Mechanism of Growth Phase-Dependent Nanoplastic Bioaccumulation in Tetrahymena thermophila
Abstract
1. Introduction
2. Materials and Methods
2.1. T. thermophila Culture and Chemicals
2.2. Acute Toxicity and Oxidative Stress Assays
2.3. PSNPs Uptake by Different Growth Phases of T. thermophila
2.4. High-Resolution Microscopy Imaging
2.5. Proteomic and Transcriptomic Analysis
2.6. Molecular Docking
2.7. Statistical Analysis
3. Results and Discussion
3.1. Physicochemical Properties of the PSNPs
3.2. PSNP Uptake by T. thermophila as Affected by Growth Stage
3.3. Antioxidant Capacity of T. thermophila at Different Growth Stages
3.4. Proteomic and Transcriptomic Analysis of T. thermophila at Different Growth Stages
3.5. Identification of Key Functional Proteins
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cai, H.; Xu, E.G.; Du, F.; Li, R.; Liu, J.; Shi, H. Analysis of environmental nanoplastics: Progress and challenges. Chem. Eng. J. 2021, 410, 128208. [Google Scholar] [CrossRef]
- Kiran, B.R.; Kopperi, H.; Venkata Mohan, S. Micro/nano-plastics occurrence, identification, risk analysis and mitigation: Challenges and perspectives. Rev. Environ. Sci. Bio/Technol. 2022, 21, 169–203. [Google Scholar] [CrossRef]
- Chen, Y.; Xu, H.; Luo, Y.; Ding, Y.; Huang, J.; Wu, H.; Han, J.; Du, L.; Kang, A.; Jia, M.; et al. Plastic bottles for chilled carbonated beverages as a source of microplastics and nanoplastics. Water Res. 2023, 242, 120243. [Google Scholar] [CrossRef] [PubMed]
- Martin, L.M.A.; Gan, N.; Wang, E.; Merrill, M.; Xu, W. Materials, surfaces, and interfacial phenomena in nanoplastics toxicology research. Environ. Pollut. 2022, 292, 118442. [Google Scholar] [CrossRef]
- Zhang, M.; Xu, L. Transport of micro- and nanoplastics in the environment: Trojan-Horse effect for organic contaminants. Crit. Rev. Environ. Sci. Technol. 2022, 52, 810–846. [Google Scholar] [CrossRef]
- Vagner, M.; Boudry, G.; Courcot, L.; Vincent, D.; Dehaut, A.; Duflos, G.; Huvet, A.; Tallec, K.; Zambonino-Infante, J.L. Experimental evidence that polystyrene nanoplastics cross the intestinal barrier of European seabass. Environ. Int. 2022, 166, 107340. [Google Scholar] [CrossRef]
- Monikh, F.A.; Lehtonen, Š.; Kekäläinen, J.; Karkossa, I.; Auriola, S.; Schubert, K.; Zanut, A.; Peltonen, S.; Niskanen, J.; Bandekar, M.; et al. Biotransformation of nanoplastics in human plasma and their permeation through a model in vitro blood-brain barrier: An in-depth quantitative analysis. Nano Today 2024, 59, 102466. [Google Scholar] [CrossRef]
- Maity, S.; Pramanick, K. Perspectives and challenges of micro/nanoplastics-induced toxicity with special reference to phytotoxicity. Glob. Change Biol. 2020, 26, 3241–3250. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.-X.; Wang, M.; Yang, L.; Pan, K.; Miao, A.-J. Bioaccumulation of differently-sized polystyrene nanoplastics by human lung and intestine cells. J. Hazard. Mater. 2022, 439, 129585. [Google Scholar] [CrossRef] [PubMed]
- Kim, L.; Cui, R.; Il Kwak, J.; An, Y.-J. Trophic transfer of nanoplastics through a microalgae–crustacean–small yellow croaker food chain: Inhibition of digestive enzyme activity in fish. J. Hazard. Mater. 2022, 440, 129715. [Google Scholar] [CrossRef]
- Sendra, M.; Staffieri, E.; Yeste, M.P.; Moreno-Garrido, I.; Gatica, J.M.; Corsi, I.; Blasco, J. Are the primary characteristics of polystyrene nanoplastics responsible for toxicity and ad/absorption in the marine diatom Phaeodactylum tricornutum? Environ. Pollut. 2019, 249, 610–619. [Google Scholar] [CrossRef] [PubMed]
- Gigault, J.; El Hadri, H.; Nguyen, B.; Grassl, B.; Rowenczyk, L.; Tufenkji, N.; Feng, S.; Wiesner, M. Nanoplastics are neither microplastics nor engineered nanoparticles. Nat. Nanotechnol. 2021, 16, 501–507. [Google Scholar] [CrossRef] [PubMed]
- Rees, P.; Wills, J.W.; Brown, M.R.; Barnes, C.M.; Summers, H.D. The origin of heterogeneous nanoparticle uptake by cells. Nat. Commun. 2019, 10, 2341. [Google Scholar] [CrossRef] [PubMed]
- Gustafson, H.H.; Holt-Casper, D.; Grainger, D.W.; Ghandehari, H. Nanoparticle uptake: The phagocyte problem. Nano Today 2015, 10, 487–510. [Google Scholar] [CrossRef]
- Kim, J.A.; Åberg, C.; Salvati, A.; Dawson, K.A. Role of cell cycle on the cellular uptake and dilution of nanoparticles in a cell population. Nat. Nanotechnol. 2012, 7, 62–68. [Google Scholar] [CrossRef]
- Hu, G.L.; Cun, X.L.; Ruan, S.B.; Shi, K.R.; Wang, Y.; Kuang, Q.F.; Hu, C.; Xiao, W.; He, Q.; Gao, H.L. Utilizing G2/M retention effect to enhance tumor accumulation of active targeting nanoparticles. Sci. Rep. 2016, 6, 27669. [Google Scholar] [CrossRef]
- Zhang, K.-D.; Zhang, H.-J.; Song, J.-L.; Wang, X.-L.; Pan, W.; Wang, M.; Huang, B.; Yang, L.; Miao, A.-J. Organic matter excreted by the protozoan Tetrahymena thermophila and its effects on the bioaccumulation of nanoparticles. J. Hazard. Mater. 2024, 480, 135972. [Google Scholar] [CrossRef]
- Olive, M.; Moerman, F.; Fernandez-Cassi, X.; Altermatt, F.; Kohn, T. Removal of Waterborne Viruses by Tetrahymena pyriformis Is Virus-Specific and Coincides with Changes in Protist Swimming Speed. Environ. Sci. Technol. 2022, 56, 4062–4070. [Google Scholar] [CrossRef]
- ISO/TS 4988:2022; Nanotechnologies — Toxicity Assessment and Bioassimilation of Manufactured Nano-Objects in Suspension Using the Unicellular Organism Tetrahymena sp. ISO: Geneva, Switzerland, 2022.
- Kohl-Chandramohan, J.; Schweikert, M.; Junginger, T.; Hartenbach, I.; Lemloh, M.-L. A common process of bioaccumulation of rare earth elements, iron, and aluminium in three Tetrahymena species. Ecotoxicol. Environ. Saf. 2025, 302, 118604. [Google Scholar] [CrossRef]
- Yu, X.; Zhang, Z.; Wang, H. Global classification model for acute toxicity of organic compounds towards Tetrahymena pyriformis. Process Saf. Environ. Prot. 2024, 192, 1221–1227. [Google Scholar] [CrossRef]
- Vasseur, D.A.; Fox, J.W. Phase-locking and environmental fluctuations generate synchrony in a predator–prey community. Nature 2009, 460, 1007–1010. [Google Scholar] [CrossRef]
- Liu, L.-F.; Yu, J.; Jiang, Y.; Liu, Q.; Jiang, Y.; Chen, R.; Yang, G.-P.; Song, X.-R. Size-dependent influences of nano- and micro-plastics exposure on feeding, antioxidant systems, and organic sulfur compounds in ciliate Uronema marinum. Environ. Pollut. 2024, 360, 124653. [Google Scholar] [CrossRef]
- Cui, Y.H.; Shi, Q.S.; Zhang, D.D.; Wang, L.L.; Feng, J.; Chen, Y.W.; Xie, X.B. Detoxification of ionic liquids using glutathione, cysteine, and NADH: Toxicity evaluation by Tetrahymena pyriformis. Environ. Pollut. 2021, 276, 116725. [Google Scholar] [CrossRef]
- Zhai, Y.; Guo, W.; Li, D.; Chen, B.; Xu, X.; Cao, X.; Zhao, L. Size-dependent influences of nanoplastics on microbial consortium differentially inhibiting 2, 4-dichlorophenol biodegradation. Water Res. 2024, 249, 121004. [Google Scholar] [CrossRef]
- Han, C.; Shi, C.; Liu, L.; Han, J.; Yang, Q.; Wang, Y.; Li, X.; Fu, W.; Gao, H.; Huang, H.; et al. Majorbio Cloud 2024: Update single-cell and multiomics workflows. iMeta 2024, 3, e217. [Google Scholar] [CrossRef]
- Kim, D.; Langmead, B.; Salzberg, S.L. HISAT: A fast spliced aligner with low memory requirements. Nat. Methods 2015, 12, 357–360. [Google Scholar] [CrossRef]
- Guo, W.B.; Wu, C.; Pan, K.; Yang, L.Y.; Miao, A.J. Pre-exposure to Fe2O3 or TiO2 Nanoparticles Inhibits Subsequent Biological Uptake of 55Fe-Labeled Fe2O3 Nanoparticles. Environ. Sci. Technol. 2023, 57, 4831–4840. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Guo, W.B.; Liu, Y.Y.; Yang, L.Y.; Miao, A.J. Perturbation of calcium homeostasis and multixenobiotic resistance by nanoplastics in the ciliate Tetrahymena thermophila. J. Hazard. Mater. 2021, 403, 123923. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.; Zhu, K.; Song, W.; Song, G.; Chen, D.; Hayat, T.; Alharbi, N.S.; Chen, C.; Sun, Y. Impact of water chemistry on surface charge and aggregation of polystyrene microspheres suspensions. Sci. Total Environ. 2018, 630, 951–959. [Google Scholar] [CrossRef]
- Guo, W.B.; Ma, X.Y.; Yu, H.Y.; Song, T.S.; Li, Z.C.; Qiu, H.; Cao, X.D.; Zhao, L. Nanoplastics pre-exposure to microbial consortium influencing their ability to degrade pollutants: “Stagnation effect” and “Self-recovery”. Water Res. 2025, 282, 123642. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Fang, H.-T.; Tan, Q.-G.; Ji, R.; Miao, A.-J. Size-Dependent Toxicity of Polystyrene Nanoplastics to Tetrahymena thermophila: A Toxicokinetic–Toxicodynamic Assessment. Environ. Sci. Technol. 2025, 59, 10194–10203. [Google Scholar] [CrossRef] [PubMed]
- Guan, R.; Wang, W.X. Cd and Zn uptake kinetics in Daphnia magna in relation to Cd exposure history. Environ. Sci. Technol. 2004, 38, 6051–6058. [Google Scholar] [CrossRef]
- Huang, B.; Yan, S.; Xiao, L.; Ji, R.; Yang, L.; Miao, A.J.; Wang, P. Label-Free imaging of nanoparticle uptake competition in single cells by hyperspectral stimulated raman scattering. Small 2018, 14, 1703246. [Google Scholar] [CrossRef]
- Briguglio, J.S.; Turkewitz, A.P. Tetrahymena thermophila: A divergent perspective on membrane traffic. J. Exp. Zool. Part B-Mol. Dev. Evol. 2014, 322, 500–516. [Google Scholar] [CrossRef]
- Heng, B.C.; Zhao, X.X.; Xiong, S.J.; Ng, K.W.; Boey, F.Y.C.; Loo, J.S.C. Cytotoxicity of zinc oxide (ZnO) nanoparticles is influenced by cell density and culture format. Arch. Toxicol. 2011, 85, 695–704. [Google Scholar] [CrossRef] [PubMed]
- Kelly, R.B. Pathways of protein secretion in eukaryotes. Science 1985, 230, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Zalkinder, V. Correlation between cell nutrition, cell-size and division control. Part 2. Biosystems 1979, 11, 309–322. [Google Scholar] [CrossRef]
- Wang, X.L.; Hu, X.H.; Li, J.C.; Russe, A.C.M.; Kawazoe, N.; Yang, Y.N.; Chen, G.P. Influence of cell size on cellular uptake of gold nanoparticles. Biomater. Sci. 2016, 4, 970–978. [Google Scholar] [CrossRef]
- Liu, X.; Ma, J.; Yang, C.; Wang, L.; Tang, J. The toxicity effects of nano/microplastics on an antibiotic producing strain—Streptomyces coelicolor M145. Sci. Total Environ. 2021, 764, 142804. [Google Scholar] [CrossRef]
- Shi, Y.T.; Jiao, K.P.; Li, L.A.; Guo, W.B.; Abo-Raya, M.H.; Lee, J.S.; Amouri, R.E.; Hu, M.H.; Wang, Y.J. The stealthy journey of nanoplastics in bivalves: Accumulation dynamics and toxic burden. Environ. Sci. Nano 2025, 12, 4748–4767. [Google Scholar] [CrossRef]
- Lia, S.J.; Zhang, Y.P.; Pan, X.H.; Zhu, F.Z.; Jiang, C.Y.; Liu, Q.Q.; Cheng, Z.Y.; Dai, G.; Wu, G.J.; Wang, L.Q.; et al. Antibacterial activity and mechanism of silver nanoparticles against multidrug-resistant Pseudomonas aeruginosa. Int. J. Nanomed. 2019, 14, 1469–1487. [Google Scholar] [CrossRef]
- Chaithawiwat, K.; Vangnai, A.; McEvoy, J.M.; Pruess, B.; Krajangpan, S.; Khan, E. Impact of nanoscale zero valent iron on bacteria is growth phase dependent. Chemosphere 2016, 144, 352–359. [Google Scholar] [CrossRef]
- Hazeem, L.J.; Waheed, F.A.; Rashdan, S.; Bououdina, M.; Brunet, L.; Slomianny, C.; Boukherroub, R.; Elmeselmani, W.A. Effect of magnetic iron oxide (Fe3O4) nanoparticles on the growth and photosynthetic pigment content of Picochlorum sp. Environ. Sci. Pollut. Res. 2015, 22, 11728–11739. [Google Scholar] [CrossRef] [PubMed]
- Miao, W.; Xiong, J.; Bowen, J.; Wang, W.; Liu, Y.; Braguinets, O.; Grigull, J.; Pearlman, R.; Orias, E.; Gorovsky, M. Microarray Analyses of Gene Expression during the Tetrahymena thermophila Life Cycle. PLoS ONE 2009, 4, e4429. [Google Scholar] [CrossRef]
- Mou, S.L.; Li, G.; Li, H.M.; Li, F.Z.; Shao, Z.S.; Li, J.S.; Qu, C.F.; Zhang, Y.Y. Differential physiological responses of the coastal cyanobacterium Synechococcus sp PCC7002 to elevated pCO2 at lag, exponential, and stationary growth phases. Sci. China-Earth Sci. 2018, 61, 1397–1405. [Google Scholar] [CrossRef]
- Wei, Y.S.; Li, X.Y.; Gong, Y.; Li, Y.X.; Guan, J.B.; Yuan, B.; Chen, Y.; Pang, H.B. Peroxidase-catalyzed proximity labeling to survey the proteome of nanomaterial-cell interface during macropinocytosis-mediated internalization. Nano Today 2025, 65, 102865. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Jong, M.-C.; Hu, H.; Gin, K.Y.-H.; He, Y. Size-dependent effects of microplastics on intestinal microbiome for Perna viridis. J. Hazard. Mater. 2024, 474, 134658. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Xie, Z.; Liu, Z.; Zhou, S.; Ma, L.; Liu, W.; Huang, J.-W.; Ko, T.-P.; Li, X.; Hu, Y.; et al. Structural insight into the electron transfer pathway of a self-sufficient P450 monooxygenase. Nat. Commun. 2020, 11, 2676. [Google Scholar] [CrossRef]
- DeLoid, G.M.; Yang, Z.; Bazina, L.; Kharaghani, D.; Sadrieh, F.; Demokritou, P. Mechanisms of ingested polystyrene micro-nanoplastics (MNPs) uptake and translocation in an in vitro tri-culture small intestinal epithelium. J. Hazard. Mater. 2024, 473, 134706. [Google Scholar] [CrossRef] [PubMed]






Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, Z.; Wei, T.; Tong, H.; Xing, R.; Peng, D.; Yuan, T.; Zhao, L.; Min, M.; Guo, W. Mechanism of Growth Phase-Dependent Nanoplastic Bioaccumulation in Tetrahymena thermophila. Antioxidants 2025, 14, 1456. https://doi.org/10.3390/antiox14121456
Jiang Z, Wei T, Tong H, Xing R, Peng D, Yuan T, Zhao L, Min M, Guo W. Mechanism of Growth Phase-Dependent Nanoplastic Bioaccumulation in Tetrahymena thermophila. Antioxidants. 2025; 14(12):1456. https://doi.org/10.3390/antiox14121456
Chicago/Turabian StyleJiang, Zhongquan, Tianyi Wei, Haipeng Tong, Ruikai Xing, Di Peng, Tao Yuan, Ling Zhao, Minghua Min, and Wenbo Guo. 2025. "Mechanism of Growth Phase-Dependent Nanoplastic Bioaccumulation in Tetrahymena thermophila" Antioxidants 14, no. 12: 1456. https://doi.org/10.3390/antiox14121456
APA StyleJiang, Z., Wei, T., Tong, H., Xing, R., Peng, D., Yuan, T., Zhao, L., Min, M., & Guo, W. (2025). Mechanism of Growth Phase-Dependent Nanoplastic Bioaccumulation in Tetrahymena thermophila. Antioxidants, 14(12), 1456. https://doi.org/10.3390/antiox14121456

