Optimization of Microwave-Assisted Extraction of Polyphenols from Crataegus monogyna L.
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Microwave-Assisted Extraction Procedure
2.3. Total Phenolic Content Determination
2.4. Antioxidant Activity Determination
2.5. High-Performance Liquid Chromatography Analysis
2.6. Statistical Analysis
2.7. Experimental Setup and Factorial Analysis
3. Results and Discussion
3.1. Conventional Extraction vs. Microwave-Assisted Extraction
3.2. Influence of Time on the Extraction Efficiency of Bioactive Compounds
3.3. Influence of Particle Size on the Extraction Efficiency of Bioactive Compounds
3.4. Influence of Temperature on the Extraction Efficiency of Bioactive Compounds
3.5. Influence of Ethanol Concentration on the Extraction Efficiency of Bioactive Compounds
3.6. Influence of Solvent-to-Plant Ratio on the Extraction Efficiency of Bioactive Compounds
3.7. Principal Component Analysis
3.8. Design of Experiment 23 Factorial Program
3.8.1. Effect of MAE Variables on the Polyphenol’s Extraction
3.8.2. Effect of MAE Variables on the Antioxidant Activity of Extracts
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Arias-Sánchez, R.A.; Torner, L.; Navarro, B.F. Polyphenols and neurodegenerative diseases: Potential effects and mechanisms of neuroprotection. Molecules 2023, 28, 5415. [Google Scholar] [CrossRef] [PubMed]
- Head, E. Oxidative damage and cognitive dysfunction: Antioxidant treatments to promote healthy brain aging. Neurochem. Res. 2009, 34, 670–678. [Google Scholar] [CrossRef]
- Kim, G.H.; Kim, J.E.; Rhie, S.J.; Yoon, S. The role of oxidative stress in neurodegenerative diseases. Exp. Neurobiol. 2015, 24, 325–340. [Google Scholar] [CrossRef] [PubMed]
- Rojas-Garcia, A.; Fernandez-Ochoa, A.; Cadiz-Gurrea, M.L.; Arraez-Roman, D.; Segura-Carretero, A. Neuroprotective effects of agri-food by-products rich in phenolic compounds. Nutrients 2023, 15, 449. [Google Scholar] [CrossRef]
- Youdim, K.A.; Qaiser, M.Z.; Begley, D.J.; Rice-Evans, C.A.; Abbott, N.J. Flavonoid permeability across an in situ model of the blood-brain barrier. Free Radic Biol. Med. 2004, 36, 592–604. [Google Scholar] [CrossRef]
- Roman, M.J.; Decker, E.A.; Goddard, J.M. Biomimetic polyphenol coatings for antioxidant active packaging applications. Colloid Interface Sci. Commun. 2016, 13, 10–13. [Google Scholar] [CrossRef]
- Baek, S.C.; Park, M.H.; Ryu, H.W.; Lee, J.P.; Kang, M.G.; Park, D.; Park, C.M.; Oh, S.R.; Kim, H. Rhamnocitrin isolated from Prunus padus var. seoulensis: A potent and selective reversible inhibitor of human monoamine oxidase A. Bioorganic Chem. 2019, 83, 317–325. [Google Scholar] [CrossRef]
- Zhang, Z.; Cai, L.; Zhou, X.; Su, C.; Xiao, F.; Gao, Q.; Luo, H. Methyl 3,4-dihydroxybenzoate promote rat cortical neurons survival and neurite outgrowth through the adenosine A2a receptor/PI3K/Akt signaling pathway. Neuroreport 2015, 26, 367–373. [Google Scholar] [CrossRef]
- dos Santos, N.A.; Martins, N.M.; Silva Rde, B.; Ferreira, R.S.; Sisti, F.M.; dos Santos, A.C. Caffeic acid phenethyl ester (CAPE) protects PC12 cells from MPP+ toxicity by inducing the expression of neuron-typical proteins. Neurotoxicology 2014, 45, 131–138. [Google Scholar] [CrossRef]
- Yang, S.-H.; Liao, C.-C.; Chen, Y.; Syu, J.-P.; Jeng, C.-J.; Wang, S.-M. Daidzein induces neuritogenesis in DRG neuronal cultures. J. Biomed. Sci. 2012, 19, 80. [Google Scholar] [CrossRef]
- Valente, T.; Hidalgo, J.; Bolea, I.; Ramirez, B.; Angles, N.; Reguant, J.; Morello, J.R.; Gutierrez, C.; Boada, M.; Unzeta, M. A diet enriched in polyphenols and polyunsaturated fatty acids, LMN diet, induces neurogenesis in the subventricular zone and hippocampus of adult mouse brain. J. Alzheimers Dis. 2009, 18, 849–865. [Google Scholar] [CrossRef] [PubMed]
- Bathina, S.; Das, U.N. Brain-derived neurotrophic factor and its clinical implications. Arch. Med. Sci. 2015, 11, 1164–1178. [Google Scholar] [CrossRef] [PubMed]
- Martinelli, F.; Perrone, A.; Yousefi, S.; Papini, A.; Castiglione, S.; Guarino, F.; Cicatelli, A.; Aelaei, M.; Arad, N.; Gholami, M.; et al. Botanical, phytochemical, anti-microbial and pharmaceutical characteristics of hawthorn (Crataegusmonogyna Jacq.), Rosaceae. Molecules 2021, 26, 7266. [Google Scholar] [CrossRef] [PubMed]
- Guo, W.; Shao, T.; Peng, Y.; Wang, H.; Chen, Z.-S.; Su, H. Chemical composition, biological activities, and quality standards of hawthorn leaves used in traditional Chinese medicine: A comprehensive review. Front. Pharmacol. 2023, 14, 1275244. [Google Scholar] [CrossRef]
- Xu, Y.; Deng, T.; Xie, L.; Qin, T.; Sun, T. Neuroprotective effects of hawthorn leaf flavonoids in Abeta(25-35) -induced Alzheimer’s disease model. Phytother. Res. 2023, 37, 1346–1365. [Google Scholar] [CrossRef]
- Żurek, N.; Kapsuta, I.; Cebulak, T. Content of polyphenolic compounds and biological activity of berries, leaves and flowers of Crataegus L. Acta Univ. Cibiniensis. Ser. E Food Technol. 2023, 27, 35–52. [Google Scholar] [CrossRef]
- Ez-Zahra Amrati, F.; Mssillou, I.; Boukhira, S.; Djiddi Bichara, M.; El Abdali, Y.; Galvao de Azevedo, R.; Mohamed, C.; Slighoua, M.; Conte, R.; Kiokias, S.; et al. Phenolic composition of Crataegus monogyna Jacq. extract and its anti-inflammatory, hepatoprotective, and antileukemia effects. Pharmaceuticals 2024, 17, 786. [Google Scholar] [CrossRef]
- Zhang, L.L.; Zhang, L.F.; Xu, J.G. Chemical composition, antibacterial activity and action mechanism of different extracts from hawthorn (Crataegus pinnatifida Bge.). Sci. Rep. 2020, 10, 8876. [Google Scholar] [CrossRef]
- Elango, C.; Devaraj, S.N. Immunomodulatory effect of hawthorn extract in an experimental stroke model. J. Neuroinflammation 2010, 7, 97. [Google Scholar] [CrossRef] [PubMed]
- Martino, E.; Collina, S.; Rossi, D.; Bazzoni, D.; Gaggeri, R.; Bracco, F.; Azzolina, O. Influence of the extraction mode on the yield of hyperoside, vitexin and vitexin-2″-O-rhamnoside from Crataegus monogyna Jacq. (hawthorn). Phytochem. Anal. 2008, 19, 534–540. [Google Scholar] [CrossRef]
- Alsobh, A.; Zin, M.M.; Marđokić, A.; Vatai, G.; Bánvölgyi, S. Heat, ultrasound, and microwave assisted extraction methods for recovering bioactive components from hawthorn fruit (Crataegus monogyna Jacq.). Prog. Agric. Eng. Sci. 2024, 20, 49–63. [Google Scholar] [CrossRef]
- Shortle, E.; Kerry, J.; Furey, A.; Gilroy, D. Optimisation of process variables for antioxidant components from Crataegus. monogyna by supercritical fluid extraction (CO2) using Box-Behnken experimental design. J. Supercrit. Fluids 2013, 81, 112–118. [Google Scholar] [CrossRef]
- Sixt, M.; Strube, J. Systematic design and evaluation of an extraction process for traditionally used herbal medicine on the example of hawthorn (Crataegus monogyna Jacq.). Processes 2018, 6, 73. [Google Scholar] [CrossRef]
- Diaconu, I.; Pârvulescu, O.C.; Badea, G.I.; Rotaru, M.; Orbeci, C.; Cernica, G. Use of bulk liquid membranes for the removal of aspartame from aqueous media. J. Mol. Liq. 2024, 409, 125456. [Google Scholar] [CrossRef]
- Hu, Y.H.; Peng, L.Q.; Wang, Q.Y.; Yang, J.; Dong, X.; Wang, S.L.; Cao, J.; Liu, F.M. Ecofriendly microwave-assisted reaction and extraction of bioactive compounds from hawthorn leaf. Phytochem. Anal. 2019, 30, 710–719. [Google Scholar] [CrossRef]
- Belwal, T.; Pandey, A.; Bhatt, I.D.; Rawal, R.S. Optimized microwave assisted extraction (MAE) of alkaloids and polyphenols from Berberis roots using multiple-component analysis. Sci. Rep. 2020, 10, 917. [Google Scholar] [CrossRef] [PubMed]
- López-Salazar, H.; Camacho-Díaz, B.H.; Arenas Ocampo, M.L.; Jiménez-Aparicio, A.R. Microwave-assisted extraction of functional compounds from plants: A review. BioResources 2023, 18, 6614–6638. [Google Scholar] [CrossRef]
- Matos, R.A.; Souza, T.L.d.; Barreto, L.H.S.; Souza e Souza, L.B.; Santos, D.C.M.B.d.; Brandão, H.N.; Santana, D.d.A.; de Freitas Santos Júnior, A. Sustainable analytical method for determination of bioactive compounds in solid oral formulations (capsules and tablets) containing green tea (Camellia sinensis) marketed in Brazil. Sustain. Chem. Pharm. 2024, 40, 101655. [Google Scholar] [CrossRef]
- Fernandes Serra Moura, H.; de Souza Dias, F.; Beatriz Souza, E.S.L.; Magalhaes, B.E.A.; de Aragao Tannus, C.; Correia de Carvalho, W.; Cardoso Brandao, G.; Dos Santos, W.N.L.; Gracas Andrade Korn, M.; Cristina Muniz Batista Dos Santos, D.; et al. Evaluation of multielement/proximate composition and bioactive phenolics contents of unconventional edible plants from Brazil using multivariate analysis techniques. Food Chem. 2021, 363, 129995. [Google Scholar] [CrossRef]
- Ngoc, P.C.; Leclercq, L.; Rossi, J.C.; Desvignes, I.; Hertzog, J.; Fabiano-Tixier, A.S.; Chemat, F.; Schmitt-Kopplin, P.; Cottet, H. Optimizing water-based extraction of bioactive principles of hawthorn: From experimental laboratory research to homemade preparations. Molecules 2019, 24, 4420. [Google Scholar] [CrossRef]
- Calcan, S.I.; Pârvulescu, O.C.; Ion, V.A.; Răducanu, C.E.; Bădulescu, L.; Dobre, T.; Egri, D.; Moț, A.; Popa, V.; Crăciun, M.E. Valorization of vine prunings by slow pyrolysis in a fixed-bed reactor. Processes 2021, 10, 37. [Google Scholar] [CrossRef]
- Liu, J.L.; Yuan, J.F.; Zhang, Z.Q. Microwave-assisted extraction optimised with response surface methodology and antioxidant activity of polyphenols from hawthorn (Crataegus pinnatifida Bge.) fruit. Int. J. Food Sci. Technol. 2010, 45, 2400–2406. [Google Scholar] [CrossRef]
- Gavrila, A.I.; Zalaru, C.M.; Tatia, R.; Seciu-Grama, A.M.; Negrea, C.L.; Calinescu, I.; Chipurici, P.; Trifan, A.; Popa, I. Green extraction techniques of phytochemicals from Hedera helix L. and in vitro characterization of the extracts. Plants 2023, 12, 3908. [Google Scholar] [CrossRef]
- Asofiei, I.; Calinescu, I.; Trifan, A.; David, I.G.; Gavrila, A.I. Microwave-assisted batch extraction of polyphenols from sea buckthorn leaves. Chem. Eng. Commun. 2016, 203, 1547–1553. [Google Scholar] [CrossRef]
- Macready, A.L.; Kennedy, O.B.; Ellis, J.A.; Williams, C.M.; Spencer, J.P.E.; Butler, L.T. Flavonoids and cognitive function: A review of human randomized controlled trial studies and recommendations for future studies. Genes Nutr. 2009, 4, 227–242. [Google Scholar] [CrossRef]
- Froehlicher, T.; Hennebelle, T.; Martin-Nizard, F.; Cleenewerck, P.; Hilbert, J.-L.; Trotin, F.; Grec, S. Phenolic profiles and antioxidative effects of hawthorn cell suspensions, fresh fruits, and medicinal dried parts. Food Chem. 2009, 115, 897–903. [Google Scholar] [CrossRef]
- Lima, L.K.F.; Pereira, S.K.S.; Junior, R.; Santos, F.; Nascimento, A.S.; Feitosa, C.M.; Figueredo, J.S.; Cavalcante, A.D.N.; Araujo, E.; Rai, M. A Brief review on the neuroprotective mechanisms of vitexin. BioMed Res. Int. 2018, 2018, 4785089. [Google Scholar] [CrossRef]
- Wang, K.; Zhang, H.; Yuan, L.; Li, X.; Cai, Y. Potential implications of hyperoside on oxidative stress-induced human diseases: A comprehensive review. J. Inflamm. Res. 2023, 16, 4503–4526. [Google Scholar] [CrossRef]
- Fideles, S.O.M.; de Cassia Ortiz, A.; Buchaim, D.V.; de Souza Bastos Mazuqueli Pereira, E.; Parreira, M.; de Oliveira Rossi, J.; da Cunha, M.R.; de Souza, A.T.; Soares, W.C.; Buchaim, R.L. Influence of the neuroprotective properties of quercetin on regeneration and functional recovery of the nervous system. Antioxidants 2023, 12, 149. [Google Scholar] [CrossRef]
- Nana, O.; Momeni, J.; Boyom, F.F.; Njintang, N.Y.; Ngassoum, M.B. Microwave-assisted extraction as an advanced technique for optimisation of limonoid yields and antioxidant potential from Trichilia roka (Meliaceae). Curr. Res. Green Sustain. Chem. 2021, 4, 100147. [Google Scholar] [CrossRef]
- Zivanovic, N.; Simin, N.; Lesjak, M.; Orcic, D.; Mimica-Dukic, N.; Svircev, E. Comparative study between homemade and commercial hawthorn (Crataegus spp.) extracts regarding their phenolic profile and antioxidant activity. J. Serbian Chem. Soc. 2024, 89, 603–616. [Google Scholar] [CrossRef]
- Vinatoru, M.; Mason, T.J.; Calinescu, I. Ultrasonically assisted extraction (UAE) and microwave assisted extraction (MAE) of functional compounds from plant materials. TrAC Trends Anal. Chem. 2017, 97, 159–178. [Google Scholar] [CrossRef]
- Pi, J.; Jin, P.; Tang, X.; Liu, Y.; Mai, X.; Xie, X.; Li, P.; Fan, H.; Luo, L. Microwave-assisted polyethylene glycol-based aqueous two-phase extraction of gallic acid and ellagic acid from Euonymus alatus: Process optimization, quantification analysis and antioxidant activity. Chem. Eng. Process. 2022, 172, 108772. [Google Scholar] [CrossRef]
- Alfaro, M.J.; Bélanger, J.M.R.; Padilla, F.C.; Jocelyn Paré, J.R. Influence of solvent, matrix dielectric properties, and applied power on the liquid-phase microwave-assisted processes (MAP™) extraction of ginger (Zingiber officinale). Food Res. Int. 2003, 36, 499–504. [Google Scholar] [CrossRef]
- Chan, C.H.; Yusoff, R.; Ngoh, G.C.; Kung, F.W.L. Microwave-assisted extractions of active ingredients from plants. J. Chromatogr. A 2011, 1218, 6213–6225. [Google Scholar] [CrossRef]
- Ahmed, M.; Eun, J.B. Flavonoids in fruits and vegetables after thermal and nonthermal processing: A review. Crit. Rev. Food Sci. Nutr. 2018, 58, 3159–3188. [Google Scholar] [CrossRef]
- Chemat, F.; Abert-Vian, M.; Fabiano-Tixier, A.S.; Strube, J.; Uhlenbrock, L.; Gunjevic, V.; Cravotto, G. Green extraction of natural products. Origins, current status, and future challenges. TrAC Trends Anal. Chem. 2019, 118, 248–263. [Google Scholar] [CrossRef]
- Mandal, V.; Mandal, S.C. Design and performance evaluation of a microwave based low carbon yielding extraction technique for naturally occurring bioactive triterpenoid: Oleanolic acid. Biochem. Eng. J. 2010, 50, 63–70. [Google Scholar] [CrossRef]
- Chan, C.H.; Yeoh, H.K.; Yusoff, R.; Ngoh, G.C. A first-principles model for plant cell rupture in microwave-assisted extraction of bioactive compounds. J. Food Eng. 2016, 188, 98–107. [Google Scholar] [CrossRef]
Bioactive Compound | Retention Time, min | Bioactive Compounds Concentration, mg/g DM | |
---|---|---|---|
Conventional (M1) | Microwave (M2) | ||
Gallic acid | 5.945 | 9.72 ± 0.99 a | 5.52 ± 0.39 b |
Chlorogenic acid | 20.447 | 4.88 ± 0.30 a | 3.49 ± 0.28 b |
Vitexin | 25.382 | 4.25 ± 0.10 b | 10.40 ± 0.36 a |
Rutin | 32.889 | 0.21 ± 0.04 b | 1.63 ± 0.21 a |
Hyperoside | 34.948 | 11.59 ± 0.04 b | 13.66 ± 0.32 a |
Isoquercetin | 46.007 | 0.23 ± 0.03 b | 0.59 ± 0.12 a |
Quercetin | 62.265 | 0.25 ± 0.05 b | 1.12 ± 0.09 a |
TPC, mg GAE/g DM | 93.24 ± 3.83 b | 110.19 ± 1.68 a |
Bioactive Compound | Retention Time, min | Bioactive Compounds Concentration, mg/g DM | |||
---|---|---|---|---|---|
Extraction Time | |||||
5 min | 10 min | 15 min | 20 min | ||
Gallic acid | 5.945 | 5.18 ± 0.13 a | 5.52 ± 0.39 a | 5.43 ± 0.07 a | 4.54 ± 0.13 b |
Chlorogenic acid | 20.447 | 2.03 ± 0.08 d | 3.49 ± 0.28 c | 5.07 ± 0.15 a | 4.54 ± 0.32 b |
Vitexin | 25.382 | 8.06 ± 0.20 b | 10.40 ± 0.36 a | 6.89 ± 0.11 c | 7.84 ± 0.15 b |
Rutin | 32.889 | 1.19 ± 0.17 b | 1.63 ± 0.21 a | 0.29 ± 0.04 c | 1.17 ± 0.06 b |
Hyperoside | 34.948 | 12.49 ± 0.05 c | 13.66 ± 0.32 b | 15.17 ± 0.10 a | 13.89 ± 0.11 b |
Isoquercetin | 46.007 | 0.42 ± 0.09 a,b | 0.59 ± 0.12 a | 0.38 ± 0.07 b | 0.47 ± 0.07 a,b |
Quercetin | 62.265 | 0.89 ± 0.11 b | 1.12 ± 0.09 a | 0.86 ± 0.14 b | 0.87 ± 0.10 b |
TPC, mg GAE/g DM | 101.31 ± 4.85 b | 110.19 ± 1.68 a | 110.30 ± 4.90 a | 109.66 ± 3.38 a |
Bioactive Compound | Retention Time, min | Bioactive Compounds Concentration, mg/g DM | ||
---|---|---|---|---|
Particles Size | ||||
<160 μm (M3) | 160–500 μm (M2) | 500–1000 μm (M4) | ||
Gallic acid | 5.945 | 6.09 ± 0.08 b | 5.52 ± 0.39 c | 9.44 ± 0.15 a |
Chlorogenic acid | 20.447 | 4.95 ± 0.18 a | 3.49 ± 0.28 c | 4.53 ± 0.12 b |
Vitexin | 25.382 | 5.98 ± 0.38 b | 10.40 ± 0.36 a | 4.87 ± 0.11 c |
Rutin | 32.889 | 0.54 ± 0.17 b | 1.63 ± 0.21 a | 0.18 ± 0.04 c |
Hyperoside | 34.948 | 13.49 ± 0.76 a | 13.66 ± 0.32 a | 11.24 ± 0.21 b |
Isoquercetin | 46.007 | 0.50 ± 0.05 a,b | 0.59 ± 0.12 a | 0.38 ± 0.07 b |
Quercetin | 62.265 | 2.83 ± 0.15 a | 1.12 ± 0.09 b | 0.26 ± 0.04 c |
TPC, mg GAE/g DM | 111.76 ± 4.04 a | 110.19 ± 1.68 a,b | 101.36 ± 6.71 b |
Bioactive Compound | Retention Time, min | Bioactive Compounds Concentration, mg/g DM | ||
---|---|---|---|---|
Extraction Temperatures | ||||
50 °C (M5) | 60 °C (M2) | 70 °C (M6) | ||
Gallic acid | 5.945 | 7.09 ± 0.09 a | 5.52 ± 0.39 b | 6.98 ± 0.13 a |
Chlorogenic acid | 20.447 | 5.44 ± 0.23 a | 3.49 ± 0.28 c | 4.94 ± 0.16 b |
Vitexin | 25.382 | 5.61 ± 0.09 b | 10.40 ± 0.36 a | 5.37 ± 0.08 b |
Rutin | 32.889 | 0.31 ± 0.04 b | 1.63 ± 0.21 a | 0.27 ± 0.05 b |
Hyperoside | 34.948 | 13.57 ± 0.19 a | 13.66 ± 0.32 a | 12.79 ± 0.12 b |
Isoquercetin | 46.007 | 0.33 0.03 b | 0.59 ± 0.12 a | 0.41 ± 0.05 b |
Quercetin | 62.265 | 0.56 ± 0.07 b | 1.12 ± 0.09 a | 0.66 ± 0.17 b |
TPC, mg GAE/g DM | 106.72 ± 2.70 b | 110.19 ± 1.68 a | 108.07 ± 2.41 a |
Bioactive Compound | Retention Time, min | Bioactive Compounds Concentration, mg/g DM | ||||
---|---|---|---|---|---|---|
Ethanol Concentration | ||||||
Water (M7) | 25% (M8) | 50% (M2) | 75% (M9) | 100% (M10) | ||
Gallic acid | 5.945 | 1.53 ± 0.19 d | 3.29 ± 0.25 b | 5.52 ± 0.39 a | 5.11 ± 0.22 a | 2.60 ± 0.44 c |
Chlorogenic acid | 20.447 | 0.47 ± 0.06 d | 0.65 ± 0.23 c,d | 3.49 ± 0.28 a | 2.54 ± 0.38 b | 0.98 ± 0.19 c |
Vitexin | 25.382 | 6.62 ± 0.36 d | 9.62 ± 0.25 b | 10.40 ± 0.36 a | 9.37 ± 0.18 b | 7.74 ± 0.47 c |
Rutin | 32.889 | 0.79 ± 0.05 e | 1.22 ± 0.08 d | 1.63 ± 0.21 b | 2.26 ± 0.06 a | 1.41 ± 0.08 c |
Hyperoside | 34.948 | 6.90 ± 0.32 d | 10.40 ± 0.25 c | 13.66 ± 0.32 b | 14.69 ± 0.28 a | 10.22 ± 0.40 c |
Isoquercetin | 46.007 | 0.97 ± 0.10 b | 1.23 ± 0.08 a | 0.59 ± 0.12 c | 0.44 ± 0.13 c | 0.41 ± 0.02 c |
Quercetin | 62.265 | 0.66 ± 0.05 c | 0.89 ± 0.19 b,c | 1.12 ± 0.09 b | 1.69 ± 0.21 a | 0.79 ± 0.12 c |
TPC, mg GAE/g DM | 68.39 ± 6.33 d | 93.72 ± 3.22 b,c | 110.19 ± 1.68 a | 96.84 ± 6.69 b | 84.18 ± 6.54 c |
Bioactive Compound | Retention Time, min | Bioactive Compounds Concentration, mg/g DM | |||
---|---|---|---|---|---|
Solvent-to-Plant Ratio (S/P) | |||||
5 mL/g (M11) | 10 mL/g (M12) | 20 mL/g (M2) | 30 mL/g (M13) | ||
Gallic acid | 5.945 | 2.34 ± 0.25 c | 3.06 ± 0.11 c | 5.52 ± 0.39 a | 4.56 ± 0.71 b |
Chlorogenic acid | 20.447 | 0.99 ± 0.06 c | 1.28 ± 0.14 b,c | 3.49 ± 0.28 a | 1.32 ± 0.05 b |
Vitexin | 25.382 | 6.49 ± 0.24 d | 8.05 ± 0.15 c | 10.40 ± 0.36 b | 11.14 ± 0.35 a |
Rutin | 32.889 | 1.16 ± 0.05 b | 1.57 ± 0.24 a | 1.63 ± 0.21 a | 1.77 ± 0.04 a |
Hyperoside | 34.948 | 6.37 ± 0.27 d | 8.35 ± 0.58 c | 13.66 ± 0.32 b | 15.27 ± 0.28 a |
Isoquercetin | 46.007 | 0.16 ± 0.02 c | 0.29 ± 0.04 c | 0.59 ± 0.12 b | 0.78 ± 0.14 a |
Quercetin | 62.265 | 0.48 ± 0.17 d | 0.75 ± 0.05 c | 1.12 ± 0.09 b | 1.42 ± 0.15 a |
TPC, mg GAE/g DM | 93.72 ± 3.22 c | 101.19 ± 1.84 b | 110.19 ± 1.68 a | 111.80 ± 1.85 a |
PC1 | PC2 | |
---|---|---|
Gallic acid | 0.911 | 0.154 |
Chlorogenic acid | 0.948 | 0.194 |
Vitexin | −0.748 | 0.578 |
Rutin | −0.779 | 0.400 |
Hyperoside | 0.387 | 0.865 |
Isoquercetin | −0.505 | 0.327 |
Quercetin | −0.119 | 0.723 |
TPC | 0.505 | 0.669 |
Variables | Gallic Acid | Chlorogenic Acid | Vitexin | Rutin | Hyperoside | Isoquercetin | Quercetin | TPC |
---|---|---|---|---|---|---|---|---|
Gallic acid | 1 | 0.879 | −0.523 | −0.585 | 0.530 | −0.383 | −0.113 | 0.489 |
Chlorogenic acid | 0.879 | 1 | −0.589 | −0.640 | 0.545 | −0.450 | 0.076 | 0.523 |
Vitexin | −0.523 | −0.589 | 1 | 0.874 | 0.262 | 0.523 | 0.343 | −0.006 |
Rutin | −0.585 | −0.640 | 0.874 | 1 | 0.118 | 0.207 | 0.326 | −0.217 |
Hyperoside | 0.530 | 0.545 | 0.262 | 0.118 | 1 | 0.011 | 0.479 | 0.686 |
Isoquercetin | −0.383 | −0.450 | 0.523 | 0.207 | 0.011 | 1 | 0.192 | 0.096 |
Quercetin | −0.113 | 0.076 | 0.343 | 0.326 | 0.479 | 0.192 | 1 | 0.292 |
TPC | 0.489 | 0.523 | −0.006 | −0.217 | 0.686 | 0.096 | 0.292 | 1 |
Runs | A: Solvent-to-Plant Ratio, mL/g | B: Temperature, °C | C: Ethanol Concentration, % | TPC, mg GAE/g DM | AA, mg TE/g DM |
---|---|---|---|---|---|
1 | 10 (–1) | 50 (–1) | 25 (–1) | 56.42 | 190.04 |
2 | 30 (+1) | 50 (–1) | 25 (–1) | 63.20 | 223.05 |
3 | 10 (–1) | 70 (+1) | 25 (–1) | 68.84 | 208.72 |
4 | 30 (+1) | 70 (+1) | 25 (–1) | 79.94 | 244.38 |
5 | 10 (–1) | 50 (–1) | 75 (+1) | 81.39 | 200.09 |
6 | 30 (+1) | 50 (–1) | 75 (+1) | 89.39 | 247.71 |
7 | 10 (–1) | 70 (+1) | 75 (+1) | 88.47 | 221.69 |
8 | 30 (+1) | 70 (+1) | 75 (+1) | 92.03 | 257.02 |
9 | 20 (0) | 60 (0) | 50 (0) | 106.58 | 259.94 |
10 | 20 (0) | 60 (0) | 50 (0) | 106.24 | 259.45 |
11 | 20 (0) | 60 (0) | 50 (0) | 105.08 | 255.32 |
12 | 20 (0) | 60 (0) | 50 (0) | 107.90 | 261.73 |
(A) Source TPC | Sum of Squares | DF | Mean Square | F Value | p-Value | Significant |
---|---|---|---|---|---|---|
Model | 1202.81 | 4 | 300.70 | 96.79 | <0.0001 | significant |
A-Solvent-to-plant ratio | 108.25 | 1 | 108.25 | 34.84 | 0.0011 | ** |
B-Temperature | 188.88 | 1 | 188.88 | 60.80 | 0.0002 | *** |
C-Ethanol concentration | 858.45 | 1 | 858.45 | 276.31 | <0.0001 | *** |
BC | 47.23 | 1 | 47.23 | 15.20 | 0.0080 | ** |
Residual | 18.64 | 6 | 3.11 | |||
Lack of Fit | 14.59 | 3 | 4.86 | 3.60 | 0.1604 | not significant |
Pure Error | 4.05 | 3 | 1.35 | |||
Cor Total | 3462.19 | 11 | ||||
R2 | 0.9847 | |||||
Adjusted R2 | 0.9746 | |||||
Predicted R2 | 0.9092 | |||||
Adeq Precision | 40.3683 | |||||
C.V. % | 2.02 | |||||
(B) Source AA | Sum of Squares | DF | Mean Square | F Value | p-value | Significant |
Model | 3957.74 | 3 | 1319.25 | 94.84 | < 0.0001 | significant |
A-Solvent-to-plant ratio | 2874.17 | 1 | 2874.17 | 206.62 | < 0.0001 | *** |
B-Temperature | 628.75 | 1 | 628.75 | 45.20 | 0.0003 | *** |
C-Ethanol concentration | 454.82 | 1 | 454.82 | 32.70 | 0.0007 | *** |
Residual | 97.37 | 7 | 13.91 | |||
Lack of Fit | 75.37 | 4 | 18.84 | 2.57 | 0.2322 | not significant |
Pure Error | 22.00 | 3 | 7.33 | |||
Cor Total | 7326.13 | 11 | ||||
R2 | 0.9760 | |||||
Adjusted R2 | 0.9657 | |||||
Predicted R2 | 0.9160 | |||||
Adeq Precision | 29.3749 | |||||
C.V. % | 1.58 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gavrila, A.I.; Damian, E.J.; Rosca, A.; Calinescu, I.; Hodosan, C.; Popa, I. Optimization of Microwave-Assisted Extraction of Polyphenols from Crataegus monogyna L. Antioxidants 2025, 14, 357. https://doi.org/10.3390/antiox14030357
Gavrila AI, Damian EJ, Rosca A, Calinescu I, Hodosan C, Popa I. Optimization of Microwave-Assisted Extraction of Polyphenols from Crataegus monogyna L. Antioxidants. 2025; 14(3):357. https://doi.org/10.3390/antiox14030357
Chicago/Turabian StyleGavrila, Adina I., Emilia J. Damian, Anca Rosca, Ioan Calinescu, Camelia Hodosan, and Ioana Popa. 2025. "Optimization of Microwave-Assisted Extraction of Polyphenols from Crataegus monogyna L." Antioxidants 14, no. 3: 357. https://doi.org/10.3390/antiox14030357
APA StyleGavrila, A. I., Damian, E. J., Rosca, A., Calinescu, I., Hodosan, C., & Popa, I. (2025). Optimization of Microwave-Assisted Extraction of Polyphenols from Crataegus monogyna L. Antioxidants, 14(3), 357. https://doi.org/10.3390/antiox14030357