Dual-Target Insight into Drug Discovery from Natural Products as Modulators of GLP-1 and the TXNIP–Thioredoxin Antioxidant System in Metabolic Syndrome
Abstract
1. Introduction
2. Overview of GLP-1 Modulation and TXNIP–Thioredoxin Antioxidant System
2.1. The GLP-1 Pathway: A Multifunctional Regulator in MetS
2.1.1. Physiology and Mechanism of Action
2.1.2. GLP-1 Dysregulation in MetS
2.1.3. Current Synthetic Agonists and Their Limitations
2.2. The Antioxidant Defense System: Combating Oxidative Stress in MetS
2.2.1. Oxidative Stress as a Pathogenic Core of MetS
2.2.2. The Thioredoxin System: A Key Guardian of Redox Balance
2.2.3. TXNIP as a Central Metabolic Node in MetS
2.3. Interconnection Between GLP-1 and Antioxidant Pathways
3. Categories of Natural Products as GLP-1 Modulators with Potential for TXNIP–Thioredoxin System Interconnection
3.1. Plant-Derived Compounds
3.2. Marine Natural Products Targeting GLP-1
3.3. Microbial Metabolites Targeting GLP-1
3.4. Defining Criteria for Dual-Target Modulation
3.4.1. Inclusion Criteria for Dual-Target Activity
3.4.2. Differentiation of Evidence Quality: Direct vs. Inferential
- (a)
- Direct Evidence: Compounds with strong, direct evidence from mechanistic investigations confirming simultaneous activity on both targets are assigned to this grade. An excellent illustration is berberine, which has been shown in certain studies to act as a DPP-4 inhibitor while also demonstrating, frequently in the same experimental setup, AMPK-mediated downregulation of TXNIP expression and the resulting reduction in oxidative stress [37,38,65]. This can propose a solid causal connection between the compound’s dual pharmacological properties and its chemistry.
- (b)
- Inferential Evidence: This group includes substances whose dual action is a tenable, but unproven, deduction derived from a confluence of distinct, well-established activities. Quercetin, for example, is a well-established antioxidant and Nrf2 activator that can alter redox-sensitive pathways such as the TXNIP–thioredoxin system [34]. It has also been experimentally demonstrated to stimulate GLP-1 secretion in L-cells [18,33]. The combined evidence strongly suggests dual regulation; however, to elevate it to the “Direct Evidence” category, definitive research is required that explicitly links its GLP-1 secretagogue action to TXNIP reduction in a single animal.
3.4.3. Importance of Critical Analysis
- (a)
- Prioritize lead compounds: That is, to focus resources on compounds with the strongest evidence for genuine polypharmacology, such as berberine or fucoxanthin, for further development.
- (b)
- Identify research gaps: That is, to highlight promising compounds like quercetin or genistein that require targeted experimental validation to confirm dual-target mechanisms within a single biological system.
- (c)
- Enhance reproducibility: That is, to encourage standardized experimental designs that assess both incretin and redox endpoints simultaneously. This will lead to more reliable and translatable findings.
4. Natural Product Mechanisms of GLP-1 Modulation with Potential TXNIP–Thioredoxin System Interconnection
4.1. The Classical Metabolic Pathway of a Natural Product with Dual Action
4.1.1. Initiation: Dual-Pronged Stimulation of Endogenous GLP-1 Secretion

4.1.2. Amplification: Protection of Secreted GLP-1 via DPP-4 Inhibition
4.1.3. Execution: GLP-1 Receptor Activation and Metabolic Consequences
4.1.4. The Core Synergy: Interconnection with the TXNIP–Thioredoxin System
4.1.5. Amplifying the Synergy: Dual-Targeting by Natural Products and the Concept of Advantageous Polypharmacology
- (a)
- Short-chain fatty acids (SCFAs), such as butyrate, operate as histone deacetylase inhibitors (HDACi), which epigenetically suppress the expression of the TXNIP gene, in addition to stimulating GLP-1 secretion by activating G-protein coupled receptors (GPCRs) on L-cells. A synergistic effect on the metabolic network is possible by this twofold, mechanistically separate activity.
- (b)
- Flavonoids such as quercetin and genistein promote GLP-1 release while con-currently antagonizing TXNIP expression, often through activation of antioxidant response elements (e.g., via Nrf2 signaling). This direct action on the redox system complements the incretin system, reinforcing the cycle of benefits.
- (c)
- Other substances, such as berberine (a DPP-4 inhibitor) and fucoxanthin (a GLP-1 receptor agonist), have been shown to increase total antioxidant capacity, which can downregulate TXNIP via pathways including Nrf2 activation and AMPK, respectively.
4.2. Therapeutic Implications of the Classical Metabolic Pathway
5. Evidence from Preclinical Studies of Natural Products Targeting GLP-1 with Potential TXNIP–Thioredoxin System Interconnection
5.1. In Vitro Assays
5.2. In Vivo Animal Models

| Natural Product | Source | Primary Mechanism(s) of Action | Effective In Vitro Concentration | Effective In Vivo Dose (Animal Model) | Key Experimental Models | Evidence Type | References |
|---|---|---|---|---|---|---|---|
| Berberis species (Alkaloid) |
| 10–50 µM (for DPP-4 inhibition & TXNIP downregulation) | 50–200 mg/kg/day (oral; HFD/STZ-induced diabetic rats/mice) |
| Direct: Dual action confirmed in single, integrated studies | [37,38,65,71] |
| Brown Seaweed (Carotenoid) |
| 1–10 µM (for GLP-1 secretion & TXNIP suppression in cell lines) | 0.1–0.2% dietary supplementation (HFD-induced obese mice) |
| Direct: Dual action confirmed in single, integrated studies | [17,43,44,72,73] |
| Gut Microbiota Fermentation |
| 0.5–5 mM (for GLP-1 secretion & TXNIP downregulation in colonic cells) | 5% (w/w) in diet or 100–200 mg/kg/day (oral; HFD rodent models) |
| Direct: Dual action confirmed in single, integrated studies | [55,56,59,60] |
| Onions, Apples (Flavonoid) |
| 5–20 µM (for GLP-1 secretion in L-cells) 10–50 µM (for antioxidant/TXNIP effects) | 25–100 mg/kg/day (oral; HFD-induced obese mice) |
| Inferential: Separate evidence for each target; dual action in a single system is a reasonable inference. | [18,33,34] |
| Soybeans (Isoflavone) |
| 10–50 µM (for GLP-1 secretion & antioxidant effects) | 10–50 mg/kg/day (oral; diabetic rodent models) |
| Inferential: Separate evidence for each target; dual action in a single system is a plausible inference. | [35,36] |
| Green Tea (Polyphenol) |
| 10–100 µM (for DPP-4 inhibition & anti-inflammatory effects) | 50–100 mg/kg/day (oral; db/db mice, HFD models) |
| Inferential: Separate evidence for each target; dual action in a single system is a plausible inference. | [39,41] |
| Panax ginseng (Saponins) |
| 10–50 µg/mL (for GLP-1 secretion & cytoprotection) | 100–200 mg/kg/day (oral; STZ-induced diabetic mice) |
| Inferential: Separate evidence for each target; dual action in a single system is a plausible inference. | [69,75] |
6. Pharmacological Challenges and Opportunities for Natural Products Targeting GLP-1 with TXNIP–Thioredoxin System Interconnection
6.1. Bioavailability, Metabolic Stability, and Dose–Response Considerations
6.2. Standardization, Reproducibility, and Toxicity Profiling
6.3. Delivery Challenges: Formulation Strategies for Oral vs. Injectable Routes
6.4. Regulatory and Development Pathways for Multi-Target Agents
7. Integrative and Computational Approaches in Natural Products Targeting GLP-1 with TXNIP–Thioredoxin System Interconnection
7.1. Role of Molecular Docking in Multi-Target Prediction: From Structure to Hypothesis

7.2. Use of Network Pharmacology to Identify Interconnected Pathway Links
7.3. In Silico Screening of Natural Product Libraries: Balancing Throughput with Validation
7.4. Application of AI in Multi-Target Natural Drug Discovery Pipelines: A Promising Frontier
8. Implications of Targeting GLP-1 with TXNIP-Thioredoxin System for Drug Discovery and Clinical Translation
8.1. Addressing the Translational Gap: From Animal Models to Human Trials
8.2. Rationale for Combination Therapies with Existing Agonists
8.3. Prioritizing Bioavailability and Formulation in Clinical Design
9. Future Research Priorities and Recommendations
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shetty, S.; Suvarna, R.; Ambrose Fistus, V.; Modi, S.; Pappachan, J.M. Cardiovascular implications of metabolic dysfunction-associated fatty liver disease and type 2 diabetes mellitus: A meta-analysis. World J. Hepatol. 2025, 17, 105706. [Google Scholar] [CrossRef] [PubMed]
- Mitrovic, B.; Gluvic, Z.M.; Obradovic, M.; Radunovic, M.; Rizzo, M.; Banach, M.; Isenovic, E.R. Non-alcoholic fatty liver disease, metabolic syndrome, and type 2 diabetes mellitus: Where do we stand today? Arch. Med. Sci. 2022, 19, 884–894. [Google Scholar] [CrossRef] [PubMed]
- Agu, P.C.; Lu, J. Hidden Hunger: A Forgotten Comorbidity of Metabolic-Syndrome-Associated Fatty Liver Disease. Mol. Nutr. Food Res. 2025, 69, e70134. [Google Scholar] [CrossRef] [PubMed]
- Thornberry, N.A.; Gallwitz, B. Mechanism of action of inhibitors of dipeptidyl-peptidase-4 (DPP-4). Best Pract. Res. Clin. Endocrinol. Metab. 2009, 23, 479–486. [Google Scholar] [CrossRef]
- Al-Noshokaty, T.M.; Abdelhamid, R.; Abdelmaksoud, N.M.; Khaled, A.; Hossam, M.; Ahmed, R.; Saber, T.; Khaled, S.; Elshaer, S.S.; Abulsoud, A.I. Unlocking the multifaceted roles of GLP-1: Physiological functions and therapeutic potential. Toxicol. Rep. 2025, 14, 101895. [Google Scholar] [CrossRef]
- Lillich, F.F.; Imig, J.D.; Proschak, E. Multi-Target Approaches in Metabolic Syndrome. Front. Pharmacol. 2021, 11, 554961. [Google Scholar] [CrossRef]
- Nauck, M.A.; Quast, D.R.; Wefers, J.; Meier, J.J. GLP-1 receptor agonists in the treatment of type 2 diabetes—State-of-the-art. Mol. Metab. 2021, 46, 101102. [Google Scholar] [CrossRef]
- Zhang, T.; Liu, S.; He, S.; Shi, L.; Ma, R. Strategies to Enhance the Therapeutic Efficacy of GLP-1 Receptor Agonists through Structural Modification and Carrier Delivery. ChemBioChem 2025, 26, e202400962. [Google Scholar] [CrossRef]
- González, P.; Lozano, P.; Ros, G.; Solano, F. Hyperglycemia and Oxidative Stress: An Integral, Updated and Critical Overview of Their Metabolic Interconnections. Int. J. Mol. Sci. 2023, 24, 9352. [Google Scholar] [CrossRef]
- Luci, C.; Bourinet, M.; Leclère, P.S.; Anty, R.; Gual, P. Chronic Inflammation in Non-Alcoholic Steatohepatitis: Molecular Mechanisms and Therapeutic Strategies. Front. Endocrinol. 2020, 11, 597648. [Google Scholar] [CrossRef]
- Alhawiti, N.M.; Al Mahri, S.; Aziz, M.A.; Malik, S.S.; Mohammad, S. TXNIP in Metabolic Regulation: Physiological Role and Therapeutic Outlook. Curr. Drug Targets 2017, 18, 1095–1103. [Google Scholar] [CrossRef] [PubMed]
- Dagdeviren, S.; Lee, R.T.; Wu, N. Physiological and Pathophysiological Roles of Thioredoxin Interacting Protein: A Perspective on Redox Inflammation and Metabolism. Antioxid. Redox Signal. 2023, 38, 442–460. [Google Scholar] [CrossRef] [PubMed]
- Kokkorakis, M.; Boutari, C.; Hill, M.A.; Kotsis, V.; Loomba, R.; Sanyal, A.J.; Mantzoros, C.S. Resmetirom, the first approved drug for the management of metabolic dysfunction-associated steatohepatitis: Trials, opportunities, and challenges. Metab. Clin. Exp. 2024, 154, 155835. [Google Scholar] [CrossRef] [PubMed]
- Hassen, G.; Belete, G.; Carrera, K.G.; Iriowen, R.O.; Araya, H.; Alemu, T.; Solomon, N.; Bam, D.S.; Nicola, S.M.; Araya, M.E.; et al. Clinical Implications of Herbal Supplements in Conventional Medical Practice: A US Perspective. Cureus 2022, 14, e26893. [Google Scholar] [CrossRef]
- Abd Elmaaboud, M.A.; Kabel, A.M.; Borg, H.M.; Magdy, A.A.; Kabel, S.M.; Arafa, E.A.; Alsufyani, S.E.; Arab, H.H. Omarigliptin/rosinidin combination ameliorates cyclophosphamide-induced lung toxicity in rats: The interaction between glucagon-like peptide-1, TXNIP/NLRP3 inflammasome signaling, and PI3K/Akt/FoxO1 axis. Biomed. Pharmacother. 2024, 177, 117026. [Google Scholar] [CrossRef]
- Kim, M.E.; Lee, J.S.; Kim, T.W.; Park, M.H.; Kim, D.H. FoxO6-Mediated TXNIP Induces Lipid Accumulation in the Liver through NLRP3 Inflammasome Activation. Endocrinol. Metab. 2024, 39, 127–139. [Google Scholar] [CrossRef]
- Yadav, R.; Nigam, A.; Mishra, R.; Gupta, S.; Chaudhary, A.A.; Khan, S.U.; Almuqri, E.A.; Ahmed, Z.H.; Rustagi, S.; Singh, D.P.; et al. Novel Therapeutic Approach for Obesity: Seaweeds as an Alternative Medicine with the Latest Conventional Therapy. Med. Sci. 2024, 12, 55. [Google Scholar] [CrossRef]
- Wang, C.; Zhou, J.; Liu, X.; Zhu, F.; Li, J.; Xu, W.; Liu, J. Quercetin Enhances GLP-1 Secretion via TAS2R38-Mediated PLC Signaling in Enteroendocrine L-Cells. Mol. Nutr. Food Res. 2025, 13, e70109. [Google Scholar] [CrossRef]
- Li, X.; Xie, E.; Sun, S.; Shen, J.; Ding, Y.; Wang, J.; Peng, X.; Zheng, R.; Farag, M.A.; Xiao, J. Flavonoids for gastrointestinal tract local and associated systemic effects: A review of clinical trials and future perspectives. J. Adv. Res. 2025, 77, 15–41. [Google Scholar] [CrossRef]
- Idoko, A.; Agu, P.C.; Udegbe, U.F.; Ezeh, E.M.; Nwali, N.O. Honey and lime juice flavonoids as potential adjunctive remedies against obesity and diabetes mellitus risks via glucagon receptor and glucagon-like peptide-1 receptor binding mechanisms: An in-silico investigation. Discov. Appl. Sci. 2025, 7, 762. [Google Scholar] [CrossRef]
- Sun, Y.; Jin, C.; Zhang, X.; Jia, W.; Le, J.; Ye, J. Restoration of GLP-1 secretion by Berberine is associated with protection of colon enterocytes from mitochondrial overheating in diet-induced obese mice. Nutr. Diabetes 2018, 8, 53. [Google Scholar] [CrossRef] [PubMed]
- Farilla, L.; Bulotta, A.; Hirshberg, B.; Calzi, S.L.; Khoury, N.; Noushmehr, H.; Bertolotto, C.; Di Mario, U.; Harlan, D.M.; Perfetti, R. Glucagon-Like Peptide 1 Inhibits Cell Apoptosis and Improves Glucose Responsiveness of Freshly Isolated Human Islets. Endocrinology 2003, 144, 5149–5158. [Google Scholar] [CrossRef]
- Brunton, S. GLP-1 receptor agonists vs. DPP-4 inhibitors for type 2 diabetes: Is one approach more successful or preferable than the other? Int. J. Clin. Pract. 2014, 68, 557–567. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Holmgren, A. The thioredoxin antioxidant system. Free Radic. Biol. Med. 2014, 66, 75–87. [Google Scholar] [CrossRef] [PubMed]
- He, S.; Wu, W.; Wan, Y.; Nandakumar, K.S.; Cai, X.; Tang, X.; Liu, S.; Yao, X. GLP-1 Receptor Activation Abrogates β-Cell Dysfunction by PKA Cα-Mediated Degradation of Thioredoxin Interacting Protein. Front. Pharmacol. 2019, 10, 1230. [Google Scholar] [CrossRef]
- Junn, E.; Han, S.H.; Im, J.Y.; Yang, Y.; Cho, E.W.; Um, H.D.; Kim, D.K.; Lee, K.W.; Han, P.L.; Rhee, S.G.; et al. Vitamin D3 up-regulated protein 1 mediates oxidative stress via suppressing the thioredoxin function. J. Immunol. 2000, 164, 6287–6295. [Google Scholar] [CrossRef]
- Shalev, A. Minireview: Thioredoxin-interacting protein: Regulation and function in the pancreatic β-cell. Mol. Endocrinol. 2014, 28, 1211–1220. [Google Scholar] [CrossRef]
- Hendawy, N.; El-Sayed, S.M.; AbdelWahed, D.M.; Salaheldin, S.H.; Abuelezz, S.A. Empagliflozin attenuates pyroptosis by regulating thioredoxin-NLRP3 inflammasome axis in a high-fat cholesterol diet/streptozotocin model of atherosclerosis. J. Pharm. Pharmacol. 2025, 77, 1414–1425. [Google Scholar] [CrossRef]
- Chen, R.; Wu, W.; Han, J.; Lei, Q.; Chen, J.; Guo, D.; Wang, C.; Tang, X.; Zou, M.; Liu, S.; et al. TXNIP promotes viral replication by disrupting MAVS-mediated antiviral signaling and serves as a therapeutic target for antiviral therapy. Redox Biol. 2025, 85, 103756. [Google Scholar] [CrossRef]
- Fernández-Millán, E.; Martín, M.A.; Goya, L.; Lizárraga-Mollinedo, E.; Escrivá, F.; Ramos, S.; Álvarez, C. Glucagon-like peptide-1 improves beta-cell antioxidant capacity via extracellular regulated kinases pathway and Nrf2 translocation. Free Radic. Biol. Med. 2016, 95, 16–26. [Google Scholar] [CrossRef]
- Huy, H.; Song, H.Y.; Kim, M.J.; Kim, W.S.; Kim, D.O.; Byun, J.; Lee, J.; Park, Y.; Kim, T.; Yoon, S.R.; et al. TXNIP regulates AKT-mediated cellular senescence by direct interaction under glucose-mediated metabolic stress. Aging Cell 2018, 17, e12836. [Google Scholar] [CrossRef] [PubMed]
- Oh, Y.S.; Jun, H.-S. Effects of Glucagon-Like Peptide-1 on Oxidative Stress and Nrf2 Signaling. Int. J. Mol. Sci. 2018, 19, 26. [Google Scholar] [CrossRef] [PubMed]
- Hira, T.; Trakooncharoenvit, A.; Taguchi, H.; Hara, H. Improvement of Glucose Tolerance by Food Factors Having Glucagon-Like Peptide-1 Releasing Activity. Int. J. Mol. Sci. 2021, 22, 6623. [Google Scholar] [CrossRef] [PubMed]
- Yuan, W.; Fang, W.; Zhang, R.; Lyu, H.; Xiao, S.; Guo, D.; Ali, D.W.; Michalak, M.; Chen, X.Z.; Zhou, C.; et al. Therapeutic strategies targeting AMPK-dependent autophagy in cancer cells. Biochim. Biophys. Acta Mol. Cell Res. 2023, 1870, 119537. [Google Scholar] [CrossRef]
- Rehman, K.; Ali, M.B.; Akash, M.S.H. Genistein enhances the secretion of glucagon-like peptide-1 (GLP-1) via downregulation of inflammatory responses. Biomed. Pharmacother. 2019, 112, 108670. [Google Scholar] [CrossRef]
- Sharifinejad, N.; Hooshyar, M.; Ramezankhah, M.; Shamsehkohan, A.; Saie, R.; Sahebjam, M.; Aleebrahim-Dehkordi, E.; Orandi, S.; Faraji, A.; Deravi, N. An Update on the Anti-diabetic Functions of Genistein: A Soybean (Glycine max (L.) Merr.) Isoflavone. Curr. Tradit. Med. 2024, 10, e070323214439. [Google Scholar] [CrossRef]
- Yu, Y.; Hao, G.; Zhang, Q.; Hua, W.; Wang, M.; Zhou, W.; Zong, S.; Huang, M.; Wen, X. Berberine induces GLP-1 secretion through activation of bitter taste receptor pathways. Biochem. Pharmacol. 2015, 97, 173–177. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, Y.; Wen, Z.; Chen, Y.; Bu, T.; Yang, Y.; Ni, Q. Enhancing β-cell function and identity in type 2 diabetes: The protective role of Coptis deltoidea C. Y. Cheng et Hsiao via glucose metabolism modulation and AMPK signaling activation. Phytomedicine 2024, 128, 155396. [Google Scholar] [CrossRef]
- Sinha, R.; Rauniar, G.P.; Panday, D.R.; Maskey, R. Effects of Momordica charantia (Bittergourd) and Trigonella foenum-graecum (Fenugreek) Supplements in Type-2 Diabetics Taking Allopathic Drugs. J. Drug Deliv. Ther. 2020, 10, 110–119. [Google Scholar] [CrossRef]
- Cortez-Navarrete, M.; Pérez-Rubio, K.G.; Escobedo-Gutiérrez, M.D.J. Role of Fenugreek, Cinnamon, Curcuma longa, Berberine and Momordica charantia in Type 2 Diabetes Mellitus Treatment: A Review. Pharmaceuticals 2023, 16, 515. [Google Scholar] [CrossRef]
- Mohammad-Sadeghipour, M.; Afsharinasab, M.; Mohamadi, M.; Mahmoodi, M.; Falahati-Pour, S.K.; Hajizadeh, M.R. The Effects of Hydro-Alcoholic Extract of Fenugreek Seeds on the Lipid Profile and Oxidative Stress in Fructose-Fed Rats. J. Obes. Metab. Syndr. 2020, 29, 198–207. [Google Scholar] [CrossRef]
- Agarwal, A.; Rana, M.; Qiu, E.; AlBunni, H.; Bui, A.D.; Henkel, R. Role of oxidative stress, infection and inflammation in male infertility. Andrologia 2018, 50, e13126. [Google Scholar] [CrossRef] [PubMed]
- Maeda, H.; Hosokawa, M.; Sashima, T.; Murakami-Funayama, K.; Miyashita, K. Anti-obesity and anti-diabetic effects of fucoxanthin on diet-induced obesity conditions in a murine model. Mol. Med. Rep. 2009, 2, 897–902. [Google Scholar] [CrossRef] [PubMed]
- Zaharudin, N.; Tullin, M.; Pekmez, C.T.; Jens, J.; Sloth, J.J.; Rasmussen, R.R.; Dragsted, L.O. Effects of brown seaweeds on postprandial glucose, insulin and appetite in humans—A randomized, 3-way, blinded, cross-over meal study. Clin. Nutr. 2021, 40, 830–838. [Google Scholar] [CrossRef]
- Zhu, M.; Dagah, O.M.A.; Silaa, B.B.; Lu, J. Thioredoxin/Glutaredoxin Systems and Gut Microbiota in NAFLD: Interplay, Mechanism, and Therapeutical Potential. Antioxidants 2023, 12, 1680. [Google Scholar] [CrossRef]
- Silva, R.O.; Santana, A.P.; Carvalho, N.S.; Bezerra, T.S.; Oliveira, C.B.; Damasceno, S.R.; Chaves, L.S.; Freitas, A.L.; Soares, P.M.; Souza, M.H.; et al. A sulfated-polysaccharide fraction from seaweed Gracilaria birdiae prevents naproxen-induced gastrointestinal damage in rats. Mar. Drugs 2012, 10, 2618–2633. [Google Scholar] [CrossRef]
- Brito, T.V.; Neto, J.P.; Prudêncio, R.S.; Batista, J.A.; Júnior, J.S.; Silva, R.O.; Franco, A.X.; Aragão, K.S.; Soares, P.M.; Souza, M.H.; et al. Sulfated-polysaccharide fraction extracted from red algae Gracilaria birdiae ameliorates trinitrobenzenesulfonic acid-induced colitis in rats. J. Pharm. Pharmacol. 2014, 66, 1161–1170. [Google Scholar] [CrossRef]
- Makkar, F.; Chakraborty, K. Antidiabetic and anti-inflammatory potential of sulphated polygalactans from red seaweeds Kappaphycus alvarezii and Gracilaria opuntia. Int. J. Food Prop. 2016, 20, 1326–1337. [Google Scholar] [CrossRef]
- Manlusoc, J.K.T.; Hsieh, C.L.; Hsieh, C.Y.; Salac, E.S.N.; Lee, Y.T.; Tsai, P.W. Pharmacologic Application Potentials of Sulfated Polysaccharide from Marine Algae. Polymers 2019, 11, 1163. [Google Scholar] [CrossRef]
- Chen, Y.; Xu, Y.N.; Ye, C.Y.; Feng, W.B.; Zhou, Q.T.; Yang, D.H.; Wang, M.W. GLP-1 mimetics as a potential therapy for nonalcoholic steatohepatitis. Acta Pharmacol. Sin. 2022, 43, 1156–1166. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, W.; Sair, A.T.; Li, T.; Liu, R.H. Ferulic acid restores mitochondrial dynamics and autophagy via AMPK signaling pathway in a palmitate-induced hepatocyte model of metabolic syndrome. Sci. Rep. 2024, 14, 18970. [Google Scholar] [CrossRef] [PubMed]
- Ercolano, G.; De Cicco, P.; Ianaro, A. New Drugs from the Sea: Pro-Apoptotic Activity of Sponges and Algae-Derived Compounds. Mar. Drugs 2019, 17, 31. [Google Scholar] [CrossRef]
- Konstantinou, D.; Mavrogonatou, E.; Zervou, S.K.; Giannogonas, P.; Gkelis, S. Bioprospecting Sponge-Associated Marine Cyanobacteria to Produce Bioactive Compounds. Toxins 2020, 12, 73. [Google Scholar] [CrossRef]
- Jiang, J.; Shi, Y.; Cao, J.; Lu, Y.; Sun, G.; Yang, J. Role of ASM/Cer/TXNIP signaling module in the NLRP3 inflammasome activation. Lipids Health Dis. 2021, 20, 19. [Google Scholar] [CrossRef]
- den Besten, G.; van Eunen, K.; Groen, A.K.; Venema, K.; Reijngoud, D.J.; Bakker, B.M. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J. Lipid Res. 2013, 54, 2325–2340. [Google Scholar] [CrossRef]
- Fusco, W.; Lorenzo, M.B.; Cintoni, M.; Porcari, S.; Rinninella, E.; Kaitsas, F.; Lener, E.; Mele, M.C.; Gasbarrini, A.; Collado, M.C.; et al. Short-Chain Fatty-Acid-Producing Bacteria: Key Components of the Human Gut Microbiota. Nutrients 2023, 15, 2211. [Google Scholar] [CrossRef]
- Hays, K.E.; Pfaffinger, J.M.; Ryznar, R. The interplay between gut microbiota, short-chain fatty acids, and implications for host health and disease. Gut Microbes 2024, 16, 2393270. [Google Scholar] [CrossRef]
- Tolhurst, G.; Heffron, H.; Lam, Y.S.; Parker, H.E.; Habib, A.M.; Diakogiannaki, E.; Cameron, J.; Grosse, J.; Reimann, F.; Gribble, F.M. Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2. Diabetes 2012, 61, 364–371. [Google Scholar] [CrossRef]
- Khanna, S.; Kumar, S.; Sharma, P.; Daksh, R.; Nandakumar, K.; Shenoy, R.R. Flavonoids regulating NLRP3 inflammasome: A promising approach in alleviating diabetic peripheral neuropathy. Inflammopharmacology 2025, 33, 2231–2262. [Google Scholar] [CrossRef]
- Ma, Q. Pharmacological Inhibition of the NLRP3 Inflammasome: Structure, Molecular Activation, and Inhibitor-NLRP3 Interaction. Pharmacol. Rev. 2023, 75, 487–520. [Google Scholar] [CrossRef]
- Salles, B.I.M.; Cioffi, D.; Ferreira, S.R.G. Probiotics supplementation and insulin resistance: A systematic review. Diabetol. Metab. Syndr. 2020, 12, 98. [Google Scholar] [CrossRef]
- Hong, K.; Xu, G.; Grayson, T.B.; Shalev, A. Cytokines Regulate β-Cell Thioredoxin-interacting Protein (TXNIP) via Distinct Mechanisms and Pathways. J. Biol. Chem. 2016, 291, 8428–8439. [Google Scholar] [CrossRef]
- Rui, S.; Fengrui, G.; Yining, Z.; Hong, S.; Xuewen, Y.; Changping, W.; Chunjia, Y. Biological activity of secondary metabolites of actinomycetes and their potential sources as antineoplastic drugs: A review. Front. Microbiol. 2025, 16, 1550516. [Google Scholar] [CrossRef]
- Levy, T.; Voeltzke, K.; Hruby, L.; Alasad, K.; Bas, Z.; Snaebjörnsson, M.; Marciano, R.; Scharov, K.; Planque, M.; Vriens, K.; et al. mTORC1 regulates cell survival under glucose starvation through 4EBP1/2-mediated translational reprogramming of fatty acid metabolism. Nat. Commun. 2024, 15, 4083. [Google Scholar] [CrossRef]
- Araj-Khodaei, M.; Ayati, M.H.; Azizi Zeinalhajlou, A.; Novinbahador, T.; Yousefi, M.; Shiri, M.; Mahmoodpoor, A.; Shamekh, A.; Namazi, N.; Sanaie, S. Berberine-induced glucagon-like peptide-1 and its mechanism for controlling type 2 diabetes mellitus: A comprehensive pathway review. Arch. Physiol. Biochem. 2024, 130, 678–685. [Google Scholar] [CrossRef]
- Qin, K.; Zhang, S.; Wang, J.; Liu, D.; Xiang, Y.; Ji, X.; Wei, Y. Screening GLP-1 Receptor Ligands from Natural Products in Herbs through High-Content Technique. Comb. Chem. High. Throughput Screen. 2019, 22, 445–454. [Google Scholar] [CrossRef]
- Müller, T.D.; Finan, B.; Bloom, S.R.; D’Alessio, D.; Drucker, D.J.; Flatt, P.R.; Fritsche, A.; Gribble, F.; Grill, H.J.; Habener, J.F.; et al. Glucagon-like peptide 1 (GLP-1). Mol. Metab. 2019, 30, 72–130. [Google Scholar] [CrossRef]
- Huang, P.K.; Lin, S.R.; Chang, C.H.; Tsai, M.J.; Lee, D.N.; Weng, C.F. Natural phenolic compounds potentiate hypoglycemia via inhibition of Dipeptidyl peptidase IV. Sci. Rep. 2019, 9, 15585. [Google Scholar] [CrossRef]
- Obaroakpo, J.U.; Liu, L.; Zhang, S.; Lu, J.; Liu, L.; Pang, X.; Lv, J. In vitro modulation of glucagon-like peptide release by DPP-IV inhibitory polyphenol-polysaccharide conjugates of sprouted quinoa yoghurt. Food Chem. 2020, 324, 126857. [Google Scholar] [CrossRef]
- Temel, H.E.; Altıntop, M.D.; Sever, B.; Özdemir, A.; Akalın Çiftçi, G. In vitro evaluation of 2-pyrazoline derivatives as DPP-4 inhibitors. Turk. J. Biochem. 2023, 48, 104–109. [Google Scholar] [CrossRef]
- Xia, X.; Yan, J.; Shen, Y.; Tang, K.; Yin, J.; Zhang, Y.; Yang, D.; Liang, H.; Ye, J.; Weng, J. Berberine improves glucose metabolism in diabetic rats by inhibition of hepatic gluconeogenesis. PLoS ONE 2011, 6, e16556. [Google Scholar] [CrossRef]
- Bermano, G.; Stoyanova, T.; Hennequart, F.; Wainwright, C.L. Seaweed-derived bioactives as potential energy regulators in obesity and type 2 diabetes. Adv. Pharmacol. 2020, 87, 205–256. [Google Scholar] [CrossRef]
- Bocanegra, A.; Macho-González, A.; Garcimartín, A.; Benedí, J.; Sánchez-Muniz, F.J. Whole alga, algal extracts, and compounds as ingredients of functional foods: Composition and action mechanism relationships in the prevention and treatment of type-2 diabetes mellitus. Int. J. Mol. Sci. 2021, 22, 3816. [Google Scholar] [CrossRef]
- Chen, W.; Balan, P.; Popovich, D.G. Review of ginseng anti-diabetic studies. Molecules 2019, 24, 4501. [Google Scholar] [CrossRef]
- Yin, J.; Huang, Y.; Wang, K.; Zhong, Q.; Liu, Y.; Ji, Z.; Liao, Y.; Ma, Z.; Bei, W.; Wang, W. Ginseng extract improves pancreatic islet injury and promotes β-cell regeneration in T2DM mice. Front. Pharmacol. 2024, 15, 1407200. [Google Scholar] [CrossRef]
- Chhabria, S.; Mathur, S.; Vadakan, S.; Sahoo, D.K.; Mishra, P.; Paital, B. A review on phytochemical and pharmacological facets of tropical ethnomedicinal plants as reformed DPP-IV inhibitors to regulate incretin activity. Front. Endocrinol. 2022, 13, 1027237. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, Z.; Liu, L.; Tang, H.; Zhu, H.; Tang, S. Role of moesin in the effect of glucagon-like peptide-1 on advanced glycation end products-induced endothelial barrier dysfunction. Cell. Signal. 2022, 90, 110193. [Google Scholar] [CrossRef]
- Bhalani, D.V.; Nutan, B.; Kumar, A.; Singh Chandel, A.K. Bioavailability Enhancement Techniques for Poorly Aqueous Soluble Drugs and Therapeutics. Biomedicines 2022, 10, 2055. [Google Scholar] [CrossRef]
- Racz, L.Z.; Racz, C.P.; Pop, L.C.; Tomoaia, G.; Mocanu, A.; Barbu, I.; Sárközi, M.; Roman, I.; Avram, A.; Tomoaia-Cotisel, M.; et al. Strategies for Improving Bioavailability, Bioactivity, and Physical-Chemical Behavior of Curcumin. Molecules 2022, 27, 6854. [Google Scholar] [CrossRef]
- Sachdeva, A.; Dhawan, D.; Jain, G.K.; Yerer, M.B.; Collignon, T.E.; Tewari, D.; Bishayee, A. Novel Strategies for the Bioavailability Augmentation and Efficacy Improvement of Natural Products in Oral Cancer. Cancers 2022, 15, 268. [Google Scholar] [CrossRef]
- Gaston, T.E.; Mendrick, D.L.; Paine, M.F.; Roe, A.L.; Yeung, C.K. “Natural” is not synonymous with “Safe”: Toxicity of natural products alone and in combination with pharmaceutical agents. Regul. Toxicol. Pharmacol. 2020, 113, 104642. [Google Scholar] [CrossRef]
- Verma, S.; Goand, U.K.; Husain, A.; Katekar, R.A.; Garg, R.; Gayen, J.R. Challenges of peptide and protein drug delivery by oral route: Current strategies to improve the bioavailability. Drug Dev. Res. 2021, 82, 927–944. [Google Scholar] [CrossRef]
- Baral, K.C.; Choi, K.Y. Barriers and Strategies for Oral Peptide and Protein Therapeutics Delivery: Update on Clinical Advances. Pharmaceutics 2025, 17, 397. [Google Scholar] [CrossRef]
- Zheng, Z.; Zong, Y.; Ma, Y.; Tian, Y.; Pang, Y.; Zhang, C.; Gao, J. Glucagon-like peptide-1 receptor: Mechanisms and advances in therapy. Signal Trans. Target. Ther. 2024, 9, 234. [Google Scholar] [CrossRef]
- Santini, A.; Cammarata, S.M.; Capone, G.; Ianaro, A.; Tenore, G.C.; Pani, L.; Novellino, E. Nutraceuticals: Opening the debate for a regulatory framework. Br. J. Clin. Pharmacol. 2018, 84, 659–672. [Google Scholar] [CrossRef]
- Zhao, M. Conducting R&D in Countries with Weak Intellectual Property Rights Protection. Manag. Sci. 2006, 52, 1185–1199. [Google Scholar] [CrossRef]
- Li, H.; Zhao, L.; Zhang, B.; Jiang, Y.; Wang, X.; Guo, Y.; Liu, H.; Li, S.; Tong, X. A network pharmacology approach to determine active compounds and action mechanisms of ge-gen-qin-lian decoction for treatment of type 2 diabetes. Evid.-Based Complement. Altern. Med. 2014, 2014, 495840. [Google Scholar] [CrossRef]
- Agu, P.C.; Afiukwa, C.A.; Orji, O.U.; Ezeh, E.M.; Ofoke, I.H.; Ogbu, C.O.; Ugwuja, E.I.; Aja, P.M. Molecular docking as a tool for the discovery of molecular targets of nutraceuticals in disease management. Sci. Rep. 2023, 13, 13398. [Google Scholar] [CrossRef]
- Gomaa, M.S.; Alturki, M.S.; Tawfeeq, N.; Hussein, D.A.; Pottoo, F.H.; Al Khzem, A.H.; Sarafroz, M.; Abubshait, S. Discovery of Non-Peptide GLP-1 Positive Allosteric Modulators from Natural Products: Virtual Screening, Molecular Dynamics, ADMET Profiling, Repurposing, and Chemical Scaffolds Identification. Pharmaceutics 2024, 16, 1607. [Google Scholar] [CrossRef]
- Chen, Z.; Su, X.; Cao, W.; Tan, M.; Zhu, G.; Gao, J.; Zhou, L. The Discovery and Characterization of a Potent DPP-IV Inhibitory Peptide from Oysters for the Treatment of Type 2 Diabetes Based on Computational and Experimental Studies. Mar. Drugs. 2024, 22, 361. [Google Scholar] [CrossRef]
- He, Y.; Zhang, Y.; Liu, M.; Li, J.; Li, W.; Han, W. Deep learning-based dipeptidyl peptidase IV inhibitor screening, experimental validation, and GaMD/LiGaMD analysis. BMC Biol. 2025, 23, 173. [Google Scholar] [CrossRef]
- Aja, P.M.; Agu, P.C.; Ezeh, E.M.; Awoke, J.N.; Ogwoni, H.A.; Deusdedit, T.; Ekpono, E.U.; Igwenyi, I.O.; Alum, E.U.; Ugwuja, E.I.; et al. Prospect into therapeutic potentials of Moringa oleifera phytocompounds against cancer upsurge: De novo synthesis of test compounds, molecular docking, and ADMET studies. Bull. Natl. Res. Cent. 2021, 45, 99. [Google Scholar] [CrossRef]
- Deng, G.; Ren, J.; Li, R.; Li, M.; Jin, X.; Li, J.; Liu, J.; Gao, Y.; Zhang, J.; Wang, X.; et al. Systematic investigation of the underlying mechanisms of GLP-1 receptor agonists to prevent myocardial infarction in patients with type 2 diabetes mellitus using network pharmacology. Front. Pharmacol. 2023, 14, 1125753. [Google Scholar] [CrossRef]
- Zhou, Q.; Zhao, F.; Zhang, Y.; Yang, D.; Wang, M.-W. Structural pharmacology and mechanisms of GLP-1R signaling. Trends Pharmacol. Sci. 2025, 46, 422–436. [Google Scholar] [CrossRef]
- Chen, C.Y. TCM Database@Taiwan: The world’s largest traditional Chinese medicine database for drug screening in silico. PLoS ONE 2011, 6, e15939. [Google Scholar] [CrossRef]
- Agu, P.C.; Obulose, C.N. Piquing artificial intelligence towards drug discovery: Tools, techniques, and applications. Drug Dev. Res. 2024, 85, e22159. [Google Scholar] [CrossRef]
- Manandhar, B.; Ahn, J.M. Glucagon-like peptide-1 (GLP-1) analogs: Recent advances, new possibilities, and therapeutic implications. J. Med. Chem. 2015, 58, 1020–1037. [Google Scholar] [CrossRef]
- Agu, P.C. Dissecting ncRNA pathways and omics integration. Prog. Mol. Biol. Transl. Sci. 2025, 144, 81–100. [Google Scholar] [CrossRef]
- Richter, B.; Bandeira-Echtler, E.; Bergerhoff, K.; Lerch, C. Emerging role of dipeptidyl peptidase-4 inhibitors in the management of type 2 diabetes. Vasc. Health Risk Manag. 2008, 4, 753–768. [Google Scholar] [CrossRef]
- Alum, E.U.; Manjula, V.S.; Uti, D.E.; Echegu, D.A.; Ugwu, O.P.-C.; Ikechukwu, S.; Agu, P.C. Metabolomics-Driven Standardization of Herbal Medicine: Advances, Applications, and Sustainability Considerations. Nat. Prod. Commun. 2025, 20, 1934578X251367650. [Google Scholar] [CrossRef]
- Patsali, P.; Kleanthous, M.; Lederer, C.W. Disruptive Technology: CRISPR/Cas-Based Tools and Approaches. Mol. Diagn. Ther. 2019, 23, 187–200. [Google Scholar] [CrossRef]
- Traini, L.; Negueruela, J.; Elvira, B.; St-Pierre-Wijckmans, W.; Vandenbempt, V.; Buss, C.E.; Li, A.; Pérez-Chávez, I.; Ribeiro-Costa, F.; Nunes, M.; et al. Genome editing of TXNIP in human pluripotent stem cells for the generation of hepatocyte-like cells and insulin-producing islet-like aggregates. Stem Cell Res. Ther. 2025, 16, 225. [Google Scholar] [CrossRef] [PubMed]



| Aspect | GLP-1 System | Thioredoxin Antioxidant System |
|---|---|---|
| Primary Role | Hormonal regulator of glucose metabolism, insulin secretion, and satiety. | It is a key cellular defense system that maintains redox homeostasis and reduces oxidative stress. |
| Key Components | GLP-1 hormone GLP-1 Receptor (GLP-1R) DPP-4 enzyme | Thioredoxin (Trx) Thioredoxin Reductase (TrxR) Thioredoxin-Interacting Protein (TXNIP) |
| Mechanism of Action | Binds to GLP-1R Stimulates glucose-dependent insulin secretion Suppresses glucagon release Slows gastric emptying Promotes satiety in the brain | Trx reduces oxidized proteins and scavenges ROS. TrxR uses NADPH to recycle Trx to its active state. TXNIP binds to and inhibits Trx, amplifying oxidative stress. |
| Dysregulation in MetS | Incretin Deficiency: Reduced secretion by L-cells. Short Half-life: Rapid degradation by DPP-4. | Oxidative Stress: Overproduction of ROS. TXNIP Upregulation: Increased by high glucose/ROS, leading to Trx inhibition. |
| Consequences of Dysregulation | Postprandial hyperglycemia Hyperglucagonemia Weight gain | Insulin resistance (via stress kinases) β-cell dysfunction and apoptosis Inflammation (via NLRP3 inflammasome) Vascular dysfunction |
| Current Therapeutics | GLP-1 Receptor Agonists (e.g., liraglutide, semaglutide) DPP-4 Inhibitors (e.g., sitagliptin) | No direct TXNIP inhibitors or Trx system enhancers are in clinical use; it is an emerging drug target. |
| Limitations of Synthetics |
| N/A |
| Therapeutic Goal | Enhance GLP-1 signaling to improve glycemic control, promote weight loss, and protect β-cells. | Inhibit TXNIP and enhance the Trx system to reduce oxidative stress, inflammation, and cellular damage. |
| Interconnection | GLP-1 signaling enhances the antioxidant function of the Thioredoxin system and provides cytoprotection by downregulating TXNIP expression (via the cAMP/PKA & PI3K/Akt pathways) [15,30,31,32]. The phosphorylation of transcription factors (e.g., CREB) suppresses TXNIP gene transcription, thereby inhibiting TXNIP. With this inhibition of TXNIP, GLP-1 signaling may increase antioxidant defence and reduce inflammation. This, in turn, improves β-cell function and insulin sensitivity, leading to improved glycemic control and reduced metabolic stress [31]. The multifaceted effects of natural products, which operate on both axes, show that this produces a stronger and more persistent therapeutic impact than monotherapy [15]. | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Agu, P.C.; Yudas, A.F.; Lu, J. Dual-Target Insight into Drug Discovery from Natural Products as Modulators of GLP-1 and the TXNIP–Thioredoxin Antioxidant System in Metabolic Syndrome. Antioxidants 2025, 14, 1364. https://doi.org/10.3390/antiox14111364
Agu PC, Yudas AF, Lu J. Dual-Target Insight into Drug Discovery from Natural Products as Modulators of GLP-1 and the TXNIP–Thioredoxin Antioxidant System in Metabolic Syndrome. Antioxidants. 2025; 14(11):1364. https://doi.org/10.3390/antiox14111364
Chicago/Turabian StyleAgu, Peter Chinedu, Appolonia Fulgence Yudas, and Jun Lu. 2025. "Dual-Target Insight into Drug Discovery from Natural Products as Modulators of GLP-1 and the TXNIP–Thioredoxin Antioxidant System in Metabolic Syndrome" Antioxidants 14, no. 11: 1364. https://doi.org/10.3390/antiox14111364
APA StyleAgu, P. C., Yudas, A. F., & Lu, J. (2025). Dual-Target Insight into Drug Discovery from Natural Products as Modulators of GLP-1 and the TXNIP–Thioredoxin Antioxidant System in Metabolic Syndrome. Antioxidants, 14(11), 1364. https://doi.org/10.3390/antiox14111364

