Bioactive Compounds, Antioxidant, and Antimicrobial Activity of Seeds and Mucilage of Non-Traditional Cocoas
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Standards
2.2. Physico-Chemical Analyses
Mineral Profile
2.3. Analysis of Bioactive Compounds
2.3.1. Vitamin C
2.3.2. Organic Acid Profile
2.3.3. Carotenoid Profile
2.3.4. Phenol Profile
2.4. Antioxidant Activity Analyses
2.5. Antimicrobial Activity Analyses
2.6. Statistical Analysis
3. Results and Discussion
3.1. Physico-Chemical Characteristics
3.1.1. Weight and Size
3.1.2. pH
3.1.3. Soluble Solids and Titratable Acidity
3.1.4. Moisture and Ash
3.1.5. Minerals
3.2. Analysis of Bioactive Compounds
3.2.1. Vitamin C
3.2.2. Organic Acids
3.2.3. Phenolic Compounds
3.2.4. Carotenoids
3.2.5. Chlorophyll and Derivatives
3.3. Antioxidant Activity Analyses
3.4. Antimicrobial Activity Analyses
3.5. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- POWO. Theobroma L. Available online: https://powo.science.kew.org/taxon/urn:lsid:ipni.org:names:30005713-2 (accessed on 21 October 2024).
- Moreira, J.; Queiroz, E.; Frota, R.; Campelo, P.; Sanches, E.; De Araújo, J. Theobroma spp.: A Review of It’s Chemical and Innovation Potential for the Food Industry. Food Chem. Adv. 2024, 4, 100683. [Google Scholar] [CrossRef]
- Lanaud, C.; Vignes, H.; Utge, J.; Valette, G.; Rhoné, B.; Mariella, G.; Angarita, N.; Fouet, O.; Gaikwad, N.; Zarrillo, S.; et al. A Revisited History of Cacao Domestication in Pre-Columbian Times Revealed by Archaeogenomic Approaches. Sci. Rep. 2024, 14, 2972. [Google Scholar] [CrossRef] [PubMed]
- Sitarek, P.; Merecz-Sadowska, A.; Sikora, J.; Osicka, W.; Śpiewak, I.; Picot, L.; Kowalczyk, T. Exploring the Therapeutic Potential of Theobroma cacao L.: Insights from in Vitro, in Vivo, and Nanoparticle Studies on Anti-Inflammatory and Anticancer Effects. Antioxidants 2024, 13, 1376. [Google Scholar] [CrossRef] [PubMed]
- Singh, M.; Agarwal, S.; Agarwal, M. Rachana Benefits of Theobroma cacao and Its Phytocompounds as Cosmeceuticals. In Plant-Derived Bioactives; Springer: Singapore, 2020; pp. 509–521. [Google Scholar] [CrossRef]
- Tropicos.org. Theobroma Sylvestre. Available online: https://www.tropicos.org/name/30400597 (accessed on 28 August 2024).
- Macías, R.; Guerra, G.; Cunuhay, J.; Santana, J.; Jiménez, W. Comparación de Producción de Seis Variedades de Cacao (Theobroma cacao) En El Centro Experimental Sacha Wiwa. Cienc. Lat. Rev. Científica Multidiscip. 2023, 7, 8112–8123. [Google Scholar] [CrossRef]
- Soares, T.; Oliveira, M. Cocoa By-Products: Characterization of Bioactive Compounds and Beneficial Health Effects. Molecules 2022, 27, 1625. [Google Scholar] [CrossRef] [PubMed]
- WFO. Theobroma cacao L. Available online: https://wfoplantlist.org/taxon/wfo-0000458440-2024-06?page=1 (accessed on 29 October 2024).
- Smith, N. Amazon Fruits: An Ethnobotanical Journey; Voeks, R., Stepp, J., Eds.; Springer Nature Switzerland: Cham, Switzerland, 2023; ISBN 978-3-031-12803-5. [Google Scholar]
- Encinas, J.; Bandini, A.; De Oliveira, L.; Ferreira, G.; Rivas, L.; Da Silva, C.; Pavese, F. Structure and Genetic Diversity of Theobroma speciosum (Malvaceae) and Implications for Brazilian Amazon Conservation. Rodriguesia 2021, 72, e02022018. [Google Scholar] [CrossRef]
- Gonzales, C. Caracterización Fenotípica de Cacao Silvestre (Theobroma speciosum Willd. Ex Spreng.) En Un Sistema Silvopastoril En La Amazonia Peruana, Universidad Nacional Amazónica de Madre de Dios. 2021. Available online: https://repositorio.unamad.edu.pe/handle/20.500.14070/733 (accessed on 15 January 2025).
- Gbif.org. Theobroma subincanum Mart. Available online: https://www.gbif.org/es/species/4939555 (accessed on 30 October 2024).
- fondazioneslowfood.com. Macambillo Cocoa—Arca Del Gusto. Available online: https://www.fondazioneslowfood.com/en/ark-of-taste-slow-food/macambillo-cocoa/ (accessed on 30 October 2024).
- Colli-Silva, M.; Richardson, J.; Bossa-Castro, A.; Pirani, J. Phylogenetic Evidence Reshapes the Taxonomy of Cacao and Its Allies (Theobroma and Herrania; Malvaceae, Byttnerioideae). Brittonia 2024, 76, 53–61. [Google Scholar] [CrossRef]
- Febrianto, N.; Zhu, F. Comparison of Bioactive Components and Flavor Volatiles of Diverse Cocoa Genotypes of Theobroma grandiflorum, Theobroma bicolor, Theobroma subincanum and Theobroma cacao. Food Res. Int. 2022, 161, 111764. [Google Scholar] [CrossRef]
- Pérez, A.; Hernández, C.; Romero, H.; Valencia, R. Herrania Nitida. Available online: https://bioweb.bio/floraweb/arbolesyasuni/FichaEspecie/Herrania.nitida (accessed on 12 October 2024).
- Coyago-Cruz, E.; Guachamin, A.; Villacís, M.; Rivera, J.; Neto, M.; Méndez, G.; Heredia-Moya, J.; Vera, E. Evaluation of Bioactive Compounds and Antioxidant Activity in 51 Minor Tropical Fruits of Ecuador. Foods 2023, 12, 4439. [Google Scholar] [CrossRef] [PubMed]
- Cádiz, M.; Fernández, Á.; Leyva, F.; Guerrero, N.; Villegas, M.; Pimentel, S.; Ramos, F.; Segura, A. LC-MS and Spectrophotometric Approaches for Evaluation of Bioactive Compounds from Peru Cocoa by-Products for Commercial Applications. Molecules 2020, 25, 3177. [Google Scholar] [CrossRef] [PubMed]
- ISO 2173:2003; Fruit and Vegetable Products. Determination of Soluble Solids. Refractometric Method. ISO: Geneva, Switzerland, 2009. Available online: https://www.iso.org/standard/35851.html (accessed on 15 January 2025).
- Coyago-Cruz, E.; Valenzuela, D.; Guachamin, A.; Méndez, G.; Heredia-Moya, J.; Vera, E. Bioactive Compound Profiling and Antioxidant Activity of Phytelephas tenuicaulis and Other Amazonian Fruits. Foods 2024, 13, 2151. [Google Scholar] [CrossRef] [PubMed]
- Berghof-GmbH. Microwave Digestion of Spinach; Berghof-GmbH: Anderungen, Germany, 2023. [Google Scholar]
- Coyago-Cruz, E.; Alarcón, A.; Guachamin, A.; Méndez, G.; Osorio, E.; Heredia-Moya, J.; Zuñiga-Miranda, J.; Beltrán-Sinchiguano, E.; Vera, E. Functional, Antioxidant, Antibacterial, and Antifungal Activity of Edible Flowers. Antioxidants 2024, 13, 1297. [Google Scholar] [CrossRef] [PubMed]
- Coyago, E.; Barrigas, A.; Guachamin, A.; Heredia, J.; Zuñiga, J.; Vera, E. Bioactive Composition of Tropical Flowers and Their Antioxidant and Antimicrobial Properties. Foods 2024, 13, 3766. [Google Scholar] [CrossRef]
- WFO. Theobroma bicolor Bonpl. Available online: https://wfoplantlist.org/taxon/wfo-0000458441-2022-12?page=1 (accessed on 29 October 2024).
- Arrunátegui, A.; Vera, J.; Alvarado, K.; Intriago, F.; Vásquez, L.; Revilla, K.; Aldas, J.; Radice, M.; Naga-Raju, M.; Durazno, L.; et al. Aprovechamiento Del Mucílago de Cacao Mocambo (Theobroma bicolor Hump & Bonpl.) Para La Obtención de Un Néctar. Agroindustrial Sci. 2024, 14, 25–31. [Google Scholar] [CrossRef]
- Steinau, I. Evaluación de La Incidencia de La Fermentación En La Calidad Del Grano de Cacao Trinitario En Caluco, Sonsonate, El Salvador; Universidad de El Salvador: San Salvador, El Salvador, 2017. [Google Scholar]
- Santos, R.; Pires, J.; Correa, R. Morphological Characterization of Leaf, Flower, Fruit and Seed Traits among Brazilian Theobroma L. Species. Genet. Resour. Crop Evol. 2012, 59, 327–345. [Google Scholar] [CrossRef]
- Hernández, M.; Casas, A.; Martínez, O.; Galvis, J. Caracterización fisicoquímica y fisiológica del fruto de maraco (Theobroma bicolor H.B.K.) durante su desarrollo. Agron. Colomb. 1998, 15, 172–180. [Google Scholar]
- Vera-Chang, J.; Vásquez-Cortez, L.; Zapata-Quevedo, K.; Rodríguez-Cevallos, S. Caracterización Morfológica, Fisicoquímica y Microbiológica Del Cacao Macambo (Theobroma bicolor Humb & Bonpl.) En Ecuador. Rev. Agrotecnológica Amaz. 2024, 4, e657. [Google Scholar] [CrossRef]
- Orjuela-Angulo, M.; Camacho-Tamayo, J.; Balaguera-López, H. Cultivation Location and Agrometeorological Conditions Influence Pre-Harvest Variables of Japanese Plum Fruit in the Colombian Tropics. Rev. Bras. Eng. Agrícola E Ambient. 2024, 28, e284789. [Google Scholar] [CrossRef]
- Gálvez, L.; Reyes, A.; Avendaño, C.; Hernández, E.; Mendoza, A.; Díaz, V.H. Pataxte (Theobroma bicolor Humb. & Bonpl.): Especie Subutilizada En México. Agroproductividad 2016, 9, 41–47. [Google Scholar]
- Cruz, P.; Barreto, G.; Lessa, I.; Pereira, L. Theobroma cacao: An Evaluation of Enzyme Treatment with Pectin in the Pulping of Cocoa. J. Bioeng. Technol. Heal. 2023, 5, 257–260. [Google Scholar] [CrossRef]
- Priambodo, D.; Saputro, D.; Pahlawan, M.; Saputro, A.; Masithoh, R. Determination of Acid Level (PH) and Moisture Content of Cocoa Beans at Various Fermentation Level Using Visible Near-Infrared (Vis-NIR) Spectroscopy. IOP Conf. Ser. Earth Environ. Sci. 2022, 985, 012045. [Google Scholar] [CrossRef]
- De-Souza, P.; Moreira, L.; Sarmento, D.; Da-Costa, F. Cacao—Theobroma cacao. Exot. Fruits Ref. Guid. 2018, 3, 69–76. [Google Scholar] [CrossRef]
- Jaime-Guerrero, M.; Álvarez-Herrera, J.; Fischer, G. Effect of Calcium on Fruit Quality: A Review. Agron. Colomb. 2024, 42, 1–14. [Google Scholar] [CrossRef]
- EFSA. Scientific Opinion on Dietary Reference Values for Calcium. EFSA J. 2015, 13, 1–82. [Google Scholar] [CrossRef]
- Huremović, J.; Gojak-Salimović, S.; Huseinbašić, N.; Kapo, D.; Bukva, M. Iron Content in Fruits, Vegetables, Herbs and Spices Samples Marketed in Sarajevo, Bosnia and Herzegovina. Kem. U Ind. 2019, 68, 281–287. [Google Scholar] [CrossRef]
- Saleh, D.; Ahmad, S.; Kareem, S. Determination of the Potassium Content in Fruit Samples by Gamma Spectrometry to Emphasize Its Health Implications. Aro-Sci. J. Koya Univ. 2022, 10, 62–72. [Google Scholar] [CrossRef]
- Kumssa, D.; Joy, E.; Broadley, M. Global Trends (1961–2017) in Human Dietary Potassium Supplies. Nutrients 2021, 13, 1369. [Google Scholar] [CrossRef]
- Cazzola, R.; Della Porta, M.; Manoni, M.; Iotti, S.; Pinotti, L.; Maier, J. Going to the Roots of Reduced Magnesium Dietary Intake: A Tradeoff between Climate Changes and Sources. Heliyon 2020, 6, e05390. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Zhang, J.; Li, Y.; Dong, L.; He, F.; Brown, M.; Pettigrew, S.; Webster, J.; Yamamoto, R.; Nishida, C.; et al. Sodium Content Targets for Pre-Packaged Foods, China: A Quantitative Study and Proposal. Bull. World Health Organ. 2023, 101, 453–469. [Google Scholar] [CrossRef] [PubMed]
- Bravo, A.; Harms, K. The Biogeography of Sodium in Neotropical Figs (Moraceae). Biotropica 2017, 49, 18–22. [Google Scholar] [CrossRef]
- Adamus, J.; Abram, K.; Banás, P.; Pierzchala, J.; Bednarz, K.; Sobánska, N.; Banasiak, A.; Teichman, R.; Kasprowicz, J.; Hyjek, M. New Uses for Vitamin C, and Its Versatile, Pleiotropic Antioxidant Action.—Treatment of Neoplasms, Skin Diseases, Bone Diseases and Stimulation of the Immune System. J. Educ. Heal. Sport 2023, 13, 217–222. [Google Scholar] [CrossRef]
- Pérez-Mora, W.; Jorrin-Novo, J.; Melgarejo, L. Substantial Equivalence Analysis in Fruits from Three Theobroma species through Chemical Composition and Protein Profiling. Food Chem. 2018, 240, 496–504. [Google Scholar] [CrossRef]
- Igamberdiev, A.; Eprintsev, A. Organic Acids: The Pools of Fixed Carbon Involved in Redox Regulation and Energy Balance in Higher Plants. Front. Plant Sci. 2016, 7, 1042. [Google Scholar] [CrossRef]
- Shi, Y.; Pu, D.; Zhou, X.; Zhang, Y. Recent Progress in the Study of Taste Characteristics and the Nutrition and Health Properties of Organic Acids in Foods. Foods 2022, 11, 3408. [Google Scholar] [CrossRef]
- Moselhy, S.; Razvi, S.; ALshibili, F.; Kuerban, A.; Hasan, M.; Balamash, K.; Huwait, E.; Abdulaal, W.; Al-Ghamdi, M.; Kumosani, T.; et al. M-Coumaric Acid Attenuates Non-Catalytic Protein Glycosylation in the Retinas of Diabetic Rats. J. Pestic. Sci. 2018, 43, 180–185. [Google Scholar] [CrossRef] [PubMed]
- Cortez, N.; Villegas, C.; Burgos, V.; Cabrera-Pardo, J.; Ortiz, L.; González-Chavarría, I.; Nchiozem-Ngnitedem, V.; Paz, C. Adjuvant Properties of Caffeic Acid in Cancer Treatment. Int. J. Mol. Sci. 2024, 25, 7631. [Google Scholar] [CrossRef]
- Ganguly, R.; Vardan, S.; Jaiswal, K.; Kumar, R.; Pandey, A. Modulatory Effect of Caffeic Acid in Alleviating Diabetes and Associated Complications. World J. Diabetes 2023, 14, 62–75. [Google Scholar] [CrossRef]
- Herebian, D.; Seibt, A.; Smits, S.; Rodenburg, R.; Mayatepek, E.; Distelmaier, F. 4-Hydroxybenzoic Acid Restores CoQ10 Biosynthesis in Human COQ2 Deficiency. Ann. Clin. Transl. Neurol. 2017, 4, 902–908. [Google Scholar] [CrossRef]
- Martini, M.H.; Lenci, C.G.; Figueira, A.; Tavares, D.D.Q. Localization of the Cotyledon Reserves of Theobroma grandiflorum (Willd. Ex Spreng.) K. Schum., T. subincanum Mart., T. bicolor Bonpl. and Their Analogies with T. cacao L. Braz. J. Bot. 2008, 31, 147–154. [Google Scholar] [CrossRef]
- Martini, M.H.; Figueira, A.; Lenci, C.G.; Tavares, D.D.Q. Polyphenolic Cells and Their Interrelation with Cotyledon Cells in Seven Species of Theobroma (Sterculiaceae). Braz. J. Bot. 2008, 31, 425–431. [Google Scholar] [CrossRef]
- Trapali, M. Lutein in Chronic Diseases: A Mini Review. Rev. Clin. Pharmacol. Pharmacokinet. Int. Ed. 2024, 38, 47–56. [Google Scholar] [CrossRef]
- Guyer, L.; Salinger, K.; Krügel, U.; Hörtensteiner, S. Catalytic and Structural Properties of Pheophytinase, the Phytol Esterase Involved in Chlorophyll Breakdown. J. Exp. Bot. 2018, 69, 879–889. [Google Scholar] [CrossRef] [PubMed]
- Llerena, W.; Samaniego, I.; Vallejo, C.; Arreaga, A.; Zhunio, B.; Coronel, Z.; Quiroz, J.; Angós, I.; Carrillo, W. Profile of Bioactive Components of Cocoa (Theobroma cacao L.) by-Products from Ecuador and Evaluation of Their Antioxidant Activity. Foods 2023, 12, 2583. [Google Scholar] [CrossRef]
- Munguía, L.; Gutiérrez-Salmeán, G.; Hernández, M.; Ortiz, A.; Sánchez, M.; Nájera, N.; Meaney, E.; Rubio-Gayosso, I.; Ceballos, G. Beneficial Effects of a Flavanol-Enriched Cacao Beverage on Anthropometric and Cardiometabolic Risk Profile in Overweight Subjects. Rev. Mex. Cardiol. 2015, 26, 78–86. [Google Scholar]
- Grassi, D.; Mai, F.; De Feo, M.; Barnabei, R.; Carducci, A.; Desideri, G.; Necozione, S.; Allegaert, L.; Bernaert, H.; Ferri, C. Cocoa Consumption Decreases Oxidative Stress, Proinflammatory Mediators and Lipid Peroxidation in Healthy Subjects: A Randomized Placebo-Controlled Dose-Response Clinical Trial. High Blood Press. Cardiovasc. Prev. 2023, 30, 219–225. [Google Scholar] [CrossRef] [PubMed]
- Sadeer, N.; Montesano, D.; Albrizio, S.; Zengin, G.; Mahomoodally, M. The Versatility of Antioxidant Assays in Food Science and Safety—Chemistry, Applications, Strengths, and Limitations. Antioxidants 2020, 9, 709. [Google Scholar] [CrossRef]
- Barba-Ostria, C.; Carrera-Pacheco, S.; Gonzalez-Pastor, R.; Heredia-Moya, J.; Mayorga-Ramos, A.; Rodríguez-Pólit, C.; Zúñiga-Miranda, J.; Arias-Almeida, B.; Guamán, L. Evaluation of Biological Activity of Natural Compounds: Current Trends and Methods. Molecules 2022, 27, 4490. [Google Scholar] [CrossRef] [PubMed]
- Salman, N.; Matar, M.; Lotfy, W.; Darwish, S. A Comparative Study of the Antimicrobial Activity of Cacao Ethanol Extract and Chlorhexidine Digluconate on Salivary Streptococcus Mutans. Egypt. Dent. J. 2024, 70, 2175–2180. [Google Scholar] [CrossRef]
- Paulyn, A.T.; Inya, O.J.; Okewu, A.P. Phytochemical Screening and Antimicrobial Activity of Theobroma cacao on Staphylococcus aureus, Escherichia coli, Samonella spp. and Shigella spp. Int. J. Sch. Res. Chem. Pharm. 2022, 1, 001–010. [Google Scholar] [CrossRef]
- Subramaniam, G.; Khan, G.; Sivasamugham, L.; Wong, L.; Kidd, S.; Yap, C. Antimicrobial and Anti-Biofilm Activities of Plant Extracts against Pseudomonas Aeruginosa—A Review. J. Exp. Biol. Agric. Sci. 2023, 11, 780–790. [Google Scholar] [CrossRef]
- Abdulsahib, N.; Hussein, Y.; Jasim, B. Dissecting Molecular Pathways and Intricate Mechanisms Underpinning Antibiotic Resistance in Gram-Negative Bacteria: An Exhaustive and Integrative Review. Int. J. Health Med. Res. 2024, 03, 687–694. [Google Scholar] [CrossRef]
- Gonzalez-Pator, R.; Carrera-Pacheco, S.; Zúñiga-Miranda, J.; Rodríguez-Pólit, C.; Mayorga-Ramos, A.; Guamán, L.; Barba-Ostria, C.; Gonzalez-Pastor, R.; Carrera-Pacheco, S.; Zúñiga-Miranda, J.; et al. Current Landscape of Methods to Evaluate Antimicrobial Activity of Natural Extracts. Molecules 2023, 28, 1068. [Google Scholar] [CrossRef] [PubMed]
- Bekele, F.; Bidaisee, G.; Allegre, M.; Argout, X.; Fouet, O.; Boccara, M.; Saravanakumar, D.; Bekele, I.; Lanaud, C. Genome-Wide Association Studies and Genomic Selection Assays Made in a Large Sample of Cacao (Theobroma cacao L.) Germplasm Reveal Significant Marker-Trait Associations and Good Predictive Value for Improving Yield Potential. PLoS ONE 2022, 17, e0260907. [Google Scholar] [CrossRef]
- Herrera, R.; Vásquez, S.; Granja, F.; Molina-Müller, M.; Capa-Morocho, M.; Guamán, A. Interacción de Nitrógeno, Fósforo y Potasio Sobre Características Del Suelo, Crecimiento y Calidad de Brotes y Frutos de Cacao En La Amazonía Ecuatoriana. Bioagro 2022, 34, 277–288. [Google Scholar] [CrossRef]
- Garcia-Lozano, M.; Dutta, S.K.; Natarajan, P.; Tomason, Y.; Lopez, C.; Katam, R.; Levi, A.; Nimmakayala, P.; Reddy, U. Transcriptome Changes in Reciprocal Grafts Involving Watermelon and Bottle Gourd Reveal Molecular Mechanisms Involved in Increase of the Fruit Size, Rind Toughness and Soluble Solids. Plant Mol. Biol. 2020, 102, 213–223. [Google Scholar] [CrossRef] [PubMed]
Theobroma subincanum | Theobroma speciosum | Theobroma bicolor | Herrania nitida | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Fruit | ||||||||||||
Weight (g) | 159.1 | ± | 28.5 b | 98.9 | ± | 2.1 c | 2066.7 | ± | 57.7 a | 36.7 | ± | 0.3 d |
Longitudinal diameter (mm) | 78.5 | ± | 18.8 c | 21.8 | ± | 0.9 d | 470.0 | ± | 1.7 a | 93.3 | ± | 0.2 b |
Equatorial diameter (mm) | 65.1 | ± | 3.3 b | 12.4 | ± | 0.2 d | 303.3 | ± | 0.0 a | 47.2 | ± | 0.1 c |
Seeds | ||||||||||||
Weight (g) | 1.9 | ± | 0.1 b | 1.6 | ± | 0.1 c | 5.4 | ± | 0.7 a | 1.2 | ± | 0.0 d |
Longitudinal diameter (cm) | 0.8 | ± | 0.2 b | 0.3 | ± | 0.1 c | 1.9 | ± | 0.1 a | 0.8 | ± | 0.1 b |
Equatorial diameter (cm) | 0.5 | ± | 0.0 c | 0.4 | ± | 0.0 d | 1.6 | ± | 0.2 a | 0.8 | ± | 0.1 b |
Theobroma subincanum | Theobroma speciosum | Theobroma bicolor | Herrania nitida | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mucilage | Seeds | Mucilage | Seeds | Mucilage | Seeds | Mucilage | Seeds | Am | As | ||||||||||||||||||
pH | 5.7 | ± | 0.5 a | 3.7 | ± | 0.0 b | 6.4 | ± | 0.0 a | 3.7 | ± | 0.1 b | 5.5 | ± | 0.1 b | 6.7 | ± | 0.1 a | 4.6 | ± | 0.0 a | 4.2 | ± | 0.0 b | *** | *** | |
Soluble solids (°Brix) | 10.3 | ± | 0.6 a | 9.0 | ± | 1.0 a | 8.9 | ± | 0.6 a | 8.7 | ± | 0.6 a | 7.7 | ± | 1.2 a | 6.0 | ± | 0.0 a | 12.0 | ± | 0.0 | 10.0 | ± | 1.0 | *** | ** | |
Total titratable acidity (%) | 0.6 | ± | 0.1 b | 1.7 | ± | 0.1 a | 0.1 | ± | 0.0 b | 0.7 | ± | 0.1 a | 0.6 | ± | 0.0 a | 0.4 | ± | 0.2 a | 0.5 | ± | 0.2 a | 0.8 | ± | 0.3 a | ** | *** | |
Humidity (%) | 84.0 | ± | 6.4 | 61.8 | ± | 11.5 | 39.5 | ± | 5.6 a | 39.3 | ± | 5.6 a | 96.0 | ± | 0.2 a | 92.7 | ± | 0.4 b | 81.3 | ± | 2.5 a | 37.6 | ± | 5.9 b | *** | *** | |
Ash (%) | 1.4 | ± | 0.2 b | 2.6 | ± | 0.3 a | 1.2 | ± | 0.2 b | 2.5 | ± | 0.5 a | 4.2 | ± | 0.3 a | 1.7 | ± | 0.1 b | 1.2 | ± | 0.2 b | 2.6 | ± | 0.3 a | *** | * | |
Mineral Profile (mg/100 g DW) | Ca | 1304.1 | ± | 35.9 a | 752.1 | ± | 57.6 b | 432.5 | ± | 8.2 a | 126.4 | ± | 10.0 b | 276.4 | ± | 42.0 a | 129.0 | ± | 3.9 b | 321.3 | ± | 2.5 b | 409.3 | ± | 54.7 a | *** | *** |
Fe | 52.4 | ± | 3.9 a | 44.6 | ± | 7.0 a | 46.8 | ± | 4.4 a | 12.7 | ± | 0.3 b | 77.0 | ± | 7.2 a | 14.0 | ± | 0.4 b | 49.7 | ± | 0.8 a | 12.4 | ± | 1.3 b | * | ** | |
K | 1342.6 | ± | 65.5 a | 1229.2 | ± | 68.7 a | 2155.3 | ± | 19.5 a | 1896.6 | ± | 13.8 b | 4595.2 | ± | 162.5 a | 999.7 | ± | 53.3 b | 1523.1 | ± | 17.4 a | 774.4 | ± | 11.4 b | *** | *** | |
Mg | 314.6 | ± | 28.2 a | 382.7 | ± | 0.8 a | 160.7 | ± | 17.0 b | 313.6 | ± | 2.0 a | 250.7 | ± | 39.6 a | 238.7 | ± | 4.0 a | 190.3 | ± | 2.5 b | 280.2 | ± | 4.1 a | * | *** | |
Na | 54.8 | ± | 3.1 a | 59.3 | ± | 1.9 a | 8.8 | ± | 1.9 a | 2.7 | ± | 0.2 b | 54.1 | ± | 2.7 a | 5.2 | ± | 1.3 b | 18.1 | ± | 0.2 a | 16.7 | ± | 3.7 a | *** | *** |
Theobroma subincanum | Theobroma speciosum | Theobroma bicolor | Herrania nitida | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mucilage | Seeds | Mucilage | Seeds | Mucilage | Seeds | Mucilage | Seeds | Am | As | ||||||||||||||||||
Vitamin C (mg/100 g DW) | 3.81 | ± | 0.0 | n | d | 3.9 | ± | 0.1 b | 55.1 | ± | 2.5 a | 70.5 | ± | 1.8 a | 54.4 | ± | 3.6 b | nd | 0.9 | ± | 0.1 | *** | *** | ||||
Organic Acids (mg/100 g DW) | Citric acid | 112.4 | ± | 4.6 b | 425.8 | ± | 43.0 a | 703.2 | ± | 129.1 a | 560.3 | ± | 23.9 a | 1557.9 | ± | 34.4 a | 431.4 | ± | 27.8 b | 120.1 | ± | 12.1 a | 74.8 | ± | 1.8 b | *** | *** |
Malic acid | 1112.8 | ± | 183.3 a | 681.1 | ± | 123.0 a | 2039.4 | ± | 365.8 a | 472.9 | ± | 11.1 b | 24.0 | ± | 1.1 b | 139.0 | ± | 15.0 a | 62.1 | ± | 2.5 a | 16.0 | ± | 0.2 b | ** | ** | |
Tartaric acid | 28.1 | ± | 16.0 a | 43.8 | ± | 8.9 a | 215.0 | ± | 35.7 a | 18.5 | ± | 0.8 b | 115.4 | ± | 8.8 a | 34.8 | ± | 3.3 a | 12.1 | ± | 1.2 a | 3.9 | ± | 0.1 b | ** | ** | |
Total acids | 1253.3 | ± | 203.9 a | 1150.7 | ± | 174.9 a | 2957.6 | ± | 530.5 a | 1051.7 | ± | 35.8 b | 1697.4 | ± | 44.3 a | 605.2 | ± | 16.0 a | 194.3 | ± | 11.5 a | 94.6 | ± | 1.5 b | * | *** | |
Phenolics Profile (mg/100 g DW) | Galic acid | 6.6 | ± | 0.2 a | 6.6 | ± | 0.0 a | 54.8 | ± | 1.3 | 244.8 | ± | 0.6 | 244.4 | ± | 0.9 | *** | *** | |||||||||
4-hydroxybenzoic acid | 54.8 | ± | 0.8 | 2215.1 | ± | 104.0 a | 361.0 | ± | 38.8 b | *** | - | ||||||||||||||||
m-Coumaric acid | 4485.6 | ± | 235.0 | 300.4 | ± | 5.3 | 2792.1 | ± | 114.5 a | 3045.5 | ± | 164.0 a | *** | - | |||||||||||||
Syringic acid | 11.7 | ± | 0.4 b | 21.6 | ± | 1.0 a | - | - | |||||||||||||||||||
Chlorogenic acid | 16.1 | ± | 0.1 b | 37.2 | ± | 3.3 a | 18.7 | ± | 0.2 a | 14.3 | ± | 0.1 b | - | *** | |||||||||||||
Caffeic acid | 75.2 | ± | 6.2 b | 2223.0 | ± | 43.5 a | 6378.0 | ± | 581.5 | - | *** | ||||||||||||||||
Naringenin | 445.1 | ± | 5.2 | - | - | ||||||||||||||||||||||
Ferulic acid | 490.2 | ± | 53.4 | - | - | ||||||||||||||||||||||
Rutin | 38.1 | ± | 2.3 | 42.0 | ± | 0.3 | - | *** | |||||||||||||||||||
Kaempferol | 6.9 | ± | 0.7 | 27.9 | ± | 4.0 | - | - | |||||||||||||||||||
Quercetin glucoside | 7.1 | ± | 0.7 | 13.0 | ± | 0.1 | - | - | |||||||||||||||||||
Quercetin | 6.7 | ± | 0.9 b | 71.9 | ± | 2.8 a | 286.8 | ± | 0.1 | - | *** | ||||||||||||||||
Total phenolics | 5161.0 | ± | 282.8 a | 2398.4 | ± | 39.7 b | 800.4 | ± | 1.4 a | 0.1 | ± | 0.0 b | 5251.9 | ± | 217.8 a | 3406.5 | ± | 202.9 b | 18.7 | ± | 0.2 b | 7006.3 | ± | 578.8 a | *** | ** | |
Carotenoids profile (mg/100 g DW) | Lutein | 0.1 | ± | 0.0 b | 1.1 | ± | 0.1 a | 0.2 | ± | 0.0 | 0.3 | ± | 0.1 b | 3.7 | ± | 0.1 a | 0.1 | ± | 0.0 | 0.1 | ± | 0.0 | ns | *** | |||
Zeaxanthin | 0.6 | ± | 0.0 a | 0.2 | ± | 0.0 b | - | - | |||||||||||||||||||
α-carotene | 0.1 | ± | 0.0 | - | - | ||||||||||||||||||||||
β-carotene | 0.8 | ± | 0.1 | 1.0 | ± | 0.0 | 5.1 | ± | 0.1 | 1.1 | ± | 0.2 | *** | - | |||||||||||||
Total Carotenoids | 0.9 | ± | 0.1 b | 1.1 | ± | 0.1 a | 1.01 | ± | 0.0 a | 0.2 | ± | 0.0 b | 6.0 | ± | 0.0 a | 3.9 | ± | 0.1 b | 0.1 | ± | 0.0 b | 1.3 | ± | 0.2 a | *** | *** | |
Chlorophylls and their derivatives (mg/100 g DW) | Chlorophyll b | 7.8 | ± | 0.1 | 0.4 | ± | 0.1 | 11.5 | ± | 0.4 | 0.1 | ± | 0.0 | - | *** | ||||||||||||
Pheophytin a | 2.5 | ± | 0.0 | - | - | ||||||||||||||||||||||
Pheophytin b | 19.1 | ± | 2.5 | 33.8 | ± | 2.7 | - | * | |||||||||||||||||||
Total chlorophyll | 0.1 | ± | 0.0 | ||||||||||||||||||||||||
Antioxidant activity DDPH (mmol TE/100 g DW) | DPPH | 3.6 | ± | 0.2 a | 3.7 | ± | 0.6 a | 5.8 | ± | 0.5 a | 1.0 | ± | 0.3 b | 2.3 | ± | 0.1 b | 4.5 | ± | 0.2 a | 2.8 | ± | 0.3 b | 3.8 | ± | 0.2 a | *** | *** |
ABTS | 4.9 | ± | 0.4 a | 4.0 | ± | 0.6 b | 5.7 | ± | 0.6 a | 1.3 | ± | 0.2 b | 3.3 | ± | 0.2 b | 5.7 | ± | 0.2 a | 3.9 | ± | 0.5 a | 3.9 | ± | 0.4 a | *** | *** |
Zone of Inhibition (mm) | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Theobroma subincanum | Theobroma speciosum | Theobroma bicolor | Herrania nitida | Control | ||||||||||||||||
Mucilage | Seeds | Mucilage | Seeds | Mucilage | Seeds | Mucilage | Seeds | |||||||||||||
Bacterial strain | E. coli ATCC 8739 | - | - | - | - | - | - | - | - | 25.3 | ± | 1.3 | ||||||||
S. aureus ATCC 6538P | 17.0 | ± | 0.0 | 13.0 | ± | 1.4 | - | - | - | 17.5 | ± | 0.7 | - | - | 27.0 | ± | 2.2 | |||
P. aeruginosa ATCC 9027 | - | - | - | - | - | - | - | - | 24.5 | ± | 1.3 | |||||||||
S. mutans ATCC 25175 | 17.0 | ± | 1.4 | - | - | - | - | 16.0 | ± | 0.0 | - | - | 30.3 | ± | 1.0 | |||||
Fungal strain | C. albicans ATCC 1031 | - | - | - | - | - | 10.0 | ± | 0.0 | - | - | 11.0 | ± | 0.5 | ||||||
C. tropicalis ATCC 13803 | - | - | - | - | - | - | - | - | 17.0 | ± | 1.9 |
Minimum Inhibitory Concentration (mg/mL) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
S. aureus ATCC 6538P | S. mutans ATCC 25175 | C. albicans ATCC 1031 | ||||||||
Theobroma subincanum | Mucilage | 37.5 | ± | 0.0 | 37.5 | ± | 0.0 | |||
Seeds | 18.8 | ± | 0.0 | |||||||
Theobroma bicolor | Seeds | 19.1 | ± | 0.4 | 75.0 | ± | 0.0 | 75.0 | ± | 0.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Coyago-Cruz, E.; Salazar, I.; Guachamin, A.; Alomoto, M.; Cerna, M.; Mendez, G.; Heredia-Moya, J.; Vera, E. Bioactive Compounds, Antioxidant, and Antimicrobial Activity of Seeds and Mucilage of Non-Traditional Cocoas. Antioxidants 2025, 14, 299. https://doi.org/10.3390/antiox14030299
Coyago-Cruz E, Salazar I, Guachamin A, Alomoto M, Cerna M, Mendez G, Heredia-Moya J, Vera E. Bioactive Compounds, Antioxidant, and Antimicrobial Activity of Seeds and Mucilage of Non-Traditional Cocoas. Antioxidants. 2025; 14(3):299. https://doi.org/10.3390/antiox14030299
Chicago/Turabian StyleCoyago-Cruz, Elena, Iván Salazar, Aida Guachamin, Melany Alomoto, Marco Cerna, Gabriela Mendez, Jorge Heredia-Moya, and Edwin Vera. 2025. "Bioactive Compounds, Antioxidant, and Antimicrobial Activity of Seeds and Mucilage of Non-Traditional Cocoas" Antioxidants 14, no. 3: 299. https://doi.org/10.3390/antiox14030299
APA StyleCoyago-Cruz, E., Salazar, I., Guachamin, A., Alomoto, M., Cerna, M., Mendez, G., Heredia-Moya, J., & Vera, E. (2025). Bioactive Compounds, Antioxidant, and Antimicrobial Activity of Seeds and Mucilage of Non-Traditional Cocoas. Antioxidants, 14(3), 299. https://doi.org/10.3390/antiox14030299