxidative Potential of Particulate Matter Collected by Personal Samplers and Systemic Inflammation Among Asthmatic and Non-Asthmatic Adults. Antioxidants 2024, 13, 1464. [Google Scholar] [CrossRef]
- Expósito, A.; Vaccarella, E.; Massimi, L.; Santibáñez, M.; Fernández-Olmo, I. Size-segregated particulate matter oxidative potential near a ferromanganese plant: Associations with soluble and insoluble elements and their sources. Atmos. Pollut. Res. 2025, 16, 102330. [Google Scholar] [CrossRef]
- Expósito, A.; Maillo, J.; Uriarte, I.; Santibáñez, M.; Fernández-Olmo, I. Kinetics of ascorbate and dithiothreitol oxidation by soluble copper, iron, and manganese, and 1,4-naphthoquinone: Influence of the species concentration and the type of fluid. Chemosphere 2024, 361, 142435. [Google Scholar] [CrossRef]
- Langbøl, M.; Saruhanian, S.; Baskaran, T.; Tiedemann, D.; Mouhammad, Z.A.; Toft-Kehler, A.K.; Jun, B.; Vohra, R.; Bazan, N.G.; Kolko, M. Increased Antioxidant Capacity and Pro-Homeostatic Lipid Mediators in Ocular Hypertension—A Human Experimental Model. J. Clin. Med. 2020, 9, 2979. [Google Scholar] [CrossRef]
- de Fonseca, F.R.; Medina-Paz, F.; Sapozhnikov, M.; Hurtado-Guerrero, I.; Rubio, L.; Martín-De-Las-Heras, S.; Requena-Ocaña, N.; Flores-López, M.; Fernández-Arjona, M.d.M.; Rivera, P.; et al. Plasma Concentrations of High Mobility Group Box 1 Proteins and Soluble Receptors for Advanced Glycation End-Products Are Relevant Biomarkers of Cognitive Impairment in Alcohol Use Disorder: A Pilot Study. Toxics 2024, 12, 190. [Google Scholar] [CrossRef] [PubMed]
- Alves, M.I.B.; Plaza, F.A.; Martínez-Tomás, R.; Sánchez-Campillo, M.; Larqué, E.; Pérez-Llamas, F.; Hernández, P.M.; Pallarés, S.P. Oxidized LDL and its correlation with lipid profile and oxidative stress biomarkers in young healthy Spanish subjects. J. Physiol. Biochem. 2010, 66, 221–227. [Google Scholar] [CrossRef] [PubMed]
- Karadogan, B.; Beyaz, S.; Gelincik, A.; Buyukozturk, S.; Arda, N. Evaluation of oxidative stress biomarkers and antioxidant parameters in allergic asthma patients with different level of asthma control. J. Asthma 2022, 59, 663–672. [Google Scholar] [CrossRef] [PubMed]
- Mateu-Jiménez, M.; Sánchez-Font, A.; Rodríguez-Fuster, A.; Aguiló, R.; Pijuan, L.; Fermoselle, C.; Gea, J.; Curull, V.; Barreiro, E. Redox Imbalance in Lung Cancer of Patients with Underlying Chronic Respiratory Conditions. Mol. Med. 2016, 22, 85–98. [Google Scholar] [CrossRef]
- Pérez-Peiró, M.; Martín-Ontiyuelo, C.; Rodó-Pi, A.; Piccari, L.; Admetlló, M.; Durán, X.; Rodríguez-Chiaradía, D.A.; Barreiro, E. Iron Replacement and Redox Balance in Non-Anemic and Mildly Anemic Iron Deficiency COPD Patients: Insights from a Clinical Trial. Biomedicines 2021, 9, 1191. [Google Scholar] [CrossRef]
- Puig-Vilanova, E.; Rodriguez, D.A.; Lloreta, J.; Ausin, P.; Pascual-Guardia, S.; Broquetas, J.; Roca, J.; Gea, J.; Barreiro, E. Oxidative stress, redox signaling pathways, and autophagy in cachectic muscles of male patients with advanced COPD and lung cancer. Free Radic Biol. Med. 2015, 79, 91–108. [Google Scholar] [CrossRef]
- Ekmekci, O.B.; Donma, O.; Ekmekci, H.; Yildirim, N.; Uysal, O.; Sardogan, E.; Demirel, H.; Demir, T. Plasma paraoxonase activities, lipoprotein oxidation, and trace element interaction in asthmatic patients. Biol. Trace Elem. Res. 2006, 111, 41–52. [Google Scholar] [CrossRef]
- Liu, L.; Urch, B.; Szyszkowicz, M.; Evans, G.; Speck, M.; Van Huang, A.; Brook, J.R.; Jakubowski, B.; Poon, R.; Silverman, F.; et al. Metals and oxidative potential in urban particulate matter influence systemic inflammatory and neural biomarkers: A controlled exposure study. Environ. Int. 2018, 121 Pt 2, 1331–1340. [Google Scholar] [CrossRef]
- Qin, L.; Guitart, M.; Admetlló, M.; Esteban-Cucó, S.; Maiques, J.M.; Xia, Y.; Zha, J.; Carbullanca, S.; Duran, X.; Wang, X.; et al. Do Redox Balance and Inflammatory Events Take Place in Mild Bronchiectasis? A Hint to Clinical Implications. J. Clin. Med. 2021, 10, 4534. [Google Scholar] [CrossRef]
- Rafiee, A.; Delgado-Saborit, J.M.; Aquilina, N.J.; Amiri, H.; Hoseini, M. Assessing oxidative stress resulting from environmental exposure to metals (Oids) in a middle Eastern population. Environ. Geochem. Health. 2022, 44, 2649–2668. [Google Scholar] [CrossRef]
- Checkley, W.; Deza, M.P.; Klawitter, J.; Romero, K.M.; Klawitter, J.; Pollard, S.L.; Hansel, N.N. Identifying biomarkers for asthma diagnosis using targeted metabolomics approaches. Respir. Med. 2016, 121, 59–66. [Google Scholar] [CrossRef] [PubMed]
- Isiugo, K.; Jandarov, R.; Cox, J.; Ryan, P.; Newman, N.; Grinshpun, S.A.; Indugula, R.; Vesper, S.; Reponen, T. Indoor particulate matter and lung function in children. Sci. Total Environ. 2019, 663, 408–417. [Google Scholar] [CrossRef] [PubMed]
- Delfino, R.J.; Staimer, N.; Gillen, D.; Tjoa, T.; Sioutas, C.; Fung, K.; George, S.C.; Kleinman, M.T. Personal and Ambient Air Pollution is Associated with Increased Exhaled Nitric Oxide in Children with Asthma. Environ. Health Perspect. 2006, 114, 1736–1743. [Google Scholar] [CrossRef] [PubMed]
- Veld, M.I.; Pandolfi, M.; Amato, F.; Pérez, N.; Reche, C.; Dominutti, P.; Jaffrezo, J.; Alastuey, A.; Querol, X.; Uzu, G. Discovering oxidative potential (OP) drivers of atmospheric PM10, PM2.5, and PM1 simultaneously in North-Eastern Spain. Sci. Total Environ. 2023, 857, 159386. [Google Scholar] [CrossRef]
- Michaeloudes, C.; Abubakar-Waziri, H.; Lakhdar, R.; Raby, K.; Dixey, P.; Adcock, I.M.; Mumby, S.; Bhavsar, P.K.; Chung, K.F. Molecular mechanisms of oxidative stress in asthma. Mol. Asp. Med. 2022, 85, 101026. [Google Scholar] [CrossRef]
- Nadeem, A.; Chhabra, S.K.; Masood, A.; Raj, H.G. Increased oxidative stress and altered levels of antioxidants in asthma. J. Allergy Clin. Immunol. 2003, 111, 72–78. [Google Scholar] [CrossRef]
- Jiang, H.; Zhou, Y.; Nabavi, S.M.; Sahebkar, A.; Little, P.J.; Xu, S.; Weng, J.; Ge, J. Mechanisms of Oxidized LDL-Mediated Endothelial Dysfunction and Its Consequences for the Development of Atherosclerosis. Front. Cardiovasc. Med. 2022, 9, 925923. [Google Scholar] [CrossRef]
- Khatana, C.; Saini, N.K.; Chakrabarti, S.; Saini, V.; Sharma, A.; Saini, R.V.; Saini, A.K. Mechanistic Insights into the Oxidized Low-Density Lipoprotein-Induced Atherosclerosis. Oxid. Med. Cell. Longev. 2020, 2020, 5245308. [Google Scholar] [CrossRef]
- Saunders, R.M.; Biddle, M.; Amrani, Y.; Brightling, C.E. Stressed out—The role of oxidative stress in airway smooth muscle dysfunction in asthma and COPD. Free. Radic. Biol. Med. 2022, 185, 97–119. [Google Scholar] [CrossRef]
- Sedgwick, J.B.; Hwang, Y.S.; Gerbyshak, H.A.; Kita, H.; Busse, W.W. Oxidized Low-Density Lipoprotein Activates Migration and Degranulation of Human Granulocytes. Am. J. Respir. Cell Mol. Biol. 2003, 29, 702–709. [Google Scholar] [CrossRef]
- Vruwink, K.G.; Gershwin, M.E.; Sachet, P.; Halpern, G.; Davis, P.A. Modification of human LDL by in vitro incubation with cigarette smoke or copper ions: Implications for allergies, asthma and atherosclerosis. J. Investig. Allergol. Clin. Immunol. 1996, 6, 294–300. [Google Scholar] [PubMed]
- Bassu, S.; Mangoni, A.A.; Argiolas, D.; Congiu, T.; Deiana, L.; Fois, A.G.; Pirina, P.; Carru, C.; Zinellu, A. A systematic review and meta-analysis of paraoxonase-1 activity in asthma. Clin. Exp. Med. 2023, 23, 1067–1074. [Google Scholar] [CrossRef] [PubMed]
- Wood, L.G.; Fitzgerald, D.A.; Gibson, P.C.; Cooper, D.M.; Garg, M.L. Lipid peroxidation as determined by plasma isoprostanes is related to disease severity in mild asthma. Lipids 2000, 35, 967–974. [Google Scholar] [CrossRef] [PubMed]
- Shanmugasundaram, K.R.; Kumar, S.S.; Rajajee, S. Excessive free radical generation in the blood of children suffering from asthma. Clin. Chim. Acta 2001, 305, 107–114. [Google Scholar] [CrossRef]
- Bazan-Socha, S.; Wójcik, K.; Olchawa, M.; Sarna, T.; Pięta, J.; Jakieła, B.; Soja, J.; Okoń, K.; Zarychta, J.; Zaręba, L.; et al. Increased Oxidative Stress in Asthma—Relation to Inflammatory Blood and Lung Biomarkers and Airway Remodeling Indices. Biomedicines 2022, 10, 1499. [Google Scholar] [CrossRef]
- Kalyanaraman, B.; Darley-Usmar, V.; Davies, K.J.A.; Dennery, P.A.; Forman, H.J.; Grisham, M.B.; Mann, G.E.; Moore, K.; Roberts, L.J., II; Ischiropoulos, H. Measuring reactive oxygen and nitrogen species with fluorescent probes: Challenges and limitations. Free Radic. Biol. Med. 2012, 52, 1–6. [Google Scholar] [CrossRef]
- Gardiner, B.; Dougherty, J.A.; Ponnalagu, D.; Singh, H.; Angelos, M.; Chen, C.-A.; Khan, M. Measurement of Oxidative Stress Markers In Vitro Using Commercially Available Kits. 2020 Aug 9. In Measuring Oxidants and Oxidative Stress in Biological Systems [Internet]; Berliner, L.J., Parinandi, N.L., Eds.; Springer: Cham, Switzerland, 2020; Chapter 4. [Google Scholar]
- Andrianjafimasy, M.; Zerimech, F.; Akiki, Z.; Huyvaert, H.; Le Moual, N.; Siroux, V.; Matran, R.; Dumas, O.; Nadif, R. Oxidative stress biomarkers and asthma characteristics in adults of the EGEA study. Eur. Respir. J. 2017, 50, 1701193. [Google Scholar] [CrossRef]
- Wu, T.; Willett, W.C.; Rifai, N.; Rimm, E.B. Plasma Fluorescent Oxidation Products as Potential Markers of Oxidative Stress for Epidemiologic Studies. Am. J. Epidemiol. 2007, 166, 552–560. [Google Scholar] [CrossRef]
- Sugiura, H.; Kawabata, H.; Ichikawa, T.; Koarai, A.; Yanagisawa, S.; Kikuchi, T.; Minakata, Y.; Matsunaga, K.; Nakanishi, M.; Hirano, T.; et al. Inhibitory effects of theophylline on the peroxynitrite-augmented release of matrix metalloproteinases by lung fibroblasts. Am. J. Physiol. Cell. Mol. Physiol. 2012, 302, L764–L774, Erratum in Am. J. Physiol. Lung Cell Mol. Physiol. 2013, 305, L404. [Google Scholar] [CrossRef]
- Chamitava, L.; Cazzoletti, L.; Ferrari, M.; Garcia-Larsen, V.; Jalil, A.; Degan, P.; Fois, A.G.; Zinellu, E.; Fois, S.S.; Pasini, A.M.F.; et al. Biomarkers of Oxidative Stress and Inflammation in Chronic Airway Diseases. Int. J. Mol. Sci. 2020, 21, 4339. [Google Scholar] [CrossRef]
- Aldakheel, F.M.; Thomas, P.S.; Bourke, J.E.; Matheson, M.C.; Dharmage, S.C.; Lowe, A.J. Relationships between adult asthma and oxidative stress markers and pH in exhaled breath condensate: A systematic review. Allergy 2016, 71, 741–757. [Google Scholar] [CrossRef] [PubMed]
- Antus, B. Oxidative Stress Markers in Sputum. Oxidative Med. Cell. Longev. 2016, 2016, 2930434. [Google Scholar] [CrossRef]
Asthma | Non-Asthma | All | p Value | ||||
---|---|---|---|---|---|---|---|
N = 44 | N = 37 | N = 81 | |||||
Age, yrs. Mean [SD] | 52.45 | 17.42 | 52.03 | 16.69 | 52.26 | 16.99 | 0.911 |
Age, yrs. Median [IQR] | 50 | 40–69 | 54 | 39–67 | 52 | 39.5–68.5 | 0.794 |
Sex at birth | |||||||
Female | 25 | 56.80% | 21 | 56.8% | 46 | 56.8% | 1 |
Male | 19 | 43.20% | 16 | 43.2% | 35 | 43.2% | |
Non-smoker | 34 | 77.3% | 29 | 78.4% | 63 | 77.8% | 0.905 |
Former smoker | 10 | 22.7% | 8 | 21.6% | 18 | 22.2% | |
Study level | |||||||
Primary education | 5 | 11.4% | 1 | 2.7% | 6 | 7.4% | <0.001 |
Secondary education | 13 | 29.5% | 3 | 8.1% | 16 | 19.8% | |
High school level | 16 | 36.4% | 2 | 5.4% | 18 | 22.2% | |
University studies | 10 | 22.7% | 31 | 83.8% | 41 | 50.6% | |
BMI (WHO classification) | |||||||
Healthy weight 18.5–24.9 | 16 | 36.4% | 21 | 56.8% | 37 | 45.7% | 0.096 |
Overweight 25–29.9 | 18 | 40.9% | 13 | 35.1% | 31 | 38.3% | |
Obesity ≥ 30 | 10 | 22.7% | 3 | 8.1% | 13 | 16.0% | |
Cholesterol levels, mg/dL (Visit 3). Mean [SD] | 191.2 | 37.76 | 189.54 | 36.17 | 190.44 | 36.82 | 0.841 |
Cholesterol levels, mg/dL (Visit 3). Median [IQR] | 187.5 | 50 | 190 | 53 | 189 | 51 | 0.894 |
Total cholesterol > 200 mg/dL (Visit 3) | |||||||
No | 31 | 70.5% | 23 | 62.2% | 54 | 66.7% | 0.43 |
Yes | 13 | 29.5% | 14 | 37.8% | 27 | 33.3% | |
HDL levels, mg/dL (Visit 3). Mean [SD] | 58.27 | 16.09 | 118.41 | 28.17 | 58.98 | 15.98 | 0.396 |
HDL levels, mg/dL (Visit 3). Median [IQR] | 56 | 23 | 59 | 22 | 57 | 22 | 0.652 |
HDL levels < 60 mg/dL (Visit 3) | |||||||
No | 18 | 40.9% | 18 | 48.6% | 36 | 44.4% | 0.485 |
Yes | 26 | 59.1% | 19 | 51.4% | 45 | 55.6% | |
LDL levels, mg/dL (Visit 3). Mean [SD] | 112.66 | 31.82 | 118.41 | 28.17 | 115.28 | 30.16 | 0.396 |
LDL levels, mg/dL (Visit 3). Median [IQR] | 109 | 37 | 122 | 37 | 112 | 38 | 0.172 |
LDL levels > 100 mg/dL (Visit 3) | |||||||
No | 17 | 38.6 | 9 | 0.243 | 26 | 0.321 | 0.169 |
Yes | 27 | 0.614 | 28 | 0.757 | 55 | 0.679 | |
Diabetes or insulin resistance | |||||||
No | 42 | 0.955 | 36 | 0.973 | 78 | 0.963 | 0.662 |
Yes | 2 | 0.045 | 1 | 0.027 | 3 | 0.037 | |
High blood pressure | |||||||
No | 35 | 0.795 | 32 | 0.865 | 67 | 0.827 | 0.411 |
Yes | 9 | 0.205 | 5 | 0.135 | 14 | 0.173 | |
Atherosclerosis and cardio-vascular disease and pulmonary thromboembolism | |||||||
No | 43 | 0.977 | 35 | 0.946 | 78 | 0.963 | 0.457 |
Yes | 1 | 0.023 | 2 | 0.054 | 3 | 0.037 | |
Blood Eosinophils (Visit 3), cells/mm3, Mean [SD] | 331.82 | 412.46 | 208.11 | 108.98 | 275.31 | 317.23 | 0.062 |
Blood Eosinophils (Visit 3), cells/mm3, Median [IQR] | 200 | 100–400 | 200 | 100–300 | 200 | 100–300 | 0.183 |
Blood Eosinophils (Visit 3) ≥ 150 cells/mm3 | |||||||
No | 12 | 27.3% | 13 | 35.1% | 25 | 30.9% | 0.445 |
Yes | 32 | 72.7% | 24 | 64.9% | 56 | 69.1% | |
Blood Neutrophils (Visit 3) ≥ 5000 cells/mm3 | |||||||
No | 37 | 84.1% | 35 | 94.6% | 72 | 88.9% | 0.134 |
Yes | 7 | 15.9% | 2 | 5.4% | 9 | 11.1% | |
Oral corticosteroids (for rheumatologic and other reason) | |||||||
No | 42 | 0.955 | 37 | 1 | 79 | 0.975 | 0.189 |
Yes | 2 | 0.045 | 0 | 0 | 2 | 0.025 | |
Airway inflammation | |||||||
FeNO (Visit 3), ppb. Mean [SD] | 37.27 | 24.23 | 24.43 | 14.49 | 31.41 | 21.25 | 0.004 |
FeNO (Visit 3), ppb. Median [IQR] | 27 | 19–52 | 21 | 15–29.5 | 23 | 16–40.5 | 0.013 |
FeNO (Visit 3) ≥ 20 ppb | |||||||
No | 12 | 27.3% | 17 | 45.9% | 29 | 35.8% | 0.081 |
Yes | 32 | 72.7% | 20 | 54.1% | 52 | 64.2% |
Asthma | Non-Asthma | All | p Value | ||||
---|---|---|---|---|---|---|---|
N = 44 | N = 37 | N = 81 | |||||
Oxidative stress markers | |||||||
Total ROS/RNS. μM H2O2 equival. Mean [SD] | 4.94 | 1.33 | 5.89 | 1.06 | 5.37 | 1.30 | 0.001 |
Total ROS/RNS. μM H2O2 equival. Median [IQR] | 5.27 | 2.05 | 5.72 | 1.09 | 5.54 | 1.47 | 0.003 |
PCC. nmol/mg. Mean [SD] | 0.44 | 0.17 | 0.44 | 0.22 | 0.44 | 0.20 | 0.869 |
PCC. nmol/mg. Median [IQR] | 0.41 | 0.27 | 0.47 | 0.24 | 0.42 | 0.25 | 0.894 |
HNE-OxLDL ng/mL. Mean [SD] | 114,406.2 | 36,125.8 | 71,473.7 | 15,943.0 | 94,795.0 | 35,762.2 | <0.001 |
HNE-OxLDL ng/mL. Median [IQR] | 105,347.5 | 50,430.8 | 72,463.8 | 24,674.7 | 88,500.7 | 47,731.0 | <0.001 |
8-OHdG ng/mL. Mean [SD] | 13.71 | 11.96 | 10.45 | 5.51 | 12.22 | 9.65 | 0.112 |
8-OHdG ng/mL. Median [IQR] | 9.98 | 12.90 | 8.81 | 6.07 | 9.69 | 9.16 | 0.55 |
GSH. Mean [SD] | 3.60 | 2.32 | 3.83 | 1.76 | 3.70 | 2.08 | 0.62 |
GSH. Median [IQR] | 2.86 | 1.30 | 3.40 | 1.13 | 3.21 | 1.17 | 0.015 |
PM-OP metrics (nmol/min/m3) | |||||||
OP-DTT PM2.5. Mean [SD] | 0.30 | 0.29 | 0.17 | 0.25 | 0.24 | 0.27 | 0.029 |
OP-DTT PM2.5. Median [IQR] | 0.24 | 0.15–0.34 | 0.10 | 0.03–0.18 | 0.16 | 0.1–0.31 | <0.001 |
OP-AA PM2.5. Mean [SD] | 0.72 | 1.29 | 0.34 | 0.89 | 0.55 | 1.14 | 0.127 |
OP-AA PM2.5. Median [IQR] | 0.23 | 0.12–0.49 | 0.15 | 0.06–0.28 | 0.18 | 0.07–0.37 | 0.027 |
OP-DTT PM10-2.5. Mean [SD] | 0.18 | 0.11 | 0.14 | 0.11 | 0.16 | 0.11 | 0.058 |
OP-DTT PM10-2.5. Median [IQR] | 0.17 | 0.10–0.26 | 0.11 | 0.06–0.19 | 0.13 | 0.08–0.22 | 0.052 |
OP-AA PM10-2.5. Mean [SD] | 0.59 | 1.38 | 0.17 | 0.11 | 0.40 | 1.04 | 0.051 |
OP-AA PM10-2.5. Median [IQR] | 0.22 | 0.10–0.55 | 0.20 | 0.1–0.20 | 0.20 | 0.1–0.39 | 0.029 |
Total ROS/RNS | PCC | HNE-OxLDL | 8-OHdG | GSH | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
μM H2O2 Equiv | nmol/mg | ng/mL | ng/mL | ng/mL | ||||||||||||||||
Asthma–Non-Asthma | MD | 95% | CI | p Value | MD | 95% | CI | p Value | MD | 95% | CI | p Value | MD | 95% | CI | p Value | MD | 95% | CI | p Value |
Crude | −0.95 | −1.49 | −0.41 | 0.001 | 0.01 | −0.08 | 0.10 | 0.869 | 42,932.44 | 30,170.83 | 55,694.06 | <0.001 | 3.25 | −1.00 | 7.50 | 0.132 | −0.23 | −1.16 | 0.69 | 0.62 |
Adjusted model 1 | −1.13 | −1.77 | −0.50 | 0.001 | −0.01 | −0.12 | 0.09 | 0.799 | 44,353.69 | 29,605.35 | 59,102.02 | <0.001 | 4.35 | −0.71 | 9.41 | 0.091 | −0.09 | −1.21 | 1.03 | 0.873 |
Adjusted model 2 | −1.13 | −1.82 | −0.44 | 0.002 | 0.01 | −0.11 | 0.13 | 0.887 | 47,529.72 | 31,494.71 | 63,564.74 | <0.001 | 5.66 | 0.17 | 11.15 | 0.044 | −0.17 | −1.37 | 1.04 | 0.782 |
Adjusted model 3 | −1.22 | −1.90 | −0.55 | 0.001 | 0.01 | −0.10 | 0.12 | 0.876 | 44,301.67 | 28,430.36 | 60,172.98 | <0.001 | 4.87 | −0.55 | 10.28 | 0.078 | −0.27 | −1.44 | 0.90 | 0.645 |
Adjusted model 1 + LDL * | 47,234.26 | 12,709.81 | 90,870.13 | 0.01 | ||||||||||||||||
Adjusted model 2 + LDL * | 50,059.80 | 35,255.70 | 64,863.91 | <0.001 | ||||||||||||||||
Adjusted model 3 + LDL * | 47,299.64 | 32,589.80 | 62,009.49 | <0.001 |
Total ROS/RNS | PCC | HNE-OxLDL | 8-OHdG | GSH | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
μM H2O2 Equiv | nmol/mg | ng/mL | ng/mL | ng/mL | ||||||||||||||||
PM-OP nmol min−1 m−3 | aMD | 95% | CI | p Value | AMD | 95% | CI | p Value | aMD | 95% | CI | p Value | aMD | 95% | CI | p Value | aMD | 95% | CI | p Value |
OP-DTT PM2.5 | −0.32 | −0.93 | 0.30 | 0.308 | −0.03 | −0.13 | 0.07 | 0.55 | −9971.15 | −23,992.72 | 4050.41 | 0.161 | −2.14 | −6.99 | 2.71 | 0.382 | −0.26 | −1.34 | 0.81 | 0.627 |
OP-AA PM2.5 | −0.32 | −0.89 | 0.24 | 0.258 | −0.01 | −0.11 | 0.08 | 0.815 | −3174.65 | −16,301.97 | 9952.66 | 0.631 | 1.22 | −3.28 | 5.73 | 0.59 | −0.74 | −1.72 | 0.25 | 0.141 |
OP-DTT PM10-2.5 | −0.11 | −0.71 | 0.49 | 0.718 | 0.00 | −0.10 | 0.10 | 0.993 | −2567.63 | −16,384.42 | 11,249.16 | 0.712 | −2.46 | −7.17 | 2.25 | 0.302 | 0.72 | −0.32 | 1.76 | 0.172 |
OP-AA PM10-2.5 | −0.02 | −0.65 | 0.60 | 0.941 | −0.04 | −0.15 | 0.06 | 0.396 | 243.27 | −14,100.43 | 14,586.98 | 0.973 | −0.35 | −5.27 | 4.57 | 0.889 | 0.48 | −0.60 | 1.57 | 0.379 |
Total ROS/RNS | PCC | HNE-OxLDL | 8-OHdG | GSH | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
μM H2O2 Equiv | nmol/mg | ng/mL | ng/mL | ng/mL | ||||||||||||||||
PM-OP nmol min−1 m−3 | aOR | 95% | CI | p Value | aOR | 95% | CI | p Value | aOR | 95% | CI | p Value | aOR | 95% | CI | p Value | aOR | 95% | CI | p Value |
OP-DTT PM2.5 | 0.55 | 0.18 | 1.66 | 0.291 | 0.45 | 0.15 | 1.32 | 0.146 | 0.69 | 0.17 | 2.81 | 0.606 | 0.38 | 0.12 | 1.2 | 0.099 | 0.78 | 0.27 | 2.29 | 0.654 |
OP-AA PM2.5 | 1.17 | 0.42 | 3.25 | 0.765 | 0.45 | 0.16 | 1.22 | 0.115 | 0.85 | 0.24 | 3.05 | 0.803 | 0.93 | 0.34 | 2.55 | 0.886 | 0.87 | 0.33 | 2.35 | 0.788 |
OP-DTT PM10-2.5 | 1.59 | 0.54 | 4.71 | 0.399 | 1.08 | 0.39 | 2.98 | 0.886 | 0.93 | 0.25 | 3.46 | 0.916 | 0.68 | 0.24 | 1.96 | 0.478 | 1.66 | 0.58 | 4.77 | 0.344 |
OP-AA PM10-2.5 | 1.22 | 0.4 | 3.7 | 0.727 | 0.5 | 0.17 | 1.46 | 0.205 | 0.5 | 0.12 | 2.17 | 0.355 | 0.73 | 0.25 | 2.14 | 0.568 | 0.76 | 0.26 | 2.18 | 0.607 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santibáñez, M.; Núñez-Robainas, A.; Barreiro, E.; Expósito, A.; Agüero, J.; García-Rivero, J.L.; Abascal, B.; Amado, C.A.; Ruiz-Cubillán, J.J.; Fernández-Sobaler, C.; et al. Characterization of Systemic Oxidative Stress in Asthmatic Adults Compared to Healthy Controls and Its Association with the Oxidative Potential of Particulate Matter Collected Using Personal Samplers. Antioxidants 2025, 14, 385. https://doi.org/10.3390/antiox14040385
Santibáñez M, Núñez-Robainas A, Barreiro E, Expósito A, Agüero J, García-Rivero JL, Abascal B, Amado CA, Ruiz-Cubillán JJ, Fernández-Sobaler C, et al. Characterization of Systemic Oxidative Stress in Asthmatic Adults Compared to Healthy Controls and Its Association with the Oxidative Potential of Particulate Matter Collected Using Personal Samplers. Antioxidants. 2025; 14(4):385. https://doi.org/10.3390/antiox14040385
Chicago/Turabian StyleSantibáñez, Miguel, Adriana Núñez-Robainas, Esther Barreiro, Andrea Expósito, Juan Agüero, Juan Luis García-Rivero, Beatriz Abascal, Carlos Antonio Amado, Juan José Ruiz-Cubillán, Carmen Fernández-Sobaler, and et al. 2025. "Characterization of Systemic Oxidative Stress in Asthmatic Adults Compared to Healthy Controls and Its Association with the Oxidative Potential of Particulate Matter Collected Using Personal Samplers" Antioxidants 14, no. 4: 385. https://doi.org/10.3390/antiox14040385
APA StyleSantibáñez, M., Núñez-Robainas, A., Barreiro, E., Expósito, A., Agüero, J., García-Rivero, J. L., Abascal, B., Amado, C. A., Ruiz-Cubillán, J. J., Fernández-Sobaler, C., García-Unzueta, M. T., Cifrián, J. M., & Fernandez-Olmo, I. (2025). Characterization of Systemic Oxidative Stress in Asthmatic Adults Compared to Healthy Controls and Its Association with the Oxidative Potential of Particulate Matter Collected Using Personal Samplers. Antioxidants, 14(4), 385. https://doi.org/10.3390/antiox14040385