Alterations in the IGF-System and Antioxidant Biomarkers in Young Brazilian Adults with Type 1 Diabetes: An Analysis of Cardiovascular Risk Factors
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Subjects
2.2. HPLC Analysis of CoQ10 and Vitamin E
2.3. Analysis of Lipids and Oxidative Stress Biomarkers
2.4. IGF-I and IFBP-1 Analysis
2.5. Statistical Analysis
3. Results
3.1. Clinical Characteristics of Participants
3.2. Antioxidant Status and Oxidative Stress Markers Glutaredoxin Activity and Oxidized LDL
3.3. Coenzyme Q10 and Vitamin E
3.4. Lipid and Glucose Profiles
3.4.1. HDL and LDL
3.4.2. Cholesterol and Triglycerides
3.4.3. Apolipoproteins
3.4.4. Glycemic Control
3.5. IGF-I and IGFBP-1 Concentrations
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Giacco, F.; Brownlee, M. Oxidative Stress and Diabetic Complications. Circ. Res. 2010, 107, 1058–1070. [Google Scholar] [CrossRef]
- Oguntibeju, O.O. Type 2 Diabetes Mellitus, Oxidative Stress and Inflammation: Examining the Links. Int. J. Physiol. Pathophysiol. Pharmacol. 2019, 11, 45–63. [Google Scholar]
- Johansen, J.S.; Harris, A.K.; Rychly, D.J.; Ergul, A. Oxidative Stress and the Use of Antioxidants in Diabetes: Linking Basic Science to Clinical Practice. Cardiovasc. Diabetol. 2005, 4, 5. [Google Scholar] [CrossRef] [PubMed]
- Brownlee, M. The Pathobiology of Diabetic Complications: A Unifying Mechanism. Diabetes 2005, 54, 1615–1625. [Google Scholar] [CrossRef] [PubMed]
- Maddux, B.A.; See, W.; Lawrence, J.C.; Goldfine, A.L. Protection against Oxidative Stress–Induced Insulin Resistance in Rat L6 Muscle Cells by Micromolar Concentrations of α-Lipoic Acid. Drug Discov. Today Ther. Strateg. 2008, 5, 13–19. [Google Scholar] [CrossRef]
- Vekic, J.; Stromsnes, K.; Mazzalai, S.; Zeljkovic, A.; Rizzo, M.; Gambini, J. Oxidative Stress, Atherogenic Dyslipidemia, and Cardiovascular Risk. Int. J. Mol. Sci. 2023, 24, 2897. [Google Scholar] [CrossRef]
- Walldius, G.; Jungner, I. The ApoB/ApoA-I Ratio: A Strong, New Risk Factor for Cardiovascular Disease and a Target for Lipid-Lowering Therapy. J. Intern. Med. 2006, 259, 493–507. [Google Scholar] [CrossRef]
- Lushchak, V.I. Adaptive response to oxidative stress: Bacteria, fungi, plants and animals. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2011, 153, 175–190. [Google Scholar] [CrossRef]
- Menke, T.; Niklowitz, P.; Wiesel, T.; Andler, W. Antioxidant level and redox status of coenzyme Q10 in the plasma and blood cells of children with diabetes mellitus type 1. Pediatr. Diabetes 2008, 9, 540–545. [Google Scholar] [CrossRef] [PubMed]
- Bentinger, M.; Brismar, K.; Dallner, G. The antioxidant role of coenzyme Q. Mitochondrion 2007, 7, S41–S50. [Google Scholar] [CrossRef]
- Traber, M.G.; Atkinson, J. Vitamin E, Antioxidant and Nothing More. Free Radic. Biol. Med. 2007, 43, 4–15. [Google Scholar] [CrossRef]
- Lillig, C.H.; Berndt, C.; Holmgren, A. Glutaredoxin Systems. Biochim. Biophys. Acta 2008, 1780, 1304–1317. [Google Scholar] [CrossRef]
- Allen, E.M.; Mieyal, J.J. Protein-Thiol Oxidation and Cell Death: Regulatory Role of Glutaredoxins. Antioxid. Redox Signal 2012, 17, 1748–1763. [Google Scholar] [CrossRef]
- Montano, S.J.; Grünler, J.; Nair, D.; Tekle, M.; Fernandes, A.P.; Hua, X.; Holmgren, A.; Brismar, K.; Ungerstedt, J.S. Glutaredoxin Mediated Redox Effects of Coenzyme Q10 Treatment in Type 1 and Type 2 Diabetes Patients. BBA Clin. 2015, 4, 14–20. [Google Scholar] [CrossRef]
- Livingstone, C.; Borai, A. Insulin-like Growth Factor-I (IGF-I) and Its Role in the Pathogenesis and Management of Type 1 Diabetes. Diabetes Metab. Res. Rev. 2014, 30, 499–511. [Google Scholar] [CrossRef]
- Clemmons, D.R. Metabolic Actions of Insulin-like Growth Factor-I in Normal Physiology and Diabetes. Endocrinol. Metab. Clin. North Am. 2012, 41, 425–443. [Google Scholar] [CrossRef]
- Nyomba, B.L.; Berard, L.; Murphy, L.J. Free insulin-like growth factor I (IGF-I) in healthy subjects: Relationship with IGF-binding proteins and insulin sensitivity. J. Clin. Endocrinol. Metab. 1997, 82, 2177–2181. [Google Scholar] [CrossRef] [PubMed]
- Shapiro, M.R.; Wasserfall, C.H.; McGrail, S.M.; Posgai, A.L.; Bacher, R.; Muir, A.; Haller, M.J.; Schatz, D.A.; Wesley, J.D.; von Herrath, M.; et al. Insulin-like Growth Factor Dysregulation Both Preceding and Following Type 1 Diabetes Diagnosis. Diabetes 2020, 69, 413–423. [Google Scholar] [CrossRef] [PubMed]
- Ekman, B.; Nyström, F.; Arnqvist, H.J. Circulating IGF-I Concentrations Are Low and Not Correlated to Glycaemic Control in Adults with Type 1 Diabetes. Eur. J. Endocrinol. 2000, 143, 505–510. [Google Scholar] [CrossRef] [PubMed]
- Giannini, C.; Mohn, A.; Chiarelli, F. Growth Abnormalities in Children with Type 1 Diabetes, Juvenile Chronic Arthritis, and Asthma. Int. J. Endocrinol. 2014, 2014, 265954. [Google Scholar] [CrossRef] [PubMed]
- Rajpathak, S.N.; Gunter, M.J.; Wylie-Rosett, J.; Ho, G.Y.F.; Kaplan, R.C.; Muzumdar, R.; Rohan, T.E.; Strickler, H.D. The role of insulin-like growth factor-I and its binding proteins in glucose homeostasis and type 2 diabetes. Diabetes Metab. Res. Rev. 2009, 25, 3–12. [Google Scholar] [CrossRef]
- Sharma, A.; Purohit, S.; Sharma, S.; Bai, S.; Zhi, W.; Ponery, S.R.; Hopkins, D.; Steed, L.; Bode, B.; Anderson, S.W.; et al. IGF-binding proteins in type-1 diabetes are more severely altered in the presence of complications. Front. Endocrinol. 2016, 7, 2. [Google Scholar] [CrossRef]
- Jehlé, P.M.; Jehlé, D.R.; Mohan, S.; Böhm, B.O. Serum levels of insulin-like growth factor system components and relationship to bone metabolism in Type 1 and Type 2 diabetes mellitus patients. J. Endocrinol. 1998, 159, 297–306. [Google Scholar] [CrossRef]
- Crosby, S.R.; Tsigos, C.; Anderton, C.D.; Gordon, C.; Young, R.J.; White, A. Elevated plasma insulin-like growth factor binding protein-1 levels in type 1 (insulin-dependent) diabetic patients with peripheral neuropathy. Diabetologia 1992, 35, 868–872. [Google Scholar] [CrossRef] [PubMed]
- Clemmons, D.R. Role of IGF binding proteins in regulating IGF responses to changes in metabolism. J. Mol. Endocrinol. 2018, 61, T139–T169. [Google Scholar] [CrossRef]
- Huang, Y.; Chang, Y. Regulation of pancreatic islet beta-cell mass by growth factor and hormone signaling. Prog. Mol. Biol. Transl. Sci. 2014, 121, 321–349. [Google Scholar] [CrossRef]
- Katz, L.E.; DeLeon, D.D.; Zhao, H.; Jawad, A.F. Free and total insulin-like growth factor (IGF)-I levels decline during fasting: Relationships with insulin and IGF-binding protein-1. J. Clin. Endocrinol. Metab. 2002, 87, 2978–2983. [Google Scholar] [CrossRef] [PubMed]
- Jones, J.I.; Clemmons, D.R. Cellular Actions of the Insulin-Like Growth Factor Binding Proteins. Endocr. Rev. 2002, 23, 824–854. [Google Scholar] [CrossRef] [PubMed]
- Theuri, G.; Brismar, K.; Dallner, G.; Tekle, M. Effects of lifestyle on plasma levels of the IGF-system and the antioxidants coenzyme Q10 and vitamin E in Kenyan rural and urban populations. Growth Horm. IGF Res. 2013, 23, 68–75. [Google Scholar] [CrossRef]
- Alehagen, U.; Johansson, P.; Aaseth, J.; Alexander, J.; Brismar, K. Increase in insulin-like growth factor 1 (IGF-1) and insulin-like growth factor binding protein 1 after supplementation with selenium and coenzyme Q10. A prospective randomized double-blind placebo-controlled trial among elderly Swedish citizens. PLoS ONE 2017, 12, e0178614. [Google Scholar] [CrossRef]
- Allain, C.C.; Poon, L.S.; Chan, C.S.; Richmond, W.; Fu, P.C. Enzymatic determination of total serum cholesterol. Clin. Chem. 1974, 20, 470–475. [Google Scholar] [CrossRef]
- Brustolin, D.; Maierna, M.; Aguzzi, F.; Zoppi, F.; Tarenghi, G. Immunoturbidimetric method for routine determination of apolipoproteins A-I and B. Clin. Chem. 1991, 37, 742–747. [Google Scholar] [CrossRef]
- Du, Y.; Zhang, H.; Zhang, X.; Lu, J.; Miao, J.; Zhang, Q. Plasma glutaredoxin activity in healthy subjects and patients with abnormal glucose levels or overt type 2 diabetes. Acta Diabetol. 2014, 51, 225–232. [Google Scholar] [CrossRef]
- Póvoa, G.; Roovete, A.; Hall, K. Cross-reaction of serum somatomedin-binding protein in a radioimmunoassay developed for somatomedin binding protein isolated from human amniotic fluid. Acta Endocrinol. 1984, 107, 563–570. [Google Scholar] [CrossRef]
- Eklund, E.; Hellberg, A.; Berglund, B.; Brismar, K.; Lindén Hirschberg, A.L. IGF-I and IGFBP-1 in Relation to Body Composition and Physical Performance in Female Olympic Athletes. Front. Endocrinol. 2021, 12, 708421. [Google Scholar] [CrossRef]
- McQueen, M.J.; Hawken, S.; Wang, X.; Ounpuu, S.; Sniderman, A.; Probstfield, J.; Steyn, K.; Sanderson, J.E.; Hasani, M.; Volkova, E.; et al. Lipids, lipoproteins, and apolipoproteins as risk markers of myocardial infarction in 52 countries (the INTERHEART study): A case-control study. Lancet 2008, 372, 224–233. [Google Scholar] [CrossRef] [PubMed]
- Sniderman, A.D.; St-Pierre, A.C.; Cantin, B.; Dagenais, G.R.; Després, J.P.; Lamarche, B. Apolipoprotein B, apolipoprotein A-I, lipoprotein(a), and risk of coronary heart disease in the Québec Cardiovascular Study. Circulation 2003, 108, 2312–2319. [Google Scholar]
- Kostopoulou, E.; Kalaitzopoulou, E.; Papadea, P.; Skipitari, M.; Rojas Gil, A.P.; Spiliotis, B.E.; Georgiou, C.D. Oxidized lipid-associated protein damage in children and adolescents with type 1 diabetes mellitus: New diagnostic/prognostic clinical markers. Pediatr. Diabetes 2021, 22, 1135–1142. [Google Scholar] [CrossRef] [PubMed]
- Erciyas, F.; Taneli, F.; Arslan, B.; Uslu, Y. Glycemic control, oxidative stress, and lipid profile in children with type 1 diabetes mellitus. Arch. Med. Res. 2004, 35, 134–140. [Google Scholar] [CrossRef]
- Maahs, D.M.; Ogden, L.G.; Snell-Bergeon, J.K.; Kinney, G.L.; Wadwa, R.P.; Hokanson, J.E.; Dabelea, D.; Kretowski, A.; Eckel, R.H.; Rewers, M. Determinants of serum adiponectin in persons with and without type 1 diabetes. Am. J. Epidemiol. 2007, 166, 731–740. [Google Scholar] [CrossRef]
- Pang, T.T.L.; Chimen, M.; Goble, E.; Dixon, N.; Benbow, A.; Eldershaw, S.E.; Thompson, D.; Gough, S.C.L.; Narendran, P. Inhibition of islet immunoreactivity by adiponectin is attenuated in human type 1 diabetes. J. Clin. Endocrinol. Metab. 2013, 98, E418–E426. [Google Scholar] [CrossRef] [PubMed]
- American Diabetes Association Professional Practice Committee. 10. Cardiovascular Disease and Risk Management: Standards of Medical Care in Diabetes—2024. Diabetes Care 2024, 47, S179–S218. [Google Scholar] [CrossRef] [PubMed]
- Miller, R.G.; Orchard, T.J.; Costacou, T. Joint 30-year HbA1c and lipid trajectories and mortality in type 1 diabetes. Diabetes Res. Clin. Pract. 2022, 185, 109787. [Google Scholar] [CrossRef] [PubMed]
- Forbes, J.M.; Cooper, M.E. Mechanisms of Diabetic Complications. Physiol. Rev. 2013, 93, 137–188. [Google Scholar] [CrossRef]
- Gu, T.; Falhammar, H.; Gu, H.F.; Brismar, K. Epigenetic Regulation of the IGF System in Type 1 Diabetes. Exp. Clin. Endocrinol. Diabetes 2017, 125, 8–14. [Google Scholar] [CrossRef]


| Characteristic | T1DM Group (n = 129) | Control Group (n = 95) | p-Value |
|---|---|---|---|
| Age (years) | 26.97 ± 0.70 | 27.35 ± 0.68 | p < 0.721 |
| Sex (% Female) | 76 (58.9%) | 61 (64.2%) | p < 0.42 |
| Diabetes duration (years) | 11.24 ± 6.67 | - | - |
| HbA1c (%) | 9.18 ± 0.18 | 5.20 ± 0.035 | p < 0.0001 |
| T1DM Group (n = 129) | Control Group (n = 95) | p-Value | |
|---|---|---|---|
| Grx Activity (ng/mL) | 13.21 ± 0.66 | 7.59 ± 0.45 | p < 0.0001 |
| ox-LDL (mU/L) | 29.9 ± 7.26 | 18.82 ± 4.46 | p < 0.0002 |
| Coenzyme Q10 (µmol/L) | 2.12 ± 0.25 | 1.67 ± 0.16 | p < 0.139 |
| Vitamin E (µmol/L) | 55.28 ± 9.38 | 69.0 ± 13.33 | p < 0.404 |
| T1DM Group | Control Group | p-Value | |
|---|---|---|---|
| Glycaemic Control | (n = 129) | (n = 95) | |
| HbA1c (%) | 9.18 ± 0.18 | 5.20 ± 0.035 | p < 0.0001 |
| Lipid Profile | |||
| Total Cholesterol (mmol/L) | 3.89 ± 0.16 | 3.41 ± 0.13 | p < 0.0209 |
| HDL (mmol/L) | 1.28 ± 0.046 | 0.93 ± 0.035 | p < 0.0001 |
| LDL (mmol/L) | 1.95 ± 0.11 | 1.85 ± 0.10 | p < 0.4784 |
| Triglycerides (mmol/L) | 1.40 ± 0.072 | 1.43 ± 0.14 | p < 0.8408 |
| Atherogenic Indices | |||
| LDL/HDL ratio | 1.52 ± 0.07 | 1.98 ± 0.072 | p < 0.0001 |
| ApoB/ApoA1 ratio | 0.46 ± 0.018 | 0.53 ± 0.027 | p < 0.0316 |
| Apolipoproteins | |||
| ApoA1 (g/L) | 1.74 ± 0.06 | 1.72 ± 0.07 | p < 0.8373 |
| ApoB (g/L) | 0.91 ± 0.042 | 0.77 ± 0.032 | p < 0.0103 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tekle, M.; Rassi, D.M.; Donadi, E.A.; Grunler, J.; Dallner, G.; Forsberg, E.; Brismar, K. Alterations in the IGF-System and Antioxidant Biomarkers in Young Brazilian Adults with Type 1 Diabetes: An Analysis of Cardiovascular Risk Factors. Antioxidants 2025, 14, 1514. https://doi.org/10.3390/antiox14121514
Tekle M, Rassi DM, Donadi EA, Grunler J, Dallner G, Forsberg E, Brismar K. Alterations in the IGF-System and Antioxidant Biomarkers in Young Brazilian Adults with Type 1 Diabetes: An Analysis of Cardiovascular Risk Factors. Antioxidants. 2025; 14(12):1514. https://doi.org/10.3390/antiox14121514
Chicago/Turabian StyleTekle, Michael, Diane Meyre Rassi, Eduardo Antonio Donadi, Jacob Grunler, Gustav Dallner, Elisabete Forsberg, and Kerstin Brismar. 2025. "Alterations in the IGF-System and Antioxidant Biomarkers in Young Brazilian Adults with Type 1 Diabetes: An Analysis of Cardiovascular Risk Factors" Antioxidants 14, no. 12: 1514. https://doi.org/10.3390/antiox14121514
APA StyleTekle, M., Rassi, D. M., Donadi, E. A., Grunler, J., Dallner, G., Forsberg, E., & Brismar, K. (2025). Alterations in the IGF-System and Antioxidant Biomarkers in Young Brazilian Adults with Type 1 Diabetes: An Analysis of Cardiovascular Risk Factors. Antioxidants, 14(12), 1514. https://doi.org/10.3390/antiox14121514
