Determinants of Outcome Variability in Ischemic Stroke: A Focus on Routinely Collected Biomarkers
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Setting
2.2. Participants
2.3. Data Extraction and Preparation
2.4. Data Analysis
3. Results
3.1. Patients’ Characteristics by Sex
3.2. Patients’ Characteristics by Disability Class
3.3. Bivariate Association of Quantitative Factors
4. Discussions
4.1. Key Results
4.2. Interpretation
4.3. Generalizability
4.4. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| Acc | Accuracy |
| AF | Atrial Fibrillation |
| ATP | Adenosine–triphosphate |
| AUC | Area Under the Curve |
| BMI | Body Mass Index |
| CI | Confidence Interval |
| CKD-EPI | Chronic Kidney Disease Epidemiology Collaboration (formula) |
| CRP | C-Reactive Protein |
| CT | Computed Tomography |
| CVD | Cardiovascular Diseases |
| eGFR | Estimated Glomerular Filtration Rate |
| ESUS | Embolic Stroke of Undetermined Source |
| FHC | Familial Hypercholesterolemia |
| HCA | Hereditary-Collateral History |
| HDL | High-Density Lipoprotein Cholesterol |
| ICD-10 | International Classification of Diseases, 10th Revision |
| LDL | Low-Density Lipoprotein Cholesterol |
| NIHSS | National Institutes of Health Stroke Scale |
| OR | Odds Ratio |
| RNS | Reactive nitrogen species |
| ROS | Reactive oxygen species |
| Se | Sensitivity |
| Sp | Specificity |
| TG | Triglycerides |
| TNFα | Alpha Tumor Necrosis Factor |
References
- Dash, U.C.; Bhol, N.K.; Swain, S.K.; Samal, R.R.; Nayak, P.K.; Raina, V.; Panda, S.K.; Kerry, R.G.; Duttaroy, A.K.; Jena, A.B. Oxidative Stress and Inflammation in the Pathogenesis of Neurological Disorders: Mechanisms and Implications. Acta Pharm. Sin. B 2025, 15, 15–34. [Google Scholar] [CrossRef] [PubMed]
- Ściskalska, M.; Zalewska, M.; Grzelak, A.; Milnerowicz, H. The Influence of Occupational Exposure to Heavy Metals and Tobacco Smoke on Selected Oxidative Stress Markers in Smelters. Biol. Trace Elem. Res. 2014, 159, 59–68. [Google Scholar] [CrossRef] [PubMed]
- Gandhi, S.; Abramov, A.Y. Mechanism of Oxidative Stress in Neurodegeneration. Oxid. Med. Cell Longev. 2012, 2012, 428010. [Google Scholar] [CrossRef] [PubMed]
- Rehman, M.U.; Wali, A.F.; Ahmad, A.; Shakeel, S.; Rasool, S.; Ali, R.; Majid, S.; Madkhali, H.; Ganaie, M.A.; Khan, R. Neuroprotective Strategies for Neurological Disorders by Natural Products: An Update. Curr. Neuropharmacol. 2019, 17, 247–267. [Google Scholar] [CrossRef]
- Pawluk, H.; Tafelska-Kaczmarek, A.; Sopońska, M.; Porzych, M.; Modrzejewska, M.; Pawluk, M.; Kurhaluk, N.; Tkaczenko, H.; Kołodziejska, R. The Influence of Oxidative Stress Markers in Patients with Ischemic Stroke. Biomolecules 2024, 14, 1130. [Google Scholar] [CrossRef]
- Ma, F.; Li, L.; Xu, L.; Wu, J.; Zhang, A.; Liao, J.; Chen, J.; Li, Y.; Li, L.; Chen, Z.; et al. The relationship between systemic inflammation index, systemic immune-inflammatory index, and inflammatory prognostic index and 90-day outcomes in acute ischemic stroke patients treated with intravenous thrombolysis. J. Neuroinflamm. 2023, 20, 220. [Google Scholar] [CrossRef]
- Martinez, E.; Martorell, J.; Riambau, V. Review of serum biomarkers in carotid atherosclerosis. J. Vasc. Surg. 2020, 71, 329–341. [Google Scholar] [CrossRef]
- GBD 2019 Stroke Collaborators. Global, regional, and national burden of stroke and its risk factors, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet Neurol. 2021, 20, 795–820. [Google Scholar] [CrossRef]
- World Health Organization. Cardiovascular Diseases (CVDs). World Health Organization, 2021. Available online: https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds) (accessed on 12 July 2025).
- European Stroke Organisation (ESO). Stroke in Numbers—Romania, 2022–2021. Stroke Action Plan for Europe—Stroke Incidence. Available online: https://actionplan.eso-stroke.org/stroke-incidence?country=romania&years%5B%5D=2022&years%5B%5D=2021 (accessed on 22 July 2025).
- Adams, H.P., Jr.; Bendixen, B.H.; Kappelle, L.J.; Biller, J.; Love, B.B.; Gordon, D.L.; Marsh, E.E., 3rd. Classification of subtype of acute ischemic stroke: Definitions for use in a multicenter clinical trial. Stroke 1993, 24, 35–41. [Google Scholar] [CrossRef]
- Ross, R. Atherosclerosis—An inflammatory disease. N. Engl. J. Med. 1999, 340, 115–126. [Google Scholar] [CrossRef]
- Libby, P. Inflammation in atherosclerosis. Nature 2002, 420, 868–874. [Google Scholar] [CrossRef] [PubMed]
- Fuster, V.; Moreno, P.R.; Fayad, Z.A.; Corti, R.; Badimon, J.J. Atherothrombosis and high-risk plaque: Part I: Evolving concepts. J. Am. Coll. Cardiol. 2005, 46, 937–954. [Google Scholar] [CrossRef] [PubMed]
- Moskowitz, M.A.; Lo, E.H.; Iadecola, C. The science of stroke: Mechanisms in search of treatments. Neuron 2010, 67, 181–198. [Google Scholar] [CrossRef] [PubMed]
- Weiner, H.L.; Selkoe, D.J. Inflammation and therapeutic vaccination in CNS diseases. Nature 2002, 420, 879–884. [Google Scholar] [CrossRef]
- Tuttolomondo, A.; Maida, C.; Pinto, A. Inflammation and inflammatory cell recruitment in acute cerebrovascular diseases. Curr. Immunol. Rev. 2015, 11, 24–32. [Google Scholar] [CrossRef]
- Yaghi, S.; Raz, E.; Yang, D.; Cutting, S.; Mac Grory, B.; Elkind, M.S.; de Havenon, A. Lacunar stroke: Mechanisms and therapeutic implications. J. Neurol. Neurosurg. Psychiatry 2021, 92, 817–824. [Google Scholar] [CrossRef]
- Strilciuc, S.; Grad, D.A.; Mixich, V.; Stan, A.; Buzoianu, A.D.; Vlădescu, C.; Vintan, M.A. Societal cost of ischemic stroke in Romania: Results from a retrospective county-level study. Brain Sci. 2021, 11, 689. [Google Scholar] [CrossRef]
- Stan, A.; Strilciuc, S.; Gherghel, N.; Cozma, A.; Cristian, A.; Ilut, S.; Blesneag, A.; Vacaras, V.; Stanca, D.; Stan, H.; et al. Aphasia after acute ischemic stroke: Epidemiology and impact on tertiary care resources. Balneo PRM Res. J. 2021, 12, 376–380. [Google Scholar] [CrossRef]
- Bloj, F.A.; Buicu, F.C.; Filep, C.R.; Suciu, B.A.; Vunvulea, V.; Mărginean, L. A cost effectiveness analysis of stroke management in Romania. Gazz. Med. Ital. Arch. Sci. Med. 2022, 181, 524–530. [Google Scholar] [CrossRef]
- Felicia, P.; Popp, R.A.; Cătană, A.; Porojan, M.; Pop, I.V. Genetic polymorphism TNFα −308 G>A and ischemic stroke in Northern Romania. Acta Med. Marisiensis 2013, 59, 75–77. [Google Scholar] [CrossRef]
- Hutanu, A.; Iancu, M.; Dobreanu, M.; Oprea, O.R.; Barbu, Ș.; Maier, S.; Tero-Vescan, A.; Băjko, Z.; Bălașa, R. Extended lipid profile in Romanian ischemic stroke patients in relation to stroke severity and outcome: A path analysis model. Arch. Med. Sci. 2021, 17, 864–873. [Google Scholar] [CrossRef]
- Hsieh, M.T.; Hsieh, C.Y.; Tsai, T.T.; Wang, Y.C.; Sung, S.F. Performance of ICD-10-CM diagnosis codes for identifying acute ischemic stroke in a national health insurance claims database. Clin. Epidemiol. 2020, 12, 1007–1013. [Google Scholar] [CrossRef] [PubMed]
- McCormick, N.; Bhole, V.; Lacaille, D.; Avina-Zubieta, J.A. Validity of diagnostic codes for acute stroke in administrative databases: A systematic review. PLoS ONE 2015, 10, e0135834. [Google Scholar] [CrossRef] [PubMed]
- Brott, T.; Adams, H.P., Jr.; Olinger, C.P.; Marler, J.R.; Barsan, W.G.; Biller, J.; Spilker, J.; Holleran, R.; Eberle, R.; Hertzberg, V.; et al. Measurements of acute cerebral infarction: A clinical examination scale. Stroke 1989, 20, 864–870. [Google Scholar] [CrossRef] [PubMed]
- Lin, M.P.; Liebeskind, D.S. Imaging of ischemic stroke. Continuum (Minneap Minn.) 2016, 22, 1399–1423. [Google Scholar] [CrossRef]
- National Kidney Foundation. CKD-EPI Creatinine Equation. 2021. Available online: https://www.kidney.org/ckd-epi-creatinine-equation-2021-0 (accessed on 12 February 2025).
- Pappan, N.; Awosika, A.O.; Rehman, A. Dyslipidemia. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2024; Available online: https://www.ncbi.nlm.nih.gov/books/NBK560891/ (accessed on 12 February 2025).
- Goyal, R.; Singhal, M.; Jialal, I. Type 2 diabetes. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2023; Available online: https://www.ncbi.nlm.nih.gov/books/NBK513253/ (accessed on 12 February 2025).
- Timar, R. Noțiuni de Diabet, Nutriție și Boli Metabolice; Eurobit: Timișoara, Romania, 2014. [Google Scholar]
- Chen, T.K.; Knicely, D.H.; Grams, M.E. Chronic kidney disease diagnosis and management: A review. JAMA 2019, 322, 1294–1304. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, T.; Yang, L.; Chen, G.; Ding, P.; Yu, D.; Liao, H.; Liu, J.; Yue, W. National Institute of Health Stroke Scale Score Mediated the Relationship between Systemic Inflammatory Response Index, High-Sensitivity C-Reactive Protein, and Functional Prognosis of Acute Ischemic Stroke: A Prospective Cross-Sectional Study. Heart Mind. 2025, 9, 174–184. [Google Scholar] [CrossRef]
- Gyurászová, M.; Kovalčíková, A.; Gaál, E.; Renczés, E.; Kmeťová, K.; Celec, P.; Bábíčková, J.; Tóthová, Ľ. Oxidative Stress in Animal Models of Acute and Chronic Renal Failure. Dis. Markers 2019, 2019, 8690805. [Google Scholar] [CrossRef]
- Chen, H.; Yoshioka, H.; Kim, G.S.; Jung, J.E.; Okami, N.; Sakata, H.; Maier, C.M.; Narasimhan, P.; Goeders, C.E.; Chan, P.H. Oxidative stress in ischemic brain damage: Mechanisms of cell death and potential molecular targets for neuroprotection. Antioxid. Redox Signal. 2011, 14, 1505–1517. [Google Scholar] [CrossRef]
- Kim, S.; Jung, U.J.; Kim, S.R. Role of oxidative stress in blood–brain barrier disruption and neurodegenerative diseases. Antioxidants 2024, 13, 1462. [Google Scholar] [CrossRef]
- Bhatti, J.S.; Bhatti, G.K.; Reddy, P.H. Mitochondrial dysfunction and oxidative stress in metabolic disorders—A step towards mitochondria-based therapeutic strategies. Biochim. Biophys. Acta Mol. Basis Dis. 2017, 1863, 1066–1077. [Google Scholar] [CrossRef] [PubMed]
- Nimjee, S.M.; Akhter, A.S.; Zakeri, A.; Herson, P.S. Sex differences in thrombosis as it affects acute ischemic stroke. Neurobiol. Dis. 2022, 165, 105647. [Google Scholar] [CrossRef] [PubMed]
- Ji, H.; Kwan, A.C.; Chen, M.T.; Ouyang, D.; Ebinger, J.E.; Bell, S.P.; Niiranen, T.J.; Bello, N.A.; Cheng, S. Sex differences in myocardial and vascular aging. Circ. Res. 2022, 130, 566–577. [Google Scholar] [CrossRef] [PubMed]
- Rebchuk, A.D.; Hill, M.D.; Goyal, M.; Demchuk, A.; Coutts, S.B.; Asdaghi, N.; Dowlatshahi, D.; Holodinsky, J.K.; Fainardi, E.; Shankar, J.; et al. Exploring sex differences for acute ischemic stroke clinical, imaging and thrombus characteristics in the INTERRSeCT study. J. Cereb. Blood Flow Metab. 2023, 43, 1803–1809. [Google Scholar] [CrossRef]
- Benkhoff, M.; Polzin, A. Lipoprotection in cardiovascular diseases. Pharmacol. Ther. 2024, 264, 108747. [Google Scholar] [CrossRef]
- Beazer, J.D.; Patanapirunhakit, P.; Gill, J.M.R.; Graham, D.; Karlsson, H.; Ljunggren, S.; Mulder, M.T.; Freeman, D.J. High-density lipoprotein’s vascular protective functions in metabolic and cardiovascular disease—Could extracellular vesicles be at play? Clin. Sci. (Lond.) 2020, 134, 2977–2986. [Google Scholar] [CrossRef]
- Cortesi, M.; Dotta, L.; Cattalini, M.; Lougaris, V.; Soresina, A.; Badolato, R. Unmasking inborn errors of immunity: Identifying the red flags of immune dysregulation. Front. Immunol. 2024, 15, 1497921. [Google Scholar] [CrossRef]
- Vitturi, B.K.; Gagliardi, R.J. Effectiveness of statins on outcomes of patients with Embolic Stroke of Undetermined Source (ESUS). J. Stroke Cerebrovasc. Dis. 2024, 33, 107469. [Google Scholar] [CrossRef]
- Hojs Fabjan, T.; Hojs, R. Stroke and renal dysfunction. Eur. J. Intern. Med. 2014, 25, 18–24. [Google Scholar] [CrossRef]
- Li, Y.; Wu, S.; Gao, J.; Zhang, Y.; Zuo, Y.; Tian, X.; Chen, S.; Xing, A.; Wang, A.; He, Y. Association of stroke with metabolic dysfunction-associated fatty liver disease with and without CKD. Am. J. Kidney Dis. 2024, 83, 477–488. [Google Scholar] [CrossRef]
- Boshagh, K.; Khorvash, F.; Sahebkar, A.; Askari, G.; Karimi, A.; Pishva, H.; Nikbakht, F.; Dehnavi, Z.; Jafari, E.; Entezari-Maleki, T.; et al. The Effects of Curcumin-Piperine Supplementation on Inflammatory, Oxidative Stress and Metabolic Indices in Patients with Ischemic Stroke in the Rehabilitation Phase: A Randomized Controlled Trial. Nutrients 2023, 22, 69. [Google Scholar] [CrossRef]



| All, n = 124 | Women, n = 53 | Men, n = 71 | p-Value | |
|---|---|---|---|---|
| Demographics and Lifestyle Factors | ||||
| Age, years a | 71 [62 to 76.3] | 73 [67 to 77] | 69 [57 to 75] | 0.0098 |
| Rural living b | 48 (38.7) | 23 (43.4) | 25 (35.2) | 0.3546 |
| Smoker b | 35 (28.2) | 5 (9.4) | 30 (42.3) | <0.0001 |
| Alcohol consumption b | 17 (13.7) | 2 (3.8) | 15 (21.1) | 0.007 |
| Sedentarism b | 71 (57.3) | 36 (67.9) | 35 (49.3) | 0.038 |
| Comorbidities | ||||
| BMI, kg/m2 a | 27.5 [24.6 to 31.2] | 28.1 [24.9 to 32.8] | 27.4 [24.1 to 30.9] | 0.3052 |
| Obesity b | 46 (37.1) | 23 (43.4) | 23 (32.4) | 0.2096 |
| Type II Diabetes Mellitus b | 37 (29.8) | 13 (24.5) | 24 (33.8) | 0.2642 |
| Hypertension b | 57 (46) | 24 (45.3) | 33 (46.5) | 0.8948 |
| Clinical atherosclerotic signs b | 22 (17.7) | 7 (13.2) | 15 (21.1) | 0.2535 |
| Carotid atherosclerosis b | 93 (75) | 39 (73.6) | 54 (76.1) | 0.7532 |
| Kidney chronic disease b | 20 (16.1) | 10 (18.9) | 10 (14.1) | 0.4737 |
| AF b | 34 (27.4) | 14 (26.4) | 20 (28.2) | 0.8285 |
| HCA (CVD/FHC) b | 17 (13.7) | 7 (13.2) | 10 (14.1) | >0.9999 |
| Biomarkers | ||||
| CRP a | 1.2 [0.7 to 2.3] | 1.3 [0.9 to 2.4] | 1.1 [0.6 to 1.9] | 0.1577 |
| LDL a | 77.5 [63 to 108.3] | 89 [69 to 111] | 74 [59 to 106.5] | 0.0261 |
| HDL a | 44 [35 to 54.3] | 47 [37 to 56] | 39 [35 to 51.5] | 0.0526 |
| TG a | 127.5 [94 to 164.5] | 122 [94 to 154] | 135 [94.5 to 169] | 0.8143 |
| Creatinine b | 0.8 [0.7 to 1.1] | 0.8 [0.6 to 0.9] | 0.9 [0.8 to 1.2] | 0.0022 |
| eGFR a | 83.7 [61.4 to 96] | 78.9 [59.3 to 93.5] | 86 [64.8 to 98.7] | 0.0627 |
| Disability Score | ||||
| NIHSS a | 6 [3.75 to 10] | 7 [3 to 10] | 6 [4 to 10] | 0.8289 |
| NIHSS class b minor | 34 (27.4) | 14 (26.4) | 20 (28.2) | 0.9645 |
| moderate | 80 (64.5) | 35 (66) | 45 (63.4) | |
| moderate to severe | 4 (3.2) | 2 (3.8) | 2 (2.8) | |
| NIHSS Minor, n = 40 | NIHSS at Least Moderate, n = 84 | p-Value | |
|---|---|---|---|
| Demographics | |||
| Age, years a | 74.5 [63.8 to 79] | 69 [60.8 to 75] | 0.0148 |
| Rural living b | 13 (32.5) | 16 (19) | 0.0981 |
| Smoker b | 14 (35) | 21 (25) | 0.2475 |
| Alcohol consumption b | 5 (12.5) | 12 (14.3) | >0.9999 |
| Sedentarism b | 20 (50) | 51 (60.7) | 0.2596 |
| Comorbidities | |||
| BMI, kg/m2 a | 28.8 (5.8) | 27.8 (5.1) | 0.3463 |
| Obesity b | 17 (42.5) | 29 (34.5) | 0.3901 |
| Type II Diabetes Mellitus b | 13 (32.5) | 24 (28.6) | 0.6549 |
| Hypertension b | 19 (47.5) | 38 (45.2) | 0.8132 |
| Clinical atherosclerotic signs b | 29 (72.5) | 73 (86.9) | 0.0497 |
| Carotid atherosclerosis b | 29 (72.5) | 64 (76.2) | 0.6573 |
| Chronic kidney disease b | 13 (32.5) | 16 (19) | 0.0981 |
| AF b | 8 (20) | 26 (31) | 0.2013 |
| HCA (CVD/FHC) b | 6 (15) | 11 (13.1) | 0.7731 |
| Biomarkers | |||
| CRP a | 1.1 [0.6 to 1.4] | 1.4 [0.8 to 2.5] | 0.0273 |
| LDL a | 79 [66 to 102.8] | 77 [61.5 to 109.3] | 0.7769 |
| HDL a | 46.5 [36.8 to 57] | 43.5 [33 to 52] | 0.1830 |
| TG a | 135 [100 to 168] | 124.5 [87 to 160.3] | 0.5764 |
| Creatinine b | 0.9 [0.7 to 1.2] | 0.8 [0.7 to 1] | 0.0066 |
| eGFR a | 66.3 [57.6 to 85.5] | 88.4 [70.5 to 98.6] | 0.0011 |
| Univariable Regression | Multivariable Regression * | ||||||
|---|---|---|---|---|---|---|---|
| Equation | AIC | p-Value | OR [95%CI] | B (SE) | p-Value | OR [95%CI] | |
| Intercept | 4.71 (1.60) | 0.0033 | |||||
| Age, years | 3.85 − 0.04 × Age | 154.3 | 5.67 (0.0173) | 0.96 [0.92 to 0.99] | −0.05 (0.02) | 0.0365 | 0.96 [0.92 to 1.00] |
| CRP | 0.23 + 0.31 × CRP | 153.0 | 6.90 (0.0086) | 1.37 [1.00 to 1.87] | 0.31 (0.17) | 0.0700 | 1.36 [0.98 to 1.89] |
| CRE | 2.42 − 1.85 × CRE | 152.8 | 7.19 (0.0073) | 0.16 [0.04 to 0.64] | −1.73 (0.79) | 0.0290 | 0.18 [0.04 to 0.84] |
| eGFR | −1.70 + 0.03 × eGRF | 148.7 | 11.22 (0.0008) | 1.03 [1.01 to 1.05] | |||
| HDL class | 0.47 − 1.65 × HDL | 151.1 | 8.88 (0.0029) | 5.23 [1.47 to 18.54] | 1.52 (0.68) | 0.0253 | 4.58 [1.21 to 17.41] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gerdanovics, A.; Bolboacă, S.D.; Stănescu, I.C.; Mîrza, C.M.; Dogaru, G.B.; Nicula, C.A.; Boarescu, P.M.; Gerdanovics, C.-A.; Bulboacă, A.-E. Determinants of Outcome Variability in Ischemic Stroke: A Focus on Routinely Collected Biomarkers. Antioxidants 2025, 14, 1305. https://doi.org/10.3390/antiox14111305
Gerdanovics A, Bolboacă SD, Stănescu IC, Mîrza CM, Dogaru GB, Nicula CA, Boarescu PM, Gerdanovics C-A, Bulboacă A-E. Determinants of Outcome Variability in Ischemic Stroke: A Focus on Routinely Collected Biomarkers. Antioxidants. 2025; 14(11):1305. https://doi.org/10.3390/antiox14111305
Chicago/Turabian StyleGerdanovics, Alexandru, Sorana D. Bolboacă, Ioana Cristina Stănescu, Camelia Manuela Mîrza, Gabriela Bombonica Dogaru, Cristina Ariadna Nicula, Paul Mihai Boarescu, Cezara-Andreea Gerdanovics, and Adriana-Elena Bulboacă. 2025. "Determinants of Outcome Variability in Ischemic Stroke: A Focus on Routinely Collected Biomarkers" Antioxidants 14, no. 11: 1305. https://doi.org/10.3390/antiox14111305
APA StyleGerdanovics, A., Bolboacă, S. D., Stănescu, I. C., Mîrza, C. M., Dogaru, G. B., Nicula, C. A., Boarescu, P. M., Gerdanovics, C.-A., & Bulboacă, A.-E. (2025). Determinants of Outcome Variability in Ischemic Stroke: A Focus on Routinely Collected Biomarkers. Antioxidants, 14(11), 1305. https://doi.org/10.3390/antiox14111305

